
OpenSHMEM Extensions and a Vision for its
Future Direction

Stephen Poole1, Pavel Shamis1, Aaron Welch2,
Swaroop Pophale2, Manjunath Gorentla Venkata1, Oscar Hernandez1, Gregory

Koenig1, Tony Curtis2, and Chung-Hsing Hsu1

1 Extreme Scale Systems Center
Oak Ridge National Laboratory

{spoole, shamisp, manjugv, oscar, koenig, hsuc}@ornl.gov
2 Computer Science Department

University of Houston
{dawelch, swaroop, arcurtis}@uh.edu

Abstract. The Extreme Scale Systems Center (ESSC) at Oak Ridge
National Laboratory (ORNL), together with the University of Houston,
led the effort to standardize the SHMEM API with input from the ven-
dors and user community. In 2012, OpenSHMEM Specification 1.0 was
finalized and released to the OpenSHMEM community for comments. As
we move to future HPC systems, there are several shortcomings in the
current specification that we need to address to ensure scalability, higher
degrees of concurrency, locality, thread safety, fault-tolerance, I/O, etc.
In this paper we discuss an immediate set of extensions that we propose
to the current API and our vision for a future API, OpenSHMEM Next-
Generation (NG), that targets future Exascale systems. We also explain
our rational for the proposed extensions and highlight the lessons learned
from other PGAS languages and communication libraries.

1 Introduction

OpenSHMEM [1] [2] [3], an API for the Partitioned Global Address Space
(PGAS) programming model, is a derivative of SGI’s SHMEM API, which was
originally developed by Cray. The SHMEM API is widely used in parallel ap-
plications [4] and has been adopted by multiple system vendors including IBM,
Quadrics, Hewlett Packard, QLogic, and Mellanox Technologies. Although these
implementations are similar in functionality and semantics, they have minor dif-
ferences that inhibit portability. The OpenSHMEM API is an open source com-
munity effort to standardize the SHMEM API used by the scientific community
and hardware vendors, jointly led by the ESSC at ORNL, and the University of
Houston.

The OpenSHMEM API provides a complete set of concise and powerful li-
brary calls to satisfy the communication needs of parallel applications. These
include collective communication operations, remote memory access (RMA),

atomic memory operations, synchronization operations, distributed lock oper-
ations, and operations to check process and data accessibility. A complete set of
operations, and semantics of the operations are detailed in [1].

Although the OpenSHMEM API provides an adequate and complete set of
operations for implementing communication libraries for the time it was devel-
oped, it requires additional functionality for the exascale era. Particularly, as
the needs of exascale applications change, so does system architecture - nodes
have multiple CPU sockets and computing cores with varying instruction sets
and power calibrating interfaces, network interfaces provide low-latency and high
bandwidth communication, native support for RMA operations, collective oper-
ation functionality, etc. To better accommodate these technological shifts, the
API needs to incorporate other useful concepts either born out of OpenSHMEM
user experience or lessons from the evolution of other parallel programming lan-
guages and communication libraries (e.g. CAF 2.0, Titanium, UPC, Chapel,
MPI 3.0).

The most important changes that are critical for OpenSHMEM are the fol-
lowing:

– Non-blocking Operations: The invocation of a library call returns before the
operation is complete, providing the application with the opportunity to hide
the latency of the operation with additional computation.

– Fault Tolerance: The API should enable implementation of fault-tolerant and
fault-aware communication libraries. In addition, it should provide adequate
support for building fault resilient applications.

– Hybrid Programming: The API should support, or at least not prohibit,
interoperability with other programming models. This provides the applica-
tion an opportunity to use multiple programming models simultaneously to
better suit architectural needs, including heteregenous systems.

– Isolation: This provides private communication contexts for groups of PEs,
an important attribute for enabling the construction of libraries.

– Locality: This will help to define processing elements (PEs) and symmetric
memory areas that are “next” to each other and that can be mapped to
multiple devices/accelerators within a node or to nodes close to each other.

In this paper, we propose a series of extensions to the OpenSHMEM API that
work toward adding some of the above functionality. Our work in this paper can
be classified into two different categories:

1. A series of extensions that strive to maintain backward compatibility with
the current OpenSHMEM API, while aiming to improve programmer pro-
ductivity and the performance and scalability of OpenSHMEM applications.
The extensions include 1) Explicit active sets 2) Non-blocking operations
3) Library Shutdown, and 4) Multi-threading support.

2. We make a case for a series of extensions that is far-reaching and geared more
towards the needs of exascale era applications and hardware. The extensions
in this category include 1) Isolation 2) Locality 3) Error Model, and 4) I/O.

The rest of the paper is organized as follows: In Section 2, we describe the
motivation behind adding the proposed incremental extensions to OpenSHMEM
and the potential benefit that can be gained by adding these useful features. In
Section 3, we describe in detail the different extensions and their semantics
with concrete examples and prototypes. We also provide a broader view of the
different aspects that may greatly impact OpenSHMEM in the march towards
Exascale and discuss a few nascent concepts for OpenSHMEM-NG in Section 4.
Section 5 throws light on the different features that were found lacking and then
added into other PGAS languages and libraries (namely Chapel, UPC, Co-array
Fortran, Titanium, and MPI-3). We conclude in Section 6 by summarizing our
work and highlighting the key contributions.

2 Motivation for the Incremental Extensions

In OpenSHMEM 1.0, collective operations are performed on implicitly defined
active sets using a strided pattern that is restricted to powers of two. These
operations are expected to be called by all members of the defined set of PEs,
but for any PEs that are not in the set, calling the same operation results in un-
defined behavior. There are a number of limitations to this approach, including
the inability to specify an arbitrary stride or to select participating PEs through
other methods. It can also become cumbersome and redundant to provide the
full details of the active set with each successive call, and could lend itself to error
and inconsistencies. Furthermore, active sets are currently designed to exist only
during the life of a particular collective call. Allowing the user to explicitly de-
fine an active set provides opportunity for reuse, which will increase programmer
productivity. This is possible while still maintaining backward compability with
OpenSHMEM 1.0 since active sets may be reused throughout the entire applica-
tion without significantly changing the memory, execution, and synchronization
models of OpenSHMEM 1.0.

Overlapping computation with communication allows for better concurrency
and utilization of resources when using hardware that supports the operations.
There are very tangible benefits that may be realized by making collectives,
atomics, and RMA communication calls non-blocking. The time spent waiting on
the results of a computation or a RMA operation may be better utilized by doing
other useful work. Non-blocking calls expose potential completion latency that
may be utilized by the application to execute other units of work or by hybrid
programming models (i.e. OpenSHMEM plus multithreading and tasking).

For verifying the potential for overlap in the context of OpenSHMEM, we
developed a working prototype for a non-blocking version of the atomic call
shmem longlong fadd() called shmem longlong fadd nb(). The prototype was im-
plemented using the OpenSHMEM reference implementation [5] with the Uni-
versal Common Communication Substrate communication middleware (UCCS)
[6] [7]. UCCS is a high-performance communication middleware that provides a
broad range of semantics useful for the PGAS programming model. This proto-
type was put to the test using a custom version of the Communication Offload

Fig. 1: Potential Overlap using Non-blocking Fetch-and-Add

MPI-based Benchmark (COMB) [8], modified to work using SHMEM instead of
MPI code. This test first times the execution of shmem longlong fadd nb() imme-
diately followed by a wait call on the operation (effectively making it a blocking
atomic operation). Next, it times the execution of the non-blocking atomic fol-
lowed by increasingly large amounts of work before waiting on the operation.
When the total time spent starts to exceed the “blocking” time, all the latency
that can be exploited for additional computation has been used, so it records
the time breakdown for the point at which it crossed the latency boundary.

Using this benchmark, we show that for atomic memory updates, 86% of
the total time taken by the call can be employed doing other useful work (see
Figure 1). This is significant and insightful especially since atomics are low la-
tency calls - the overlap opportunity afforded by other non-blocking calls like
collective operations and data transfer will be much greater. Additionally, the
non-blocking call was shown to not add any noticeable overhead, so there is no
disadvantage to using the non-blocking calls over their blocking counterparts.

3 Proposed Extensions

In this section, we describe and present our proposed set of extensions to Open-
SHMEM 1.0. These incremental extensions are aimed at addressing some of
the scalability bottlenecks of OpenSHMEM interfaces, and providing communi-
cation interfaces that enable overlapping communication with computation in
applications.

Our set of extensions consist of:

– Explicit active sets, which allow the OpenSHMEM users to define the crite-
rion for creation of the active set as well as the lifetime of the active set.

– Non-blocking Collective operations include a method for invoking the collec-
tive operation, and a method for learning the progress of the call. It enables
the OpenSHMEM users to overlap collective communication with computa-
tion.

– Non-blocking put, get, and atomic operations, like the non-blocking collective
operations extension, have a method for invoking the call, and a method for
learning the progress of the call.

– Abort and Exit Support allows OpenSHMEM programs to terminate at any
point during their execution. It enables applications to free the resources
before exiting, or facilitate sanity checks before exiting the OpenSHMEM
environment.

3.1 Explicit Active Sets

Our proposed extension to active sets will help the programmer define and reuse
active sets explicitly via a proposed API. The active set construct will help
the user group sets of processes and reuse active sets across collective operations
using the OpenSHMEM API. Our proposed active set extension is an incremental
extension to the active sets in OpenSHMEM 1.0, where it implicitly created
sets of processes used for executing collective operations. A set of API calls
will be used to define a set of PEs that comprise an active set, each using a
different selection strategy, and will return an opaque handle that can be used
thereafter to identify this set of PEs. This handle will only be guaranteed to be
usable within collectives for PEs within the set, though the associated creation
function may be called by any superset of the PEs contained in the set. Whether
a particular calling PE is in the active set defined by the handle may be checked
by calling the shmem in aset() function, which will return a non-zero value if
it is in the set, or zero if it is not. The size of a particular set can be queried
through the shmem aset size() function, and the shmem aset delete() function
destroys the active set object. The full list of supported call signatures for active
sets is included below in Figure 2.

Create a strided active
set.

shmem aset *shmem create strided aset(int PE start, int
PE stride, int PE size)

Create a log-strided
active set.

shmem aset *shmem create log strided aset(int PE start,
int PE log stride, int PE size, int stride base)

Create a user-defined
active set.

shmem aset *shmem create custom aset(int PE start,
shmem offset fn offset, int PE size, void *const params)

Create a generic active
set.

shmem aset *shmem create generic aset(int *PE list, int
PE size)

Check if a PE is in an
active set.

int shmem in aset(shmem aset *aset)

Query the size of an
active set.

int shmem aset size(shmem aset *aset)

Delete an active set. void shmem delete aset(shmem aset *aset);

Fig. 2: Examples of Proposed active set operations and their APIs

In the case of concurrent collective operations that involve overlapping active
sets the user has to ensure that they do not work on the same pSync or pWrk

arrays. With these new extensions, the user will be able to create active sets
using one of the four active set creation calls that can be used to select the
member PEs of the active set. These calls allow the user to create active sets
using strided sets based on both powers of two and arbitrary strides, generic
arrays of participating PE ids, and via user-defined functions. For the latter
case, a user may define an active set with a function that when called on a set of
size n, will produce the ith PE id in the set for 0 ≤ i < n. All PE ids generated
by the function must be both valid and unique in the set, and the id generated
for a particular input must always be the same regardless of how many times it
is called. The user can pass an arbitrary amount of data as actual parameters to
the function specified at creation time of the active set. After being passed to the
creation function, these parameters should remain constant for the lifetime of
the active set. As an example, a custom function may be thought of as being very
similar to a mathematical function such as f(i) = i2 + PE start, for 0 ≤ i < n,
for which n = 4 and PE start = 3 would produce the set {3, 4, 7, 12}.

In addition, we will use explicit active sets as arguments to create the pro-
posed non-blocking collective calls as described in Section 3.2.1. This is to en-
courage the use of explicit active sets, together with non-blocking collective op-
erations, while minimizing changes to the existing OpenSHMEM 1.0 API. The
behavior for the original collective operations will remain the same, including
shmem barrier all(), which will always use all PEs in the system.

An example is shown below demonstrating the process of creating and using
a strided active set:

1 int main(int argc , char **argv) {
2 shmem_aset *aset;
3 ...
4 /* creates an active set containing PEs 0, 3, 6, 9, ... */
5 aset = shmem_create_strided_aset (0, 3, npes / 3);
6 /* equivalent to the OpenSHMEM 1.0-style (me % 3 == 0) */
7 if (shmem_in_aset(aset)) {
8 shmem_barrier_aset(aset , pSync);
9 }

10 }

Similarly, creating a custom function for selecting the PEs in an active set
involves little more than creating the custom function itself:

1 int my_custom_fn(int PE_index , int PE_start , int PE_size , void
*const_params) {

2 return PE_index * PE_index + PE_start;
3 }
4 int main(int argc , char **argv) {
5 shmem_aset *aset;
6 ...
7 /* creates an active set containing PEs 2, 3, 6, 11 */
8 aset = shmem_create_custom_aset (2, &my_custom_index_fn , 4, NULL);
9 if (shmem_in_aset(aset)) {

10 shmem_barrier_aset(aset , pSync);
11 }
12 }

The placement and use of the shmem aset create func() and shmem in aset()
functions here may seem unusual for some SHMEM developers. Being placed
outside of the conditional means that the create function can be called by PEs

that are not in the defined active set. This is due to the updated syntax for
active set creation, and will still result in valid code.

The performance of each of the four methods is compared using barrier op-
erations to that of the implicitly defined active sets from OpenSHMEM 1.0 in
Figure 3. All the tests were performed using the same OpenSHMEM reference
implemention modified to use UCCS as described in Section 2. Each of the re-
sults represents the time spent performing a barrier on four PEs, using either an
implicitly defined logarithmically strided active set or one of the four methods for
creating explicit active sets as previously described. It can be seen that not only
is there no additional overhead for defining active sets explicitly compared to the
original implicit definitions, but there is also no performance penalty dependent
on which method for defining an explicit active set is chosen.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

OriginalLog−Strided Strided User Generic

L
a

te
n

c
y

 (
u

s
e

c
)

2.72795 2.68725 2.70546 2.70332 2.69797

Fig. 3: Performance of Barriers on Active Sets

3.2 Non-blocking Operations

All proposed non-blocking operations require a mechanism to check for comple-
tion of the request. For this purpose we introduce an opaque request object of
type shmem request handle t and two query functions defined on this request ob-
ject, namely, shmem wait req() and shmem test req(). Each non-blocking opera-
tion will produce exactly one such handle, which will be unique to that particular
outstanding operation. All calls to non-blocking operations return immediately
and all participating PEs must check for completion by using a wait or a test
before reusing any resources involved in the operation. A call to wait will re-
turn only once the operation is completed, while test returns immediately with
information on the status of the request, regardless of whether or not it has
completed. There are no specific requirements in terms of the progress model for
these operations and an OpenSHMEM library implementation is free to choose
when and how the operations progress.

3.2.1 Non-blocking Collective Operations We extend the OpenSHMEM
API for collective operations such as collection, reduction, barrier and broadcast
by adding their non-blocking variants. With the new non-blocking collective op-
erations a single collective call is replaced by a call to the non-blocking collective
(which would return a request handle) followed by a call to shmem wait request()
which accepts the handle as a parameter and returns when the collective call
has completed on the calling PE. All non-blocking collective operations are de-
fined on explicit active set handles as discussed in Section 3.1, instead of the
triplet PE start, logPE stride and PE size. Worth noting is that pSync remains
a required part of the function. This is due to the fact that the active sets han-
dles themselves do not have any dedicated memory assigned to them, separating
the handling of memory from the selection of PEs for any particular active set
definition. This allows a developer to maintain the same high degree of control
over lower level management of the program and its associated memory as has
been traditionally possible, while still receiving the benefits of the new active set
definitions. A complete example showing a non-blocking collective operation in
an OpenSHMEM program is illustrated below:

1 int main(int argc , char *argv []){
2 shmem_aset *aset1;
3 shmem_request_handle_t request1;
4 ...
5 start_pes (0);
6 ...
7 if(me%2 == 0){
8 // aset1 contains 0,2,4,6
9 aset1 = create_aset_strided (0,2,4,&err);

10 shmem_broadcast32_nb (&y,&x,1,aset1 ,pSync , &request1);
11 ...
12 //some useful work
13 ...
14 shmem_wait_req(request1);
15 }
16 ...
17 return 0;
18 }

The non-blocking collective semantics allow multiple outstanding collective
operations to be in progress on a given active set at any particular point in
time. Each outstanding non-blocking and blocking collective requires its own
symmetric array. A high quality implementation would not require a call to
shmem test request() to progress the outstanding collective operation. However,
a semantically correct implementation can progress asynchronously, or during a
call to the OpenSHMEM library.

3.2.2 Non-blocking Atomic Operations In the same manner, we intro-
duce non-blocking variants for the OpenSHMEM atomic library calls (swap,
compare-and-swap, increment, fetch-and-increment, add, fetch-and-add). A call
to a non-blocking atomic returns a handle which can be passed as a parameter
to shmem wait request(). The wait returns when the atomic operation has com-
pleted on all the local as well as target PE. An example of non-blocking atomic
operation in an OpenSHMEM program is illustrated below:

1 int main(int argc , char *argv []){
2 shmem_request_handle_t request1;
3 ...
4 start_pes (0);
5 ...
6 shmem_longlong_fadd_nb(target , 10, 1, &oldval , &request1);
7 ...
8 //some useful work
9 ...

10 shmem_wait_request(request1);
11 ...
12 return 0;
13 }

3.2.3 Non-blocking Data Transfer Operations According to OpenSHMEM
Specification 1.0 the put operation returns only after the local buffer is avail-
able for reuse. As a non-blocking extension to the put operation, the call will
return immediately and the local buffer will not be available for reuse until the
operation has achieved local completion. These non-blocking semantics can be
especially advantageous for communication patterns that involve communicat-
ing parts of a buffer to different PEs without immediate buffer reuse. The get
operation returns only after the value is updated at the local PE. For programs
that do not need the value updated by the get call immediately, waiting for local
completion is an unnecessary burden. The non-blocking get operation will allow
the local PE to execute other calls and operations while waiting for the remote
data to be communicated. An example of a non-blocking get operation in an
OpenSHMEM program is illustrated below:

1 int main(int argc , char *argv []){
2 shmem_request_handle_t request1;
3 ...
4 start_pes (0);
5 ...
6 shmem_int_get_nb(target , source , 1, me+1, &request1);
7 //some useful work
8 //call wait before the value is required by local PE
9 shmem_wait_request(request1);

10 x = target + 0.25 * y;
11 ...
12 return 0;
13 }

Non-blocking data transfer is not a novel concept and SHMEM implementations
like Quadrics [9] have included it in its library API. We differ in our approach
as we define the non-blocking operations on explicit active set handles. By cre-
ating a explicit active set we not only simplify the API but make OpenSHMEM
programs more suitable for analysis via compiler based tools.

3.3 Thread Safety

In OpenSHMEM 1.0 there is no mention of thread safety and what one might
expect when trying to execute an OpenSHMEM program in a multi-threaded en-
vironment. Providing basic thread safety support may promote interoperability
between OpenSHMEM and other programming models and allow data transfers

to be broken down into smaller units to facilitate communication latency hiding
via overlap. Since a PE maps to a process in a multi threaded environment, as the
current specification stands, multiple threads executing OpenSHMEM calls such
as start pes(), shmem finalize(), shmalloc(), shfree(), and shrealloc() can lead to
unpredictable execution patterns and results. Collective operations are a major
OpenSHMEM functionality group that may be executed by only one thread per
PE. Since the concept of an active set is a purely logical one in OpenSHMEM
Specification 1.0 there is no way to define operations on it. With explicit ac-
tive set handles there is a programmable object on which we can now define
thread-safe operations and constraints. Although prototypes to these functions
are beyond the scope of this paper, four hierarchical execution model modes
for threading support proposed by Cray (thread single, thread funneled, thread
serialized and thread multiple) [10] could be well suited for providing thread
safety semantics with the new extensions. Each of the four levels of threading
support specifies the number of threads per PE that may participate, and this is
set through a thread safety initialization call shmem init thread() which accepts
one on the four modes as an argument.

3.4 Abort and Exit Support

The OpenSHMEM Specification 1.0 does not have any support for an abort
or exit call. As an extension to OpenSHMEM Specification 1.0, we propose a
shmem finalize() function to shut down the library, and shmem abort() to sig-
nal the abortion of the OpenSHMEM program. The primary difference in the
semantics of shmem finalize() and shmem abort() is that shmem finalize() in-
dicates normal completion of the program and the OpenSHMEM environment
can be re-initialized after finalize by calling start pes(). shmem abort(), however,
signals the run-time that OpenSHMEM library operations cannot continue after
the call returns. Semantics for both the calls are as follows:

1. shmem finalize()
(a) It is the last OpenSHMEM call by any PE.
(b) All pending OpenSHMEM operations will have completed when the call

returns.
(c) The OpenSHMEM environment can be re-initialized by calling start pes()

after finalize.
(d) Any OpenSHMEM calls after shmem finalize and before the start pes()

will lead to undefined behavior.
2. shmem abort()

(a) Any PE can call shmem abort() to the program execution. After any PE
calls the shmem abort() call, the behavior of the program is undefined.

(b) Any OpenSHMEM operation after any PE calls shmem abort() will lead
to undefined behavior.

(c) After exiting the OpenSHMEM environment, a process may or may not
terminate depending on the library implementation.

4 A Vision for OpenSHMEM’s Future

OpenSHMEM-NG is a vision for the next big leap in the evolution of Open-
SHMEM. Here we propose new ideas: changes are not incremental, and not
necessarily backward compatible with OpenSHMEM 1.0. In order to address
the need for backward compatibility, we plan to develop source-to-source trans-
lation tools that will help to update legacy applications to a new standard.

4.1 Adding Memory Context to Active Sets

In the current OpenSHMEM Specification 1.0, all symmetric memory allocations
have to be made across all the PEs in an application. However, with the intro-
duction of explicit active sets (Section 3), the active set opaque handle may be
reused for multiple collective operations. This provides more control and flexibil-
ity to the user when decomposing the work within an OpenSHMEM application.
Adding a memory context to the active set, where memory context is a symme-
tric memory space available only to the members of the active set, is the next
logical step. The memory context will provide an efficient medium for memory
management without incurring the cost of memory allocation across all PEs.
Moreover, this will also help address the issue of isolation, where applications
and multiple libraries using OpenSHMEM can safely co-exist independently of
each other. Introducing memory context to active sets can also address the issue
of locality, where logical sets of PEs and memory spaces can be used to define
locality and be mapped to cores and memory that are close to each other.

4.2 Error Model

In OpenSHMEM-NG, error reporting will be an important aspect. As the com-
plexity of the hardware and programming environment increases, it becomes
increasingly important to be able to identify errors and provide meaningful in-
formation to the programmer. This also paves the path towards fault tolerance
and resilience. Other than programming errors there exist a plethora of error
conditions related to memory, network, and communication failures. Extending
the OpenSHMEM API with error handlers and defined error states will enable
proper error handling on the application level.

4.3 OpenSHMEM I/O

The OpenSHMEM I/O extensions will be aimed at providing interfaces with
parallel I/O capabilities for OpenSHMEM applications. The interfaces will be
geared towards facilitating and co-ordinating concurrent I/O access among the
OpenSHMEM PEs, and abstracting the semantics provided by parallel file sys-
tems to match the needs of applications.

5 Related Work

Process groups is a concept that has been around in programming models such as
MPI. It has also been proposed as an extension to existing PGAS languages such
as CAF 2.0 and Titanium. The concept of locales in Chapel and places in X10
is tied to process affinity and locality, where the programmer can map compu-
tations or data to specific locales or places. The concept of groups has been used
to define communication contexts that can be used in coupled applications that
perform communication and computation in subsets and independently from
each other, such as an application and library using the same communication
library independently of each other.

Co-array Fortran 2.0 introduced the concept of teams [11], ordered sequences
of process images that represent a subset of an existing team. All process images
start as members of a global team known as team world. New teams can be
created from existing teams by splitting based on a common ”color” or merging
two teams to produce the union of them. Additionally, a topology can also be
applied to a team to abstract the layout and access patterns of the processes
involved in an operation. Titanium also uses a similar concept where teams of
threads are defined as objects that have methods to split into sub teams.

Similarly, communicators in MPI are arbitrary sets of processes used for
performing communication on them selectively as independent functional units.
Initially, all processes are part of a single global communicator, after which sub-
communicators may be created from it either by splitting or by specifying a sub-
set of parent processes to either include or exclude [12]. While this approach can
provide a lot of flexibility, the communicator creation process imposes implicit
synchronization, which might be undesirable for other programming models.

The incremental change to OpenSHMEM Specification 1.0 will include ex-
plicit handles to active sets. At this juncture, however, there is no communication
context associated with it. This is due to the desired separation between active
set definitions and memory spaces and handling, as described in Section 3.2.1.
For OpenSHMEM-NG, having a concept similar to communicators in MPI with
isolated communication contexts may be useful.

CAF 2.0 incorporated asynchronous point-to-point and collective operations
[13] and detailed the benefits that such operations could provide by providing a
higher degree of communication to computation overlap. Hiding the latency of
communication has been employed in other places before CAF 2.0. For exam-
ple, MPI showed that adding non-blocking collectives to MPI-2 allowed them to
provide a 99% overlap between communication and computation along with an
approximate performance gain between 13 to 15% (depending on the underlying
network) for the 3D-FFT application [14]. Even before that, asynchronous collec-
tive operations like broadcast in MPI [15] [16] and barrier [17] have been studied
to enable hiding of communication latency and barrier duration of barrier re-
gions. Other PGAS languages like X10 support asynchronous activities via the
async statement, and use phaser accumulators for increasing communication-
computation overlap for reduction operations [18]. Both UPC [19] and MPI
have varying degrees of support for a global exit of all threads and processes

respectively. This allows for the executing process elements to do a collective
exit when some explicit execution requirement is not met (abort) or do a clean
exit at the end of the program (release resources and do other sanity checks).
The obvious benefit of these concepts has prompted these proposed extensions
to OpenSHMEM 1.0.

6 Conclusions

In this paper, we described a series of extensions to the OpenSHMEM API
that strive to maintain backward compatibility with the current OpenSHMEM
API, and aim to improve programmer productivity as well as the performance
and scalability of OpenSHMEM applications. The extensions include 1) Ex-
plicit active sets 2) Non-blocking operations 3) Library Shutdown, and 4) Multi-
threading support.

We made a case for a series of extensions that is far-reaching and geared more
towards the needs of exascale era applications and hardware. The extensions in
this category include 1) Isolation 2) Locality 3) Error Model, and 4) I/O.

7 Acknowledgments

This work is supported by the United States Department of Defense and used
resources of the Extreme Scale Systems Center located at the Oak Ridge National
Laboratory.

References

1. OpenSHMEM Org.: OpenSHMEM specification (2011)
2. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:

Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model.
PGAS ’10, New York, NY, USA (2010)

3. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - Toward a Unified RMA Model. In: Encyclopedia of Parallel Com-
puting. (2011) 1379–1391

4. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: Openshmem performance and potential: A npb experimental study (2012)

5. Pophale, S.S.: SRC: OpenSHMEM library development. In Lowenthal, D.K.,
de Supinski, B.R., McKee, S.A., eds.: ICS, ACM (2011) 374

6. Shamis, P., Venkata, M.G., Kuehn, J.A., Poole, S.W., Graham, R.L.: Universal
common communication substrate (uccs) specification. version 0.1. Tech Report
ORNL/TM-2012/339, Oak Ridge National Laboratory (ORNL) (2012)

7. Graham, R.L., Shamis, P., Kuehn, J.A., Poole, S.W.: Communication middleware
overview. Tech Report ORNL/TM-2012/120, Oak Ridge National Laboratory
(ORNL) (2012)

8. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: Comb: A portable bench-
mark suite for assessing mpi overlap. In: IEEE Cluster. (2002) 23–26

9. Quadrics Supercomputers World Ltd.: SHMEM Programming Manual (2001)
10. CRAY: Thread-safe shmem extensions (2012)
11. Mellor-Crummey, J., Adhianto, L., Scherer, III, W.N., Jin, G.: A new vision for

coarray fortran. In: Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models. PGAS ’09, New York, NY, USA, ACM (2009)
5:1–5:9

12. Walker, D.W., Walker, D.W., Dongarra, J.J., Dongarra, J.J.: Mpi: A standard
message passing interface. Supercomputer 12 (1996) 56–68

13. Scherer, III, W.N., Adhianto, L., Jin, G., Mellor-Crummey, J., Yang, C.: Hiding
latency in coarray fortran 2.0. In: Proceedings of the Fourth Conference on Par-
titioned Global Address Space Programming Model. PGAS ’10, New York, NY,
USA, ACM (2010) 14:1–14:9

14. Hoefler, T., Kambadur, P., Graham, R., Shipman, G., Lumsdaine, A.: A case for
standard non-blocking collective operations. In Cappello, F., Herault, T., Don-
garra, J., eds.: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Volume 4757 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2007) 125–134

15. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira,
J.E., Steinmacher-Burow, B., Zheng, Y.: Optimization of mpi collective commu-
nication on bluegene/l systems. In: Proceedings of the 19th annual international
conference on Supercomputing. ICS ’05, New York, NY, USA, ACM (2005) 253–
262

16. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In Kilian, J., ed.: Advances in Cryptology CRYPTO 2001.
Volume 2139 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2001) 524–541

17. Gupta, R.: The fuzzy barrier: a mechanism for high speed synchronization of
processors. In: Proceedings of the third international conference on Architectural
support for programming languages and operating systems. ASPLOS III, New
York, NY, USA, ACM (1989) 54–63

18. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on. (2009) 1–12

19. UPC Consortium: Upc language specifications, v1.2. Tech Report LBNL-59208,
Lawrence Berkeley National Lab (2005)

	Lecture Notes in Computer Science
	Authors' Instructions

