
Reducing Synchronization Overhead Through
Bundled Communication

James Dinan, Clement Cole, Gabriele Jost,
Stan Smith, Keith Underwood, Robert W. Wisniewski

Intel Corp.
{james.dinan, clement.t.cole, gabriele.jost, stan.smith,

keith.d.underwood, robert.w.wisniewski}@intel.com

Abstract. OpenSHMEM provides a one-sided communication interface
that allows for asynchronous, one-sided communication operations on
data stored in a partitioned global address space. While communication
in this model is efficient, synchronizations must currently be achieved
through collective barriers or one-sided updates of sentinel locations in
the global address space. These synchronization mechanisms can over-
synchronize, or require additional communication operations, respec-
tively, leading to high overheads. We propose a SHMEM extension that
utilizes capabilities present in most high performance interconnects (e.g.
communication events) to bundle synchronization information together
with communication operations. Using this approach, we improve ping-
pong latency for small messages by a factor of two, and demonstrate
significant improvement to synchronization-heavy communication pat-
terns, including all-to-all and pipelined parallel stencil communication.

SHMEM is a popular partitioned global address space (PGAS) parallel pro-
gramming model, and it has been in use for over two decades [4]. Recently,
the SHMEM library has been codified as an open, community standard in the
OpenSHMEM 1.0 specification [19]. SHMEM provides a global address space
that spans the memory of the system and allows the programmer to create sym-
metric objects, which are present at all processing elements (PEs). These objects
can be read and updated using one-sided get and put operations.

While SHMEM provides high-performance one-sided data movement oper-
ations, it includes few primitives for synchronizing between PEs. In the cur-
rent Open SHMEM standard, synchronization can be achieved using a collective
barrier, or by polling or waiting on a flag that will be remotely updated us-
ing a one-sided operation. While these synchronization primitives are sufficient
for achieving point-to-point and global synchronization, they are not able to
fully utilize capabilities provided by modern high performance interconnects. In
particular, barrier synchronization can generate more synchronization than is
needed by the algorithm, and its performance can be negatively impacted by
system noise and imbalance. In addition, point-to-point synchronization using
counting or boolean flag locations in the global address space requires additional
communication when updating the flag.

Modern networks used in high performance computing systems provide a
variety of mechanisms that can be used to bundle synchronization and commu-
nication. One such example is communication events, which notify the recipient
that a one-sided communication operation has arrived and is complete.

We present a new synchronization extension to OpenSHMEM, called count-
ing puts, that utilizes network-level events to provide efficient point-to-point
synchronization. Counting puts can utilize communication completion events to
inform a PE that it has been the target of a one-sided communication opera-
tion, and that the data written is available to read. Counting puts effectively
enables receiver-side synchronization. In contrast, existing point-to-point syn-
chronization in SHMEM is sender-side, and requires additional communication
to update flag locations at the target PE.

We describe the counting puts interface and its implementation in an open
source SHMEM implementation for the low-level Portals networking API [6]. We
demonstrate that bundling communication for a Portals network reduces com-
munication latency by half for small messages, and that it significantly improves
the bandwidth achieved to the synchronization-heavy all-to-all communication
algorithm. We further demonstrate the performance impact of counting puts on
a pipelined parallel stencil computation, that relies heavily on point-to-point
synchronization. While our evaluation focuses on a Portals implementation, we
describe several methods for creating efficient receiver-side implementations of
counting puts that can achieve the demonstrated performance improvements on
a variety of networks.

1 Overview

The SHMEM parallel programming model provides a global address space,
shown in Figure 1, where the memory of each processing element (PE), or
SHMEM process, is partitioned into private and shared segments. Data in the
private segment is accessible locally, while data in the shared segment is acces-
sible both locally and remotely, through SHMEM library routines. The shared
segment contains both a shared heap, for dynamically allocated shared objects,
and a shared data segment, which allows statically declared objects to be ac-
cessed by remote PEs.

Objects in a shared segment are symmetric, meaning that an instance of the
object is accessible at every PE, and that the object can be accessed using the
address of the corresponding symmetric object in the local PE’s address space.
Thus, when accessing data in the global address space, the target address is the
pair containing the destination PE rank and the symmetric address. Remote
accesses are performed using one-sided get and put data copy operations, that
transfer data between local and remote buffers. In addition SHMEM provides a
variety of collective and atomic, one-sided communication routines

Symmetric
Data Segment

Symmetric
Heap

Private
Memory

PE 0 PE 1 PE 2 PE 3

Put Get

Fig. 1. SHMEM communication model, showing shared and private memory areas, and
one-sided get and put communication operations.

1.1 Portals

In this work, we demonstrate the counting puts interface using the open source
OpenSHMEM implementation for the low-level Portals networking API [1,5].
The Portals interface exposes sections of a process’ address space for one-sided
remote access using read, write, and atomic operations. Accesses to exposed
memory regions can be guarded through matching criteria that are used when
implementing matched, or two-sided, communication operations. For one-sided
communication, a non-matching interface is provided that allows all operations
targeting the process to access the given memory region.

The ordering of operations is an important component in synchronization
for one-sided communication models. Portals presents the programmer with an
unordered network model, where data is not guaranteed to arrive at the target
in the order in which it was sent. This delivery model enables dynamic message
routing, and also ensures reliable delivery. As data arrives at the target, acknowl-
edgement messages are returned to the sender. Thus, when a process waits for
communication operations to complete, it waits for acknowledgement messages
from the target.

1.2 Synchronization in OpenSHMEM

The OpenSHMEM standard provides both collective and point-to-point synchro-
nization primitives. SHMEM barriers are collective synchronization operations
that can include all PEs, or a regular subset that includes PEs whose ranks are a
multiple of a power of two. In addition to synchronizing the involved PEs, before
returning, SHMEM barriers also ensure that all preceding writes to symmetric
objects have completed.

Point-to-point synchronization is achieved through symmetric flag variables
that are acted upon using one-sided operations. These flags can be updated
using one-sided writes, when a single PE updates the flag, or atomic operations,
when multiple PEs update the flag. A PE can wait for the value of the flag
to satisfy a certain condition by using one of the waiting routines provided in
the OpenSHMEM API. In addition, some applications also poll flag locations
directly, which can require the use of additional system-specific memory fences
to ensure data consistency.

1 for (pe = 0; pe < NPES; pe++)
shmem_putmem (& data_recv[pe], &data_send[pe], data_size , pe);

3
shmem_barrier_all ();

Listing 1.1. All-to-all with barrier synchronization.

for (pe = 0; pe < NPES; pe++)
2 shmem_putmem (& data_recv[pe], &data_send[pe], data_size , pe);

4 shmem_fence ();

6 for (pe = 0; pe < NPES; pe++)
shmem_int_add (&flag , -1, pe);

8
shmem_int_wait_until (&flag , SHMEM_CMP_EQ , 0);

Listing 1.2. All-to-all with point-to-point synchronization.

For point-to-point synchronization, data consistency is achieved using either
fence or quiet operations. A SHMEM fence operation provides ordering, by en-
suring that any operations performed by the calling PE to a particular remote
PE will be completed before any subsequent operations issued by the calling PE
to the same remote PE. A SHMEM quiet operation provides a stronger ordering
semantic, and ensures that all put operations performed by the calling PE will
be remotely completed and visible to all PEs when the call to quiet returns

We illustrate these two synchronization mechanisms with a simple all-to-all
communication example, similar to the type of communication that is performed
in a fast Fourier transform or parallel sort. In this data exchange, each PE
must wait until all data has arrived before proceeding with the next phase of
the computation. Listing 1.1 shows this communication pattern when a barrier
synchronization is used, and Listing 1.2 shows this communication pattern when
point-to-point synchronization is used.

In comparison with barrier synchronization, point-to-point synchronization
can be performed more efficiently, because a PE does not need to wait for all
other PEs to receive data. However, the flag update operation requires an ad-
ditional communication and, depending on the underlying network, a fence or
quiet operation can require additional communication to ensure ordering or re-
mote completion, respectively. Overhead from these operations can outweigh
the benefits from relaxed synchronization. For example, on ordered networks, a
fence is a no-op, but a quiet operation requires sending a round-trip message to
all other PEs that the calling PE has communicated with, to flush the ordered
communication channels. In comparison, on unordered networks, both fence and
quiet operations require waiting for point-to-point remote completion with each
other PE. In the case of a fence, the calling PE must only wait before perform-
ing additional communication operations, whereas a quiet requires waiting for
communication with all other PEs to complete before returning. When using
the Portals communication API, communication operations are completed by

1 void shmem_ct_create(shmem_ct_t *ct);
void shmem_ct_free(shmem_ct_t *ct);

3 long shmem_ct_get(shmem_ct_t ct);
void shmem_ct_set(shmem_ct_t ct, long value);

5 void shmem_ct_wait(shmem_ct_t ct, long wait_for);
void shmem_putmem_ct(shmem_ct_t ct, void *trg , void *src , size_t bytes , int pe);

Listing 1.3. Counting puts API extension.

waiting for acknowledgement messages to be returned from the target PE to the
source PE for each operation.

2 Bundling Communication and Synchronization

We propose an extension to OpenSHMEM that bundles communication and syn-
chronization. A variety of bundled communication interfaces are possible, based
on the operations that will be bundled and the interface that will be used to
access notification information. For example, the ARMCI one-sided communi-
cation library [18] provides the ARMCI_Put_flag operation that bundles two put
operations, where a notification flag in the target process’ address space is up-
dated after the main data payload has been delivered. While it is easy to use,
this interface requires distinct flags for each PE that will perform a put-and-
notify operation. For all-to-all communication, this can result in O(NPEs) flags
at every PE.

Our proposed interface is shown in Listing 1.3. This interface bundles an
atomic increment operation with the communication operation, allowing the flag
to be shared by multiple communicate-and-notify operations. We use an opaque
shmem_ct_t representation for the counter, to enable a broader variety of effi-
cient implementations. When network events are used to signal completions, the
SHMEM implementation or networking layer can locally increment the counter
as operations are performed, rather than requiring the remote PE to perform
the update. Our discussion of this interface focuses on providing support for a
put-and-notify operation; however, the proposed interface and implementation
can also be utilized to provide a get-and-notify operation to support producer-
consumer computational patterns.

The proposed interface provides functions that can be used to create and
free an event counter (CT); get and set the counter’s value; and wait for the
counter to reach a particular value [20]. New communication functions are also
provided that add a CT parameter that should be updated when the operation
has completed. An example all-to-all communication using the new interface
is shown in Listing 1.4. In comparison with Listing 1.1, this example achieves
point-to-point synchronization, and in comparison with Listing 1.2, this example
can eliminate overheads associated with the fence operation and flag updates.

shmem_ct_create (&ct);
2

for (pe = 0; pe < NPES; pe++)
4 shmem_putmem_ct(ct, &data_recv[pe], &data_send[pe], data_size , pe);

6 shmem_ct_wait(ct, NPES);

Listing 1.4. All-to-all with counting puts synchronization.

Network
Interface

Portal Table
Data

LE

Heap
LE

Data
LE

Heap
LE

Heap
Seg.

ct1_heap
…

ct1_data
heap
data

CT
Event

put_ct(ct1, …)

Initiating PE Target PE Data
Seg.

Fig. 2. Portals implementation of the counting puts interface.

2.1 Implementation of the Counting Puts Interface

A variety of implementation strategies are possible for the counting puts in-
terface; we chose an opaque representation of the CT object to provide more
flexibility in the implementation. For example, in addition to enabling imple-
mentations that use low-level network counting events, the opaque CT object
enables an implementation on top of the existing SHMEM interface. In such an
implementation, a symmetric counter location is allocated at each PE during CT
creation, and counted put operations perform a put, fence, and atomic increment
using the functions provided in the SHMEM API.

Most networks provide mechanisms that can be utilized to implement these
operations more efficiently by bundling communication and synchronization. On
networks that are programmable, or on-load communication to the processor
(e.g. sockets or PSM), CT information can be embedded in message headers
enabling a receiver-side implementation to perform bookkeeping. Many networks
report low-level communication events when one-sided operations complete in
a given PE’s memory. As these events are consumed in the SHMEM runtime
system, the corresponding counter can be incremented.

We implement the CT interface in the open source Portals 4 [6] implemen-
tation of SHMEM [5]. We utilize Portals 4 counting communication events to
achieve an efficient receiver-side implementation of counting puts. A high-level
schematic of our implementation is shown in Figure 2. This example shows the
Portals objects that are components in the implementation of the CT interface,
and the flow of control when processing a counted put operation.

As shown in Figure 2 our implementation utilizes Portals lightweight counting
events, that are incremented when each counted operation is completed at the

target PE. Full events utilizing an event queue that can be attached to each
portal table entry (not shown in Figure 2, for clarity) can also be used, resulting
in an implementation similar to one that uses InfiniBand event queues. In such
an implementation, CT query and wait routines would need to search this queue
for operations affecting the counter. Counting events provide a more efficient
implementation vehicle, as they use a fixed amount of memory and do not incur
queue processing overheads.

Individual event counters are distinguished using distinct portal table entries
that act as separate communication contexts. Communication operations in Por-
tals specify the target network interface, portal table entry, and offset relative
to the beginning of the memory portal. When the system can provide identical
segment base addresses, a single portal table entry can be used to expose mem-
ory for one-sided access. On most clusters, separate portal table entries must be
created for the static data and dynamic heap segments, because these segments
can be disjoint in memory and located at different starting addresses across
PEs. Prior to performing communication, the corresponding portal table entry
is identified by comparing the symmetric address with the local addresses of the
heap and data segments. The symmetric address is then converted to an offset
relative to the beginning of the corresponding memory segment, and the offset
and portal table entry are passed to the desired communication routine. Distinct
heap and data segment portal table entries are created for each counter, allow-
ing the implementation to identify which counter should be incremented when a
counted put arrives. Non-matching list entries that describe the complete heap
and data memory segments are attached to the respective portal table entries,
and a counting event is registered with each list entry.

We note that the proposed interface does not guarantee any ordering or con-
sistency beyond the completion of the counted communication operation. This
targeted completion rule allows for greater concurrency and performance poten-
tial. Thus, we do not enforce any additional ordering in our implementation. If
the algorithm requires ordering of non-counted operations, or ordering across
different counted operations targeting the same PE, existing OpenSHMEM syn-
chronization operations must be used.

3 Experimental Evaluation

We extended the Portals OpenSHMEM implementation [5] with the counting
puts interface, and utilize the Portals 4 InfiniBand reference implementation [2]
to provide Portals support. While this is not a native implementation of the Por-
tals interface, it utilizes InfiniBand network events to implement Portals counting
events, which allows us to demonstrate the relative performance improvement
of the receiver-side counting puts protocol. This protocol eliminates additional
messages that are generated when synchronizing through shared flag variables.

We utilize a 15-node cluster with a Mellanox QDR InfiniBand interconnect
for experimentation. Each node in this cluster is configured with 24GB of mem-
ory and two Intel Xeon X5680 processors, for a total of 12 cores per node, each

supporting two hyperthreads, for a total of 24 hardware threads per node. We
demonstrate the impact of the proposed CT interface on communication effi-
ciency using ping-pong and all-to-all microbenchmarks. In addition, we demon-
strate significant performance improvement for a pipelined parallel stencil com-
putation, that relies heavily on point-to-point synchronization.

3.1 Ping-Pong Latency

We measured ping-pong latency using a simple benchmark with two PEs. In each
iteration of the benchmark, one PE is the sender and one is the receiver. After
each iteration, sender and receiver roles are reversed. For the baseline implemen-
tation using the operations available in the current OpenSHMEM specification,
the sender performs the following sequence of operations.

shmem_putmem(rcv_buf , snd_buf , msg_length , target);
shmem_fence ();
shmem_int_inc (&flag , target);

The receiver performs the following sequence of operations.
shmem_int_wait (&flag , 0);
flag = 0;

For the CT implementation of the benchmark, the sender performs the following
operation.

shmem_putmem_ct(ct, rcv_buf , snd_buf , msg_length , target);

The receiver performs the following sequence of operations.
shmem_ct_wait(ct, 1);
shmem_ct_set(ct , 0);

The half round-trip latency is shown in Figure 3 for baseline and CT imple-
mentations. From this data, we see that the latency is approximately halved for
small messages. For larger message sizes, the cost associated with the fence and
flag update operations is amortized over a larger message transfer and results in
a decreasing speedup from the CT extension.

3.2 All-to-All Bandwidth

We measure the bandwidth achieved using a simple all-to-all communication
benchmark, where every PE sends a message to every other PE and waits for
messages to arrive. For the baseline version of this benchmark, each PE per-
forms the sequence of operations shown in Listing 1.5. For the CT version of
the benchmark, the fence is omitted, and flags are replaced with a CT object,
using the same approach as in the ping-pong algorithm. For the CT and flags
versions of the benchmark, a pair of synchronization constructs is created and
alternated across loop iterations to eliminate the race that arises in resetting
the value of the counter or flag. In addition, a barrier synchronization version
was created that replaces the fence and all flag operations with a single call to
shmem_barrier_all(), which synchronizes all processes and ensures that all com-
munication has been completed. Communication operations are staggered across

 4

 8

 16

 32

 64

 128

 256

1 4 16 64 256 1k 4k 16k 64k 256k

H
a
lf
 R

o
u
n
d
-T

ri
p
 L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Fence+Flag
Counting Puts

Fig. 3. Half round-trip latency for the ping-pong benchmark on the InfiniBand cluster.

/* Initially , flag = num_pes */
2

pe = me;
4 do {

shmem_putmem (& target_buf[me], &src_buf[pe], msg_size , pe);
6 pe = (pe + 1) % num_pes;

} while (pe != me);
8

shmem_fence ();
10

pe = me;
12 do {

shmem_int_add (&flag , -1, pe);
14 pe = (pe + 1) % num_pes;

} while (pe != me);
16

shmem_int_wait_until (&flag , SHMEM_CMP_EQ , 0);

Listing 1.5. Baseline implementation of the all-to-all communication benchmark.

PEs to spread out communication. While more sophisticated algorithms for all-
to-all exist [10,21], this algorithm captures the approach that would be taken in
a loosely synchronized or pipelined application.

The bandwidth achieved per node, when one PE is run per core, for each ver-
sion of the all-to-all benchmark is shown in Figure 4. The barrier implementation
achieves the lowest bandwidth because of the overhead from global synchroniza-
tion. The fence implementation provides increased network efficiency, but incurs
overhead from O(NPEs) additional communications per PE that are required
to update the flag variables. By eliminating these operations, the CT version of
the benchmark provides the best performance. As was the case with ping-pong
latency, the cost of the additional synchronization communications is amortized
over long transfer times, and the relative impact of increased communication is
reduced.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 64 128 256 512 1024 2048 4096 8192 16384

B
a
n
d
w

id
th

 p
e
r

N
o
d
e
 (

M
B

/s
)

Message Size (Bytes)

Counting Puts
Fence+Flags

Barrier All

Fig. 4. All-to-all bandwidth achieved per node on the InfiniBand cluster.

The bandwidth we report in Figure 4 is significantly lower than the theo-
retical peak of 40 Gb/sec for our QDR InfiniBand network. This is caused by
overhead incurred in simulating Portals communication on top of InfiniBand.
However, these results still capture the performance improvement from elimi-
nating additional messages needed to update flag locations at every PE.

3.3 Pipelined Parallel Stencil Kernel

Next, we investigate the performance impact of counting puts on a fine-grain
pipelined parallel stencil computation. This type of computation has strong data
dependencies across units of work, requiring frequent point-to-point synchro-
nization. Pipelined parallel stencils are encountered in a variety of numerical
methods, including the Lower-Upper Symmetric Gauss-Seidel (LU) NAS Paral-
lel Benchmark [23] and wavefront-parallel algorithms. We utilize the Synch_p2p
kernel, provided in the Intel Parallel Research Kernels (PRK) [16] to investigate
the performance impact on this class of algorithms. The PRK suite consists of
a set of common low level operations, and it has recently been released as open
source [16]. PRK provides serial, OpenMP, and MPI implementations; for the
purpose of this study we ported the MPI version of the Synch_p2p kernel to the
OpenSHMEM programming model.

Synch_p2p implements a one-dimensional software pipeline. A two-dimensional
array A of size n ×m is distributed in vertical strips among the PEs. The ma-
trix elements are updated through the stencil operation, A(i, j) = A(i− 1, j) +
A(i, j−1)−A(i−1, j−1). This operation carries dependences in each of the spa-
tial dimensions and is, therefore, not parallelizable in a straightforward manner.
Parallelism is achieved by setting up pipelined execution. The first PE computes
one partial row (fixed j) of updated elements. It then synchronizes with its right
neighbor and proceeds to the second row. The neighboring process can now start

1 /* Let vector be an array that holds the grid values. */
/* We define the ARRAY macro to simplify indexing with halo elements. */

3 #define ARRAY(i, j) vector[i+1 + (j)*(segment_size +1)]

5 for (j = 1; j < n; j++) {
/* I am not at the left boundary; wait for my left neighbor to send data */

7 if (PE > 0) {
shmem_ct_wait(ct, j);

9 ARRAY(start[PE]-1, j) = dst[j];
}

11
for (i = start[PE]; i <= end[PE]; i++) {

13 ARRAY(i, j) = ARRAY(i-1, j) + ARRAY(i, j-1) - ARRAY(i-1, j-1);
}

15
/* I am not on the right boundary; send data to my right neighbor */

17 if (PE != NPES -1) {
src[j] = ARRAY(end[PE], j);

19 shmem_putmem_ct(ct, &dst[j], &src[j], 1 * sizeof(double), PE+1);
}

Listing 1.6. Pipelined parallel stencil kernel, using counting puts for point-to-point
synchronization.

with the update of its segment of the first row. Once the pipeline is filled, all
PEs will be working in parallel. A code listing of the kernel using counting puts
is shown in Listing 1.6.

In Figure 5, we show results from a strong scaling experiment, comparing the
counting puts implementation with an implementation that uses explicit flags.
For this experiment, we use a fixed matrix size of 12800 × 1280 and utilize 4
PEs per node to reduce noise generate by per-PE communication helper threads
created by the Portals-on-InfiniBand runtime system. Threads are also pinned
to cores to further reduce system noise. Results are reported in terms of the
giga-FLOPs (floating point operations) per second achieved by the benchmark.

The total number of synchronizations required for each iteration of the Sync_p2p
kernel increases with an increasing number of PEs while the computational work
between synchronization points decreases. Because of this, synchronization cost
is a significant factor in performance. From the results in Figure 5, we can see
that the cost of synchronization when explicit flags are used is high, resulting in
poor scaling. Counting puts eliminate the overhead of synchronization, signifi-
cantly improving the parallel efficiency.

3.4 Impact of Problem Size on Performance Improvement

We now consider a fixed number of PEs and report the performance when the
problem size is varied. To vary the problem size, we fix the length of the m
dimension and vary the length of the n dimension. Figure 6 compares the per-
formance for each problem size when counting puts and explicit flags are used.
Experiments were run on 48 PEs, with 4 PEs per node. We note that the per-
formance difference between the two implementations decreases with an increase
in problem size. This is expected, as the number of synchronizations required
per iteration depends only on the length of the second dimension. It is therefore

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

G
F

L
O

P
S

Number of PEs

Fence+Flags
Counting Puts

Fig. 5. Synch_p2p performance in GFLOPs/sec, for a strong scaling experiment with
problem size of 12800× 1280 and 4 PEs per node.

the same for all sizes under consideration. The computational workload, how-
ever, increases, reducing the impact of synchronization cost. We note that the
granularity of the algorithm could be increased by grouping rows together.

4 Related Work

Unified Parallel C (UPC) [22] is another PGAS parallel programming model,
that provides capabilities similar to SHMEM. The current UPC language pro-
vides similar synchronization routines as SHMEM, with the addition of split-
phase barriers and locks. A proposal to extend UPC with semaphores has been
presented [9]. Semaphores would add a similar signaling capability to UPC put
operations, and the authors demonstrated significant performance improvements
across several platforms. An implementation of this extension is provided with
Berkeley UPC [7]. UPC semaphores are implemented using carefully optimized
active message and one-sided operations. The implementation approach we have
presented utilizes receiver-side communication events to further reduce synchro-
nization overheads.

Split-C [12] also provided signaling store operation through the :- assign-
ment operation. A process that is the target of a signaling store operation can
wait for a programmer defined number of bytes to arrive, but cannot distinguish
among different update operations. Both the SHMEM counting puts and UPC
semaphore extension allow this distinction by providing distinct synchronization
objects. The Tera MTA [3], Cray XMT [14], and the Chapel programming lan-
guage [11] also provide signaling store operations through full/empty bits that
are associated with each word in memory, in the case of the MTA and XMT
architectures, and distinct objects in the case of Chapel.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 20000 40000 60000 80000 100000 120000

G
F

L
O

P
S

Problem Size (N x 12800)

Fence+Flags
Counting Puts

Fig. 6. Synch_p2p performance for various problem sizes with increasing first dimen-
sion N on 48 PEs, 4 PEs per node.

The ARMCI [18] one-sided communication library also provides a put-with-
flag operation, that bundles a flag variable update with data movement. Simi-
larly, the GASPI [15] PGAS library provides a write-and-notify operation, that
bundles an event notification with data movement. In both cases, the notification
is performed by a write, rather than an atomic update. Thus, for algorithms that
require many synchronizations, many flag and event variables would be needed.
Depending on the number of variables needed, checking for completion can be-
come costly and has the potential to negatively impact application data residency
in the processor cache.

The Message Passing Interface (MPI) [17] provides both one-sided and two-
sided messaging. Two-sided messaging effectively couples synchronization and
data movement, since both sender and receiver participate in the communica-
tion operation. By bundling these two operations, two-sided messaging does not
require additional operations for synchronization. However, in comparison with
one-sided messaging, two-sided messaging incurs additional protocol overheads
from the matching of send and receive operations. In addition, if the sender
performs its send operation before the receiver performs its receive operation,
the MPI library must buffer the unexpected message or delay data transmis-
sion. In contrast, PGAS programming models do not require message matching,
buffering, or rendezvous protocols because remotely accessible memory in the
global address space is necessarily posted before communication can occur and
the sending process determines all communication parameters.

Active messages [8,13] provide a general-purpose mechanism for asynchronous
operations that access memory at the target process. One-sided communication,
can be implemented using active messages [8], and such an implementation can
also notify the target process that the operation has been performed. Hardware
support for RDMA has made it possible to implement one-sided operations di-

rectly in hardware without a target-side software agent. In this paper, we observe
that hardware support for communication completion events also makes it possi-
ble to implement bundled one-sided communication and notification in hardware
efficiently.

4.1 Concluding Discussion

We have presented a counting puts extension to OpenSHMEM, and discussed
efficient implementations on a variety of networks, focusing on an implementa-
tion on top of the Portals network API. Experimental results indicate that the
counting puts extension maps to an efficient implementation in Portals, and that
it can offer a significant reduction in the overhead associated with point-to-point
synchronization in SHMEM.

The proposed synchronization extension addresses an important need for
SHMEM users, and it should be considered for inclusion in the OpenSHMEM
standard. However, other synchronization mechanisms should also be considered,
to provide a more flexible and efficient interface to users. Overlapping communi-
cation and computation is an important performance optimization, that can be
used to hide communication costs. Counting puts can enable the user to achieve
this overlap by periodically polling for data arrival. For some algorithms, global
synchronization is needed. Non-blocking global synchronization is an increas-
ingly popular primitive that is provided by several popular parallel programming
models, including UPC [22] and MPI 3.0 [17]. The addition of a non-blocking,
or split-phase barrier primitive could also help to address the synchronization
needs of such applications.

5 Acknowledgements

We thank Tim Mattson and Rob van der Wijngaart of Intel Coporation, who
developed the Parallel Research Kernels benchmark suite, and assisted us in
porting the Sync_p2p benchmark to SHMEM.

References

1. OpenSHMEM implementation using portals 4. Website, http://code.google.
com/p/portals-shmem/

2. Portals 4 open source implementation for InfiniBand. Website, http://code.
google.com/p/portals4/

3. Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., Smith, B.:
The Tera computer system. In: Proc. ACM Intl. Conf. on Supercomputing (ICS)
(Jun 1990)

4. Bariuso, R., Knies, A.: SHMEM user’s guide. Tech. Rep. SN-2516, Cray Research,
Inc. (1994)

5. Barrett, B.W., Brightwell, R., Hemmert, K.S., Pedretti, K.T., Wheeler, K.B., Un-
derwood, K.D.: Enhanced support for OpenSHMEM communication in Portals.
In: Hot Interconnects. pp. 61–69. IEEE (2011)

http://code.google.com/p/portals-shmem/
http://code.google.com/p/portals-shmem/
http://code.google.com/p/portals4/
http://code.google.com/p/portals4/

6. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Underwood,
K., Riesen, R., Maccabe, A.B., Hudson, T.: The portals 4.0.1 network programming
interface. Tech. Rep. SAND2013-3181, Sandia National Laboratories (April 2013)

7. Berkeley UPC: Berkeley UPC user’s guide version 2.16.0. Tech. rep., U.C. Berkeley
and LBNL (2013)

8. Bonachea, D.: GASNet specification, v1.1. Tech. Rep. UCB/CSD-02-1207, U.C.
Berkeley (2002)

9. Bonachea, D., Nishtala, R., Hargrove, P., Yelick, K.: Efficient point-to-point syn-
chronization in UPC. In: 2nd Conf. on Partitioned Global Address Space Program-
ming Models (PGAS06) (October 2006)

10. Bruck, J., Ho, C.T., Upfal, E., Kipnis, S., Weathersby, D.: Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 8(11), 1143–1156 (Nov 1997)

11. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Intl. J. High Performance Computing Applications (IJHPCA) 21(3),
291–312 (2007)

12. Culler, D., Dusseau, A., Goldstein, S., Krishnamurthy, A., Lumetta, S., von Eicken,
T., Yelick, K.: Parallel programming in Split-C. In: Proc, Supercomputing ’93. pp.
262–273 (1993)

13. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: a
mechanism for integrated communication and computation. In: Proc. 19th Intl.
Symp. on Computer Architecture. pp. 256–266. ISCA ’92 (1992)

14. Feo, J., Harper, D., Kahan, S., Konecny, P.: ELDORADO. In: Proc. 2nd Conf. on
Computing Frontiers. CF ’05 (2005)

15. GASPI Consortium: GASPI: Global address space programming interface specifi-
cation of a PGAS API for communication. Version 1.00 (June 2013)

16. Mattson, T., van der Wijngaart, R.: Parallel research kernels. Website (2013),
https://github.com/ParRes/Kernels

17. MPI Forum: MPI: A message-passing interface standard version 3.0. Tech. rep.,
University of Tennessee, Knoxville (Sep 2012)

18. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. Lecture Notes in
Computer Science 1586 (1999)

19. OpenSHMEM Consortium: OpenSHMEM application programming interface, ver-
sion 1.0 (Jan 2012)

20. Reed, D., Kanodia, R.: Synchronization with event counts and sequences. Com-
munications of the ACM 22(2), 115–123 (Feb 1979)

21. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communica-
tion operations in MPICH. International Journal of High Performance Computing
Applications (IJHPCA) 19(1), 49–66 (2005)

22. UPC Consortium: UPC language specifications, v1.2. Tech. Rep. LBNL-59208,
Lawrence Berkeley National Lab (2005)

23. Yarrow, M., van der Wijngaart, R.: Communication improvement for the LU NAS
parallel benchmark: A model for efficient parallel relaxation schemes. Tech. Rep.
NAS-97-032, NASA Ames Research Center (1997)

https://github.com/ParRes/Kernels

	Reducing Synchronization Overhead Through Bundled Communication

