
Towards Parallel Performance Analysis Tools for
the OpenSHMEM Standard

Sebastian Oeste1, Andreas Knüpfer1, and Thomas Ilsche1

Technische Universität Dresden, Center for Information Services and HPC (ZIH)

Abstract. This paper discusses theoretic and practical aspects when
extending performance analysis tools to support the OpenSHMEM stan-
dard for parallel programming. The theoretical part covers the mapping
of OpenSHMEM’s communication primitives to a generic event record
scheme that is compatible with a range of PGAS libraries. The visual-
ization of the recorded events is included as well. The practical parts
demonstrate an experimental extension for Cray-SHMEM in Vampir-
Trace and Vampir and first results with a parallel example application.
Since Cray-SHMEM is similar to OpenSHMEM in many respects, this
serves as a realistic preview. Finally, an outlook on a native support for
OpenSHMEM is given together with some recommendations for future
revisions of the OpenSHMEM standard from the perspective of perfor-
mance tools.

Keywords: OpenSHMEM, Performance Analysis, Tracing, Tools In-
frastructure

1 Introduction

In the field of High Performance Computing (HPC), MPI was and is the dom-
inating parallelization standard. It provides a huge range of point-to-point and
collective communication operations and is the de-facto standard in for highly
parallel programming beyond multi-threading in High Performance Computing
(HPC). Another model for parallel programming is gaining more and more at-
tention lately, the Partitioned Global Address Space (PGAS) paradigm. It pro-
motes the idea of shared memory parallelization even for large scale distributed
memory parallel machines. For this purpose it employs Remote Direct Memory
Access (RDMA) operations, also called one-sided communication. A number of
efforts in the HPC community currently follow this paradigm. Among them may
be promising candidates for a true rival for MPI. One of the main prospects of
PGAS is the reduced complexity compared to hybrid MPI plus OpenMP paral-
lelism. An indication that this may be true is the addition of one-sided operations
to the MPI standard.

On the one hand, the set of PGAS approaches contains language extensions
like Unified Parallel C (UPC) or Co-Array Fortran (CAF) which need their own
compilers. On the other hand, it contains PGAS libraries that have the advantage
that well-known languages like C/C++ and Fortran gain PGAS functionalities

II

and no extra compilers are needed. SHMEM is one flavor of such PGAS libraries.
In the history of SHMEM there are several implementations like Cray-SHMEM,
SGI-SHMEM or Quadrics SHMEM with quite different APIs. With OpenSH-
MEM there is a new effort to create a open standard to make all vendor versions
of SHMEM API-compatible.

This paper presents a concept for a generic infrastructure to record event
traces from OpenSHMEM parallel application programs. Its goal is an integra-
tion in the Score-P monitoring system which produces event traces in the Open
Trace Format 2 (OTF2) that are to be visualized and analyzed with the Vampir
tool. In section 2 we describe the common techniques for the performance moni-
toring of parallel applications. Section 3 presents a concept for a generic tracing
infrastructure for PGAS approaches in general and OpenSHMEM in particular.
Section 4 gives an overview of an existing prototypical implementation for trace
recording of SHMEM events using Cray-SHMEM and the VampirTrace package.
The paper ends with an outlook on a native OpenSHMEM event tracing solution
for the parallel performance analysis.

2 Parallel Performance Analysis Tools

Tools for parallel performance analysis are an important part of the HPC soft-
ware ecosystem. Since the parallel execution performance and the scalability are
most significant properties in HPC, developers need to pay attention to perfor-
mance analysis and tuning. And they need support by appropriate tools.

Just like debugging is very difficult without dedicated debugging tools, the
detailed investigation of the run-time behavior apart from the wall clock duration
is almost impossible. And both kinds of task get notably more complicated in
the parallel case.

2.1 Instrumentation

To monitor HPC applications it is necessary to be able to measure the run-time
behavior inside target programs exactly. To reach this we need concrete run-time
information from the application during execution. A way to to get run-time in-
formation of a program during execution is instrumentation. Instrumentation
refers to a modification of the program code to measure certain events of inter-
est. The measurement code is inserted before and after an event appears and
triggers routines in the measurement environment to gather the information.
Instrumentation can take place at different times of the program transformation
process. There are several techniques to instrument a program.

– Static instrumentation The code will be inserted before execution.
– Dynamic instrumentation The code will be inserted during execution.
– Manual instrumentation The code is inserted manually this affords the

most flexibility. The user can place measurement calls exactly on those parts
of the program provides the most interest.

III

– Automatic instrumentation The code will be inserted automatically for
example through certain linker options, or compiler functionalities. Which
invokes corresponding functions with information like file name, line number,
function name. Automatic instrumentation typically inserts enter and leave
events.

– Binary instrumentation The instrumentation appears on the binary, ex-
ecutable file. Toolkits like the DyninstAPI are able to insert measurement
code after the actual program is compiled [12].

The different ways to instrument an application makes instrumentation in gen-
eral a flexible solution. We are currently developing an instrumentation tool
for C and C++ sources which creates a wrapper library by parsing a header
file and re-defining all symbols with performance annotations. This tools uses
mechanisms for dynamic and static linking libraries and even supports profiling
interfaces based on weak symbols.

2.2 Sampling

Another technique to record information is sampling. Sampling works without
any modification of the programs source code or binary executable. During the
execution of the program periodic interrupts occur to collect information about
the state of the program. Popular information for sampling are values of perfor-
mance counters or the state of the call stack. The granularity depends on the
sampling frequency. An advantage of sampling compared with instrumentation
is the ability to make forecasts about the overhead behavior. The overhead of
program analysis using sampling grows linear with the sampling frequency.

2.3 Profiling

One way to present the acquired information from instrumentation or sampling
is to create a so called profile. A profile in general is an summary of performance
metrics e.g. the time difference between enter and leave events or the number
of calls of a function. A profile can be created from information acquired by
sampling or by instrumentation. Common kinds of profiles are the flat profile
which is the simplest form of a profile. Because the aggregated information just
depends on the regions or instrumented functions. Significantly for a flat profile
is that it provides no caller context. Another form of a profile is a call-path
profile which is a representation of the execution path. A call-path profile gives
information about possible routes through a program - each route through the
program is a own record.

2.4 Event Tracing

Parallel event tracing tools try to capture the run-time behavior of a target
application by recording events of interest. Usually, event tracing relies on in-
strumentation to be notified about such events, but there are also sampling-
based approaches. For every event a so called event record is stored. All records

IV

are stored separately in every processing element (PE) in temporal order. Ev-
ery record contains at least the type (what), the time (when) and the location
(where) of an event and might carry further type-specific data. Usually, the
stream of event records is stored in a local memory buffer and is stored to the
file system only at the end of the measurement. See [13] for more background.

The events of interest that are used for parallel event tracing of High Per-
formance Computing (HPC) applications can be grouped into three groups: Se-
quential events, parallel events, and scalar values.

Sequential execution events This includes all activities in all sequential
phases of the parallel PEs. They have no direct effects on other PEs and are
the same for all parallel programs no matter if they use MPI, Pthreads, or any
other parallelization model. The monitoring system merely needs a way to find
out the location (where) of the events. The granularity of such events may vary.
Typical examples are the call to (enter event) or return from (leave event) for
subroutine calls or the begin and end of loop bodies.

Events for parallel communication and synchronization Communication
and synchronization event records cover the remaining parts of parallel programs.
They represent all activities that directly affect two or more PEs. They are rep-
resented as local event records on some or all of the involved PEs. In particular,
they allow to identify the communication peer(s) explicitly or implicitly.

This group of events is closely modeled according to the perspective of the
programmer, i.e. the events represent the basic building blocks for communica-
tion and synchronization that the parallelization model provides. For paralleliza-
tion libraries such as OpenSHMEM, this is close to their APIs.

There are a number of examples from established HPC parallelization models.
First, there are point-to-point communication calls and collective communication
calls from MPI [11], including both, the blocking and the non-blocking modes.
Second, there are parallel regions and synchronization points from OpenMP
which are not implemented as API calls but as code pragmas. Also there are
data transfers calls between hosts and devices as well as synchronization points
for GPGPU computing models such as CUDA and OpenCL. And there are
PGAS-style communication and synchronization types which are applicable to
OpenSHMEM and several other PGAS-libraries or PGAS language extensions,
see also [9].

Usually, all communication and synchronization event records are surrounded
by events for the API call to reference which exact API call was used and to
capture the duration of the call (the time between the enter and the leave events).

Hardware counters, system metrics, and user-defined metrics In addi-
tion to the previous two groups, there are event records for counters or metrics.
Usually, they provide summaries of events of interest which are too fine-grained
to be recorded individually. The prime examples are CPU hardware performance

V

counters counting floating point instructions, memory accesses, cache misses,
TLB misses, and many more. Sampling such counters at the enter and leave
points of subroutine calls provides interesting data about the floating point in-
structions, memory accesses, etc. that happened inside the call. Besides hard-
ware performance counters, also system counters like memory consumption or
temperature can be captured in this way, even though they are not strictly
counting discrete events. Also external metrics like the power consumption or
the throughput rates of storage subsystems can be captured like this. Last but
not least, so called user defined metrics can be provided by the application code
itself to indicate relevant properties of its inner workings. Examples could be
the number of outstanding requests at a point in time, partition sizes of problem
decompositions, or the residual value of an iterative solver.

2.5 Existing tools and related work

There are a couple of performance analysis tools which support the techniques
described above with a strong focus on High Performance Computing (HPC).
The Tuning an Analysis Utilities (TAU) specialize in profiling with some trac-
ing functionalities [18]. Scalasca focuses on automatic detection of well-known
performance problems in parallel programs based on an event trace replay mech-
anism [5]. Vampir provides interactive visualization and exploration of parallel
event traces [13]. All of the previously mentioned tools work together with the
Score-P monitoring infrastructure for code instrumentation, profile collection
and event trace recording [10]. There is also Vampir’s previous default monitor-
ing system called VampirTrace with a similar feature set. VampirTrace comes
as a regular component of the Open MPI package and is therefore available
on a large number of HPC machines worldwide [13]. HPCToolkit is one estab-
lished example that relies on periodic sampling including call stack unwinding
to capture the dynamic run-time behavior of parallel target applications [1].

With respect to performance tools for the rather young OpenSHMEM stan-
dard, there are very few pieces of related work. A prototypical extension to Vam-
pirTrace has been created by S. Jana and J. Schuchart at ORNL which capture
traces of OpenSHMEM API calls but not data transfers. Using their extension,
they facilitated an analysis of the energy consumption of certain OpenSHMEM
library calls using the counter plug-in infrastructure of VampirTrace [7]. As far
as we know this was not published yet. The extension of VampirTrace for the
recording of API calls as well as data transfers for Cray-SHMEM, which was the
basis for Section 4, was published in [17].

3 Concept of a tracing infrastructure for OpenSHMEM

The effort to provide recording of sequential events and counters or metrics
for OpenSHMEM programs in existing monitoring systems is minimal. Yet, the
PGAS-style communication scheme requires theoretical and practical changes in
the recording and representation of events. Furthermore, the monitoring infras-
tructure needs to implement its internal communication with OpenSHMEM.

VI

shmem_barrier_allshmem_barrier_all

PE0

PE2

 time

shmem_int_putshmem_int_put shmem_int_putshmem_int_put shmem_barrier_allshmem_barrier_all

shmem_int_getshmem_int_get

EE EE EE

LLEE

CbCb CbCb CrCrPP PP

GG

PE1

LL LL LL

CbCb
shmem_barrier_allshmem_barrier_all

BB EE

EE BB

EE BB

LLEE

LLEE

E

L

B

E

P

CnA

Cb

Cr

Ac

T

R

G TEnter

Leave

CollectiveBegin

CollectiveEnd

Get

Put

Atomic

OpTest

OpCompleteBlocking

OpCompleteNonBlocking

OpCompleteRemote

AcquireLock

TryLock

ReleaseLock

Fig. 1. Timeline visualization of put and get operations and their points of completion.

3.1 Modeling and recording PGAS activities

While MPI is clearly clearly the dominating message passing model in the HPC
landscape, there are several promising players in the PGAS realm. There are
language extensions like Co-Array Fortran [16] and UPC [3] on the one hand
and libraries like OpenSHMEM [4], GASPI [2], ARMCI [14], GlobalArrays [15]
but also MPI 3.0 with the on-sided operations [11] on the other hand. All of
them share the concept of the Partitioned Global Address Space with ’put’
and ’get’ operations (sometimes called ’write’ and ’read’, though) as the key
communication operations. Therefore, there should be a single model and a
single set of event records to represent all PGAS parallelization libraries. This
allows analysis tools to be generic and usable for all PGAS libraries1.

Still, there are semantic differences between all the flavors of ’put’ and ’get’
operations and there are various kinds of synchronization mechanisms. Further-
more, there are some more concepts present in some of the PGAS libraries but
not in all of them. In [9] a combined model is presented covering all of them. In
the remainder of this paper, only the OpenSHMEM operations are discussed.

Put and get operations OpenSHMEM defines a variety of put and get oper-
ations. There are calls for individual numbers, for arrays or blocks, and strided
ones for regular subarrays. All of them are blocking, i.e. the API calls only returns
after the local completion of the operation. For get operations, local completion
also ensures remote completion, that means the operation is not affected by fol-
lowing activities on the remote (passive) side. For put operations, only the local
completion is given, i.e. following changes at the source address won’t influence

1 The model is also applicable to PGAS language extensions even though their ’put’
and ’get’ calls are hidden from the programmer. The compilers will generate them
from the language constructs like loops. However, the remainder of this paper focuses
on the PGAS libraries in general and OpenSHMEM in particular.

VII

the locally completed operation. Remote completion, which means that the sent
data is visible at the remote (passive) side, is not ensured and may happen later.

Put and get operations are recorded on the active PE only. Four event records
are used for this, see also Fig.1. As first an last, an enter record (E) and a leave
record (L) are written which denote the name of the called API function. The
time between them is the duration of the API call. The actual data transfer is
recorded as a RMA put event or an RMA get event, see Fig.2. They include the
target PE, the transfer size in bytes, and a matching number. They also include
a reference to a memory window, which is only relevant for other PGAS flavors
which use multiple “memory windows” or “communicators”. In OpenSHMEM
there is always a single “symmetric heap” and the specification of the target PE
always uses global IDs.

The completion of put or get operations is marked with completion event
records on the same (active) PE. In all cases, the local completion has to be
marked with an ’RmaOpCompleteBlocking’ record with the same matching num-
ber. Since all OpenSHMEM ’put’ or ’get’ calls are blocking until the local com-
pletion, this completion event is put at the end of the associated API call, just
before the leave event, see Fig.1 and Fig.2. For ’put’ operations where there is
a separate remote completion which may or may not be detectable. From the
OpenSHMEM API level it is visible for example when there is a following call to
’shmem barrier all’, see Fig.1(top right). In this case, an optional ’RmaOpCom-
pleteRemote’ record can be written. It is connected to the originating put event
with the same matching number. However, an OpenSHMEM program may pro-
ceed without ever notifying the active PE (that issued the put operation) about
the remote completion. In such cases, the remote completion record is left out,
see Fig.1(top left).

Visualization of put and get operations The graphical visualization of put
and get operations relies on the event records over time on the active PE. Besides
depicting the API call, the data transfer will be shown with an arrow from the
source PE to the destination PE. The start time of the arrow is the time of the

OTF2 Rma(Put|Get)

OTF2 LocationRef location local PE
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target target PE in context of window
uint64 t size number of bytes transferred
uint64 t matching matching number

OTF2 RmaOp(Test|(Complete(Blocking|NonBlocking|Remote))

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint64 t matching matching number

Fig. 2. OTF2 record definitions for put, get, and completion events.

VIII

respective put or get event and that is equal to the start time of the API call.
The end time for the arrows should be the time of completion. This is trivial for
get operations where the local completion is the same as the remote completion.
Thus, it is visualized as in Fig.1(bottom) giving a realistic impression of the
duration and the speed of the data transfer.

It is not well defined for put operations, because local completion is not equal
to remote completion and because remote completion might be invisible for the
monitoring system. Even if the remote completion is visible, it is most probably
visible only at a point in time later than the actual arrival of the data transfer.
At least it is generally recommended by all PGAS programming models to issue
individual remote memory accesses as early as possible and to uses barriers,
fences, or other memory synchronization operations as late as possible. Since
neither of the local or remote completion points give a good indication of the
actual duration of a put data transfer, the local completion time is used because
it is always available. It follows that the shown arrows for put operations need
to be read differently. They are an indication when the put operation started
and between which PEs it happens. Yet it does not indicate the transfer time.

Atomic RMA operations OpenSHMEM supports a number of atomic RMA
operations that read and write remote variables in an atomicity manner, i.e.
with the guarantee that no other local or remote memory access can interfere
in between. A separate event record type is defined for atomic operations, see
Fig.3. It is to be used like the put and get record types. In addition to those,
it stores the type of atomic operations and it has separate fields to store the
data volume sent and received. They should contain the number of bytes that
two separate put and get operations would carry if they would try to mimic the
effect of the atomic operation (without the atomicity).

OTF2 RmaAtomicType

OTF2 RMA ATOMIC TYPE SWAP swap
OTF2 RMA ATOMIC TYPE COMPARE AND SWAP compare and swap
OTF2 RMA ATOMIC TYPE FETCH AND ADD fetch and add
OTF2 RMA ATOMIC TYPE FETCH AND INCREMENT fetch and increment
OTF2 RMA ATOMIC TYPE ADD remote add
OTF2 RMA ATOMIC TYPE INCREMENT remote increment
...

OTF2 RmaAtomic

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window window
uint32 t target rank of target in context of window
OTF2 RmaAtomicType type type of atomic operation
uint64 t size sent number of bytes transferred to target
uint64 t size received number of bytes transferred from target
uint64 t matching matching number

Fig. 3. OTF2 record definitions for atomic events including the types of atomic oper-
ations that are relevant for OpenSHMEM.

IX

Like put and get records, atomic RMA records should be followed by a local
complete record and an optional global complete record. For the visualization a
single arrow like that of a put operation should be used. If the ’size received’
field is larger than 0 then a second arrow head pointing backward should be
added.

Collective operations Collective operations in OpenSHMEM are operations
performed simultaneously by a subset of PEs. They are represented by a pair
of event records ’OTF2 RmaCollectiveBegin’ and ’OTF2 RmaCollectiveEnd’ as
shown inf Fig.4. The former merely denotes the begin of the operation, the latter
contains all information about it. This pair of records is to be written by every
participating PE.

The field ’sync level’ is always set to ’OTF2 RMA SYNC LEVEL ALL’ for Open-
SHMEM which means that memory and the execution is synchronized by Open-
SHMEM collectives. Since OpenSHMEM collectives have no ’root’ PE, the ’root’
field is always set to a special value ’NONE’. The fields ’size sent’ and ’size received’
contain the number of bytes sent and received by the current PE if the collective
operation would be mimicked by the minimal number of put and get opera-
tions. In the OpenSHMEM API these subsets of PE’s in collective operations
are known as active set. The participating PE’s are managed in a group which
refers to a memory window.

In the visualization all matching collective operations should be connected
like shown in Fig.1(right) for the ’shmem barrier all’ operation.

OTF2 RmaCollectiveBegin

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp

OTF2 RmaCollectiveEnd

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaSyncLevel sync level synchronization level
OTF2 RmaWinRef window memory window
uint32 t root root process/rank if there is one
uint64 t size sent number of bytes sent
uint64 t size received number of bytes received

Fig. 4. OTF2 record definitions for marking collective RMA operations.

Locks For the mutex lock concept, a separate set of events are introduced.
Besides the API calls, they keep track of the lock type (exclusive lock or write
lock vs. shared lock or read lock) and the lock instance. In the visualization, all
operations working on the same lock on the same PE instance are connected
until the lock is cleared. When several PEs compete for the same lock, then no
connections are drawn between the PEs but when they are displayed side by side

X

PE0

 time

shmem_set_lockshmem_set_lock shmem_clear_lockshmem_clear_lock

PE1 shmem_test_lockshmem_test_lock shmem_test_lockshmem_test_lock shmem_test_lockshmem_test_lock shmem_clear_lockshmem_clear_lockshmem_test_lockshmem_test_lock

EE EE

EE EE EE EE

AcAc LL RR LL

LL LLLLLLTT AcAc RRTT

Fig. 5. Timeline visualization of two PEs performing competing lock operations.

OTF2 LockType

OTF2 LOCK TYPE EXCLUSIVE only one lock allowed at the same time, e.g.,
write-lock, mutex, MPI exclusive lock

OTF2 LOCK TYPE SHARED multiple shared locks allowed at the same time, e.g.,
read-lock, MPI shared lock

OTF2 (Request|Try)Lock

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window memory window
uint32 t target rank of target in context of window
OTF2 RmaLockType lock type Type of lock (shared vs. exclusive)
uint64 t lock id lock id in context of window

OTF2 ReleaseLock

OTF2 LocationRef location process or thread of execution
OTF2 TimeStamp time time stamp
OTF2 RmaWinRef window
uint32 t target rank of target in context of window
uint64 t lock id lock id in context of window

Fig. 6. OTF2 record definitions for lock operations.

with aligned time axes, it becomes apparent, that only one can hold the lock at
any time. See Fig.5 for an example.

The record definitions are shown in Fig.6, see also [9]. The reference to a
memory window and a reference to a target PE are not relevant for OpenSHMEM
but only important for other PGAS flavors.

3.2 Communication on lower level layers

All OpenSHMEM implementations will translate OpenSHMEM API functions
to calls of lower transport layers. There are multiple such layers which may
range from the second-level DMAPP library in Cray systems to the low-level
Infiniband network layer, compare also the OSI model [6].

The presented event trace recording will only capture the OpenSHMEM layer
but not the lower layers beneath. The primary reason for this is, that the per-
formance analysis shall reflect the source code of the OpenSHMEM application.
If a performance problem is detected in the way OpenSHMEM is used, then
the (typical) optimization step will be to change the OpenSHMEM calls in the
source code instead of changing details in the given OpenSHMEM library.

XI

Should there be interest in the performance analysis of lower transport layers,
then this should not be specific for OpenSHMEM but address this particular
layer. For example, a monitoring extension for the low-level Infiniband layer
might be used with OpenSHMEM, MPI, or GASPI. At the same time, it means
that the connection between high-level API calls and low-level operations is lost.

3.3 Internal communication inside the monitoring system

Apart from the user-visible aspects, there are internal tasks in the monitoring
system for bookkeeping and synchronization which depend on parallel communi-
cation. They usually rely on the same parallelization method as used by the tar-
get program to avoid conflicts between different parallelization libraries. Those
tasks include the collective initialization and finalization of the monitoring in-
stances, the synchronization of the local timers used by every parallel instance,
the unification of identifiers in the event records, and more.

While this constitutes a considerable part of the effort when porting an ex-
isting monitoring system to OpenSHMEM, this paper focuses on the user’s per-
spective of performance analysis tools for parallel applications.

4 A demonstration for Cray-SHMEM with VampirTrace

We already developed an experimental solution to monitor the communication
of SHMEM applications based on Cray-SHMEM. Because Cray-SHMEM can co-
exist with MPI and because it guarantees that all SHMEM PE numbers are equal
to the MPI ranks (within MPI COMM WORLD), the steps from Section 3.3 could be
re-used from the existing MPI monitoring infrastructure. This was accomplished
with the VampirTrace library [13]. MPI Init is called just before start pes

and MPI Finalize after shmem finalize. The communication semantics of the
SHMEM operations were mapped to related MPI operations, for example a
shmem int put was mapped to MPI Put.

The instrumentation of SHMEM API functions was realized by using the
weak symbols of the Cray-SHMEM library. The Cray SHMEM library provides
weak symbols for all library functions that can be overwritten by so called wrap-
per functions. Inside the wrapper functions the real call to the Cray SHMEM
library is executed, yet before and after the data to be recorded is collected and
stored to memory buffers. Eventually, the memory buffers are flushed to traces
files. At the very end, a post processing is performed before the parallel event
traces are ready to be analyzed with the Vampir visualization tool (see also
further down).

Demonstration example

Our demonstration example is a 2D simulation of the heat equation which runs
with 16 PEs on a 1500x1500 matrix [17]. We ran the program several times on a
the petascale Cray XE6 system Hermit at HLRS Stuttgart. The heat equation

XII

Fig. 7. Representation of a SHMEM communication section in Vampir. The run-time
is shown horizontally from left to right while all PEs are arranged vertically.

program use a regular block-wise data distribution. Each node computes its own
area for every iteration whereupon a halo exchange with the four neighbors is
performed using one-sided operations.

An example of SHMEM Performance Analysis

For performance analysis the parts of communication are of particular interest.
Fig.4 shows a zoomed view of one of the communication sections in Vampir.
The lines between the functions of the processes represent the direction of the
communication. Vampir even provides further information such as the message
size or the transfer rate in a more detailed view. The figure shows that the
communication between the processes is done with the shmem double get and
the shmem double iget functions. Besides individual communication operations,
Vampir also provides a communication matrix, an overview of all communication
operations between sender and receiver PEs.

Figure 8 shows the communication matrix for the average transfer time. The
communication matrix indicates that the upper and lower borders (to/from the
PE ±4) are transfered faster than the left and right borders (to/from the PE
±1). Yet, in all directions the same amount of data is transfered, as the same
communication matrix view for the sum of message sizes would reveal.

The reason for the differing speeds are two different communication opera-
tions. For the horizontal halos shmem double get is used which can transfer the
entire data block with a single low-level RMA operation. For the vertical halos
the shmem double iget function has to be used, because the vertical halos of
the two-dimensional array are not located in contiguous memory ranges. Thus,
multiple small RMA operations have to be issued.

XIII

Fig. 8. View of Vampir communication matrix showing average transfer time.

Overhead and perturbation

The monitoring approach explained above including the instrumentation and
run-time data collection will induce a certain overhead, of course. As long as
this overhead is small enough and evenly distributed over the entire test run, the
resulting perturbation of the recorded trace will be negligible, i.e. the recorded
behavior is sufficiently close to the “real” behavior without the presence of the
monitoring system. Then, it is sensible to reason about the parallel performance
behavior of the “real” program run based on the event trace analysis. If used
with some caution and with the help of some advanced features of VampirTrace
such as selective instrumentation and filtering the overhead can be controlled.

In our example we compared the wall clock times of the un-instrumented and
the instrumented cases for eight different configurations with 4 to 81 PEs. For
averages of 10 runs in each configuration, the instrumented execution time was
within 6 % of the original execution time.

5 Outlook to native OpenSHMEM support and Summary

The prototype solution described in the previous section shows an approach to
the performance analysis of PGAS libraries. Implementing this for OpenSHMEM
does pose some practical challenges. While the prototype assumes the direct
relation to MPI, this is not generally the case for OpenSHMEM. Therefore the
infrastructure of the monitoring library has to rely on OpenSHMEM for internal
communication. OpenSHMEM does provide all the necessary communication
primitives, including collectives, to implement measurement infrastructure such
as the timer synchronization and the unification of distributed identifiers.

XIV

The instrumentation mechanism via weak symbols provides a reliable, portable
and convenient way for the library wrapping step. While this functionality is op-
tionally offered in the OpenSHMEM reference implementation, it is not currently
defined by the standard. Performance analysis tools would greatly benefit if this
was defined there. The MPI profiling interface (PMPI) has seeded a wide variety
of tools - from lightweight profiling to flexible and complex measurement infras-
tructures. Alternatives using library pre-loading or linker wrapping are feasible
but less straightforward, harder to make portable and generally divert the tool
developers from core features.

Another open issue for implementing a parallel measurement infrastructure
for OpenSHMEM is the lack of a finalization function. This would provide a
reliable way to run measurement related code (e.g. combining results from mul-
tiple ranks) after the logical end of the application while it is still valid for the
measurement infrastructure to use OpenSHMEM for communication. Also it
would be guaranteed that the application does not call any other OpenSHMEM
functions afterwards – so the recording is already complete at finalization time.

The possibilities for OpenSHMEM performance analysis described in this
paper make no claim to be complete. It would be very interesting to hear from
the OpenSHMEM user community what other information would be helpful
to improve their applications. This extends to the developers of OpenSHMEM
implementations that want to optimize their implementations. For instance, per-
formance metrics that are internal to the OpenSHMEM implementation could
be exposed to the monitoring infrastructure and recorded along with the ap-
plication events. Examples might be the sizes of internal buffers or the current
length of message queues.

Summary

In the first part of this paper we presented a concept for the event trace record-
ing for OpenSHMEM applications, in particular the representation of one-sided
communication primitives as event records and their suggested visualization.
The second part shows a preliminary solution for the event trace recording of
Cray-SHMEM applications. It includes results from an example case together
with the Vampir visualization of the produced traces and a brief study of the
introduced run-time overhead. Finally, an outlook for a native event tracing tool
for OpenSHMEM is given.

Acknowledgments

This work is supported in a part by the German Research Foundation (DFG) in
the Collaborative Research Center 912 “Highly Adaptive Energy-Efficient Com-
puting“. The authors would like to thank the HLRS for providing the compute
time on Hermit used for the Cray-SHMEM demonstration.

XV

References

1. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,
2010.

2. T. Alrutz, J. Backhaus, T. Brandes, V. End, T. Gerhold, A. Geiger, D. Grünewald,
V. Heuveline, J. Jägersküpper, A. Knüpfer, O. Krzikalla, E. Kügeler, C. Lojewski,
G. Lonsdale, R. Müller-Pfefferkorn, W. Nagel, L. Oden, F.-J. Pfreundt, M. Rahn,
M. Sattler, M. Schmidtobreick, A. Schiller, C. Simmendinger, T. Soddemann,
G. Sutmann, H. Weber, and J.-P. Weiss. GASPI – a partitioned global address
space programming interface. In R. Keller, D. Kramer, and J.-P. Weiss, editors,
Facing the Multicore-Challenge III, volume 7686 of Lecture Notes in Computer
Science, pages 135–136. Springer Berlin Heidelberg, 2013.

3. W. W. Carlson, J. M. Draper, and D. E. Culler. S-246, 187 introduction to UPC
and language specification.

4. B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith.
Introducing openshmem – shmem for the pgas community, 2010.

5. M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience, 22(6):702–719, Apr. 2010.

6. Information technology – Open Systems Interconnection – Basic Reference Model,
1994.

7. S. Jana and J. Schuchart. Tracing and visualizing power consumption of OpenSH-
MEM applications. personal communications, Sept. 2013.

8. A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel. Introducing the open
trace format (OTF). In V. Alexandrov, G. Albada, P. Sloot, and J. Dongarra,
editors, Computational Science – ICCS 2006, volume 3992 of Lecture Notes in
Computer Science, pages 526–533. Springer Berlin Heidelberg, 2006.

9. A. Knüpfer, R. Dietrich, J. Doleschal, M. Geimer, M.-A. Hermanns, C. Rössel,
R. Tschüter, B. Wesarg, and F. Wolf. Generic support for remote memory access
operations in Score-P and OTF2. In A. Cheptsov, S. Brinkmann, J. Gracia, M. M.
Resch, and W. E. Nagel, editors, Tools for High Performance Computing 2012,
pages 57–74. Springer Berlin Heidelberg, 2013.

10. A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, et al. Score-p: A joint performance
measurement run-time infrastructure for periscope, scalasca, tau, and vampir. In
Tools for High Performance Computing 2011, pages 79–91. Springer Berlin Heidel-
berg, 2012.

11. Message Passing Interface Forum. MPI: A message-passing interface standard,
version 2.2. Specification, September 2009.

12. B. P. Miller and A. R. Bernat. Anywhere, any time binary instrumentation. In
ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and
Engineering (PASTE), Szeged, Hungary, September 2011.

13. M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E.
Nagel. Developing scalable applications with vampir, vampirserver and vampir-
trace. In Parallel Computing: Architectures, Algorithms and Applications, vol-
ume 15, pages 637–644. IOS Press, 2008.

14. J. Nieplocha and B. Carpenter. Armci: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In Lecture Notes in
Computer Science, pages 533–546. Springer-Verlag, 1999.

XVI

15. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A non-uniform-
memory-access programming model for high-performance computers. THE JOUR-
NAL OF SUPERCOMPUTING, 10:10–197, 1996.

16. R. W. Numrich and J. Reid. Co-array fortran for parallel programming. ACM
FORTRAN FORUM, 17(2):1–31, 1998.

17. S. Oeste. Aufzeichnung einseitiger Kommunikation zur Leistungsanalyse paralleler
SHMEM-Anwendungen, 2012. Bachelor thesis in German.

18. S. S. Shende and A. D. Malony. The tau parallel performance system. Int. J. High
Perform. Comput. Appl., 20(2):287–311, May 2006.

19. TU Dresden Center for Information Services and High Performance Computing
(ZIH). VampirTrace 5.14.4 User Manual, 2013.

