
Center for Information Services and High Performance Computing (ZIH)

Towards Parallel Performance Analysis

Tools for the OpenSHMEM Standard

Sebastian Oeste, Andreas Knüpfer, Thomas Ilsche,

Ronny Tschüter, Felix Schmitt

OpenSHMEM Workshop 2014-03-06, Annapolis

Overview

Introduction

Vampir Event Trace Visualization

Generic PGAS Event Type Definitions

OpenSHMEM support in Score-P

Hybrid OpenSHMEM+CUDA programs

First experiments and insights

Conclusions, Outlook, Feedback

Parallel Performance Analysis and Tools

Performance is important in HPC, isn‘t it?

Have a performance tuning phase

– just like a testing and debugging phases

Use dedicated tools

– Do not DIY, really!

Parallel Performance Analysis Approaches

Concise data sets

Good overview, limited detail,

no outliers

Sampling Instrumentation

Profile Event Trace

Extensive data sets

Most detailed

Master Timeline

Navigation Toolbar

Function Summary

Function Legend

Vampir

Detailed information about

functions, communication

and synchronization events

for collection of processes.

Vampir

Detailed information about

different levels of function

calls in a stacked bar chart

for an individual process.

Vampir

Detailed counter

information over time for

an individual process.

Vampir

Detailed counter

information over time for

a collection of processes.

Vampir

MPI communication

results in lower

floating point

operations.

Vampir

PGAS Event Types: Put and Get

New event types for PGAS parallelization libraries:

Generic event model for OpenSHMEM, MPI one-sided, GASPI, …

Put and Get recorded on the active side only

– Local and remote completion

– Identical for get but separate for put

– Visualization for put events based on local completion only!

PGAS Event Types: Collective Operations

Refined event types for collective operations:

Similar to MPI collectives

– Extra event types, also track “memory windows”

– Visualization identical

PGAS Event Types: Locks etc.

New event types for mutual exclusive locks

– Diverse definitions in different PGAS standards

– Track attempts, lock operations, release operations

More new event types e.g., atomic operations

Many other event types reused

– Enter and Leave for API calls and user routine calls

– Performance counter samples

Demonstrator based on Cray SHMEM and VampirTrace

From the original OpenSHMEM 2013/2014 workshop paper:

Sebastian Oeste , Andreas Knüpfer, Thomas Ilsche:

Towards Parallel Performance Analysis Tools

for the OpenSHMEM Standard

Demonstrator for Cray SHMEM based on VampirTrace:

Mapping to MPI event types

Internal communication via Cray MPI

– Cray SHMEM can co-exist with MPI

– PE numbers == MPI rank in MPI_COMM_WORLD

First experimental results

OpenSHMEM in Score-P

Score-P

Joint instrumentation and run-time measurement system for

Vampir, Scalasca, TAU, and Periscope, in collaboration between TU

Dresden, FZ Jülich, TU Munich, University of Oregon, RWTH Aachen

University et.al. Open for new partners.

OpenSHMEM support in Score-P

Generic PGAS event types

Instrumentation via P-symbols or library wrapping

Records profiles or event traces

Native internal communication via OpenSHMEM

Requires insertion of explicit finalize call

Acknowledgements to ORNL and UT Battelle for project funding

CC=scorep oshcc

CXX=scorep oshcxx

CFLAGS=-DNDEBUG -O3

For instrumentation simply

add the Score-P compiler

prefix command

Application
CPU

Score-P

Trace

Data

Vampir

OpenSHMEM in Score-P

Status and Features

Score-P 1.3 pre-release version supports

OpenSHMEM instrumentation and monitoring

– Using library wrapping or PSHMEM interface

– Automatically detects the SHMEM compiler wrappers (e.g. oshcc)

– Explicit finalize call required

– Also provides performance counters, energy monitoring, etc.

Score-P 1.3 latest beta-version supports hybrid combinations of

OpenSHMEM with CUDA and OpenMP

– No oshnvcc wrapper available, CUDA code

must be compiled/linked separately

First results …

OpenSHMEM+CUDA+OpenMP Application in Vampir

Example with OpenSHMEM, CUDA, and OpenMP

Experiments

Ported MPI codes to OpenSHMEM as test cases

MPI/CUDA/OpenMP applications ported to use OpenSHMEM

– Jacobi CUDA: iterative discrete Poisson equation solver using

Dirichlet boundary conditions, max. two PEs/processes

– φGPU: direct astrophysics N-Body simulation using 4th order

Hermite integration scheme

Measurement configuration for the following examples

– BULL HPC system “Taurus” at ZIH, Infiniband interconnect

– OpenSHMEM v1.0e, GASNET 1.22.0, conduit: ibv

– GCC 4.4.6, bullxmpi/1.2.4.3, Nvidia K20X, CUDA 5.0

First experiments and insights …

Issues with the OpenSHMEM Reference Implementation

Compile errors (fixed together with maintainers)

The start_pes initialization routine takes very long

(overhead scales with number of PEs on a single node

but not across multiple nodes)

Comparison of MPI and OpenSHMEM (1)

OpenSHMEM introduces additional CPU overhead

Results in longer and unbalanced OpenMP regions

MPI (top) vs. OpenSHMEM (bottom)

for Jacobi CUDA example

Comparison of MPI and OpenSHMEM (2)

Collective operations (e.g. allreduce) less efficient than MPI counterparts

MPI_Allreduce (13.4ms, top) vs.

shmem_double_sum_to_all (103ms, bottom) in φGPU

Comparison of MPI and OpenSHMEM (3)

Comparison of execution times [s] for φGPU

(256K particles) using MPI and OpenSHMEM

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

2 4 8 16

[s]

Processes/PEs

MPI

MPI (main compute)

OpenSHMEM

OpenSHMEM (main compute)

Conclusions

Tool support for OpenSHMEM

– Score-P for instrumentation and run-time measurement

– Vampir for scalable interactive visualization

– Hybrid cases with OpenSHMEM together with CUDA or OpenMP

Using generalized event model for PGAS libraries

– Even extends to PGAS languages as well as

DMA operations as in CUDA

Feedback from OpenSHMEM community welcome

Frequent tools tutorials, user support, mailing lists, …

Outlook

Reducing tracing overhead for one-sided communication

– combine many small put/get operations in a useful way

– Summarize number of ops and transfer volumes

– … for sensible phases (not too long, not too short)

– … per PE or per pairs of PEs

– … always or only for bursts of small operations

– Design appropriate visualization in Vampir

Record information about local/remote communication partners

(if available through OpenSHMEM API)

Record memory accesses (addresses and variable names) for data

layout optimization and/or race detection

Record OpenSHMEM internal counters (if available)

Feedback to the OpenSHMEM Consortium

Wish #1: Weak symbols and additional P-symbols

– Currently optional in the OpenSHMEM reference implementation

but not in the standard

shmem_char_put  pshmem_char_put

shmem_short_put  pshmem_short_put

shmem_int_put  pshmem_int_put

Wish #2: Mandatory finalize call as counterpart to init

void start_pes(int npes);

void finalize_pes();

Wish #3: New OpenSHMEM compiler wrapper for CUDA compiler

