
Designing a High Performance OpenSHMEM
Implementation using Universal Common

Communication Substrate as a Communication
Middleware

Pavel Shamis1, Manjunath Gorentla Venkata1, Stephen Poole1

Aaron Welch2, and Tony Curtis2

1 Extreme Scale Systems Center (ESSC)
Oak Ridge National Laboratory (ORNL)
{shamisp,manjugv,spoole}@ornl.gov

2 Computer Science Department
University of Houston (UH)

{dawelch, arcurtis}@uh.edu

Abstract. OpenSHMEM is an effort to standardize the well-known
SHMEM parallel programming library. The project aims to produce an
open-source and portable SHMEM API and is led by ORNL and UH. In
this paper, we optimize the current OpenSHMEM reference implementa-
tion, based on GASNet, to achieve higher performance characteristics. To
achieve these desired performance characteristics, we have redesigned an
important component of the OpenSHMEM implementation, the network
layer, to leverage a low-level communication library designed for imple-
menting parallel programming models called UCCS. In particular, UCCS
provides an interface and semantics such as native atomic operations
and remote memory operations to better support PGAS programming
models, including OpenSHMEM. Through the use of microbenchmarks,
we evaluate this new OpenSHMEM implementation on various network
metrics, including the latency of point-to-point and collective operations.
Furthermore, we compare the performance of our OpenSHMEM imple-
mentation with the state-of-the-art SGI SHMEM. Our results show that
the atomic operations of our OpenSHMEM implementation outperform
SGI’s SHMEM implementation by 3%. Its RMA operations outperform
both SGI’s SHMEM and the original OpenSHMEM reference implemen-
tation by as much as 18% and 12% for gets, and as much as 83% and
53% for puts.

1 Introduction

OpenSHMEM [1] [2] is an effort towards creating an open standard for the
well-known SHMEM library, and is a starting point to accommodate future
extensions to the SHMEM API. SHMEM is a Partitioned Global Address Space
(PGAS) based parallel programming model. OpenSHMEM 1.0 is a SHMEM

specification based on SGI’s SHMEM API, which predominantly supports one-
sided communication semantics as well as providing collective communication
operations, atomic operations, and synchronization operations. Currently, there
are many production-grade proprietary implementations of the SHMEM API.
OpenSHMEM 1.0 is an effort to create an open, unified standard and a reference
implementation [3] of the SHMEM API, led by ORNL’s ESSC and UH.

The current reference implementation, which supports various network inter-
faces in an effort to be portable to spur adoption, is based on the GASNet com-
munication middleware [4]. Though proprietary SHMEM implementations have
outstanding performance characteristics on their native hardware, the current
reference implementation of OpenSHMEM has several performance drawbacks.
For example, atomic operations in the current implementation have a latency
that is at least 27% slower than that of the native low-level drivers. In this pa-
per, in order to arrive at the desired performance characteristics, we redesign
the network layer of the OpenSHMEM reference implementation to leverage
the Universal Common Communication Substrate (UCCS) communication li-
brary [5] [6], a low-level network library for implementing parallel programming
models. For the rest of the paper, the current reference implementation will
be called OpenSHMEM-GASNet and the new reference implementation using
UCCS will be referred to as OpenSHMEM-UCCS .

The rest of the paper is organized as follows: Section 2 provides a brief
overview of the UCCS communication middleware and OpenSHMEM specifica-
tion. Section 3 discusses related works in the area of OpenSHMEM implemen-
tations. Section 4.1 details the network layer of OpenSHMEM, and the way it
was designed to be independent of underlying network infrastructure. Section
4.2 provides details of UCCS interfaces, data structures, and semantics of opera-
tions, and Section 4.3 provides the details of its integration with OpenSHMEM.
Section 5 provides an evaluation of the OpenSHMEM-UCCS implementation
by comparing it to OpenSHMEM-GASNet and SGI’s SHMEM, and we present
concluding remarks in Section 6.

2 Background

This section provides a brief background for the OpenSHMEM specification and
UCCS communication middleware.

2.1 OpenSHMEM

Despite the fact that the original SHMEM library was designed by Cray Re-
search, which later was merged with Silicon Graphics (SGI), there are multiple
variants of the SHMEM API that have been introduced by different system and
hardware vendors. The SGI SHMEM library, which is a part of SGI’s Message
Passing Toolkit (MPT), provides the original SHMEM interface developed by
Cray Research and SGI. Cray provides a SHMEM library implementation for the
SeaStar, Aries, and Gemini interconnects. HP supports SHMEM concepts with

the HP SHMEM library, which is based on the Quadrics SHMEM library and is
available on HP systems. Despite the broad availability of SHMEM implemen-
tations, the SHMEM API has not been standardized. As a result, application
developers have to handle incompatibilities of different SHMEM implementa-
tions at the application level. The OpenSHMEM specification was borne out of
the desire to standardize the many similar yet incompatible SHMEM communi-
cation libraries into a single API. The OpenSHMEM reference implementation
is an open-source implementation of this specification.

2.2 UCCS

UCCS is a communication middleware that aims to provide a high performing
low-level communication interface for implementing parallel programming mod-
els. UCCS aims to deliver a broad range of communication semantics such as
active messages, collective operations, puts, gets, and atomic operations. This
enables implementation of one-sided and two-sided communication semantics to
efficiently support both PGAS and MPI-style programming models. The inter-
face is designed to minimize software overheads, and provide direct access to
network hardware capabilities without sacrificing productivity. This was accom-
plished by forming and adhering to the following goals:

– Provide a universal network abstraction with an API that addresses the
needs of parallel programming languages and libraries.

– Provide a high-performance communication middleware by minimizing soft-
ware overheads and taking full advantage of modern network technologies
with communication-offloading capabilities.

– Enable network infrastructure for upcoming parallel programming models
and network technologies.

In order to evaluate the OpenSHMEM reference implementation with UCCS
instead of GASNet, the reference implementation was extended to integrate with
the UCCS network substrate.

3 Related Work

The OpenSHMEM reference implementation is the first open-source implemen-
tation of the OpenSHMEM specification, which was developed in conjunction
with the specification by the University of Houston and Oak Ridge National
Laboratory. Since the OpenSHMEM specification is based on SGI’s SHMEM
API, SGI SHMEM was the first commercial implementation of the specification.

The HPC community and system vendors embraced the specification and re-
leased various implementations of the specification. The University of Florida is
developing the GSHMEM [7] project which is an OpenSHMEM implementation
based solely on the GASNet runtime. Ohio State University (OSU) distributes
the MVAPICH-X runtime environment [8], which is focused on enabling MVA-
PICH InfiniBand and iWARP support for OpenSHMEM and UPC in addition

to MPI. Sandia National Laboratory provides an open source implementation
of the specification for the Portals [9] network stack. In addition to the above
implementations, there are SHMEM implementations that are tightly coupled
to particular network technologies developed by network and system vendors.
Mellanox ScalableSHMEM [10] provides support for a family of Mellanox inter-
connects and is based on proprietary software accelerators [11]. Cray and HP
SHMEM provide proprietary SHMEM implementations for platforms developed
by these vendors, both of which have been making steps toward supporting the
OpenSHMEM specification. Tilera Many-Core processors are supported within
TSHMEM [12].

The OpenSHMEM reference implementation differentiates itself as an open-
source and explorable community platform for development and extension of
the OpenSHMEM Specification. Using high-performance UCCS middleware, the
UCCS reference implementation aims to deliver performance that is as good or
better than the state-of-the-art commercial implementations.

4 Design

The design section discusses the OpenSHMEM communication layer, the UCCS
API, and the integration of UCCS as a communication layer in OpenSHMEM.

4.1 OpenSHMEM Communication Layer

The OpenSHMEM reference implementation consists of the core API and a sep-
arate communication layer that can have multiple implementations for handling
low-level networking hardware, designed in a way that allows them to be eas-
ily swapped out for one another. This separation between layers was done in a
way that was as minimalistic as reasonably possible, yet still would be generic
enough so as to be able to fully accommodate any potential communication
infrastructure cleanly. This allows for the maximum amount of common func-
tionality to be reused across communication layer implementations, but requires
careful construction.

Moving in this direction, the first task involved dividing all communica-
tion primitives such as puts, gets, and atomics between network-agnostic and
network-specific sections. Additionally, any particular functions that multiple
network layers may share were also taken out and implemented in the upper
layers of the library. These functions include a handful of basic procedures that
also do not include any assumptions or code specific to a particular communica-
tion infrastructure, but may still be needed during use, such as range checking
for processing element (PE) numbers, symmetric addressing, memory allocation
and deallocation, and state information querying.

Other communication calls that could be implemented using the previously
described primitives were done so in the upper layers of the library as well,
removing additional strain on the requirements for generating and maintaining
communication layers. Most notably, these include collective calls such as barrier,

broadcast, and reduction operations. Finally, any functions that do not require
any communication at all were implemented solely in the upper layer, such as
shmem wait().

4.2 UCCS API

The UCCS API is a generic and network hardware agnostic interface that defines
abstract concepts, which isolate programmers from hardware specific details. To
accomplish this, it first defines a few key concepts: communication contexts,
resources, and endpoints. Communication contexts are a method of providing
communication scope and isolation to multiple instances of user or system code,
and are represented in application code as opaque handles. These handles contain
all information about the associated communication context, including resources,
endpoints, and memory, and are at the topmost layer of the communication
abstraction. Resources represent a particular communication channel available
for a network, for which there may be several for a given network in cases such
as multi-rail architectures. Similar to communication contexts, resources are also
represented by opaque handles, and all the descriptors for the available resources
of a particular transport type or list of types in a given communication context
are initialized at once.

In order to complete a communication call, a specific endpoint must be se-
lected to communicate with using a specific resource. These endpoints represent
the ultimate destination for a communication operation, and are also represented
by opaque handles. To obtain a set of valid endpoints, a connectivity map must
be generated for a resource and be queried to discover if a particular execution
context is reachable via the resource for which it was generated. Endpoints in
UCCS are defined in relation to resources, such that any one endpoint descriptor
is only associated with one particular resource descriptor. Figure 1 describes the
relationship between UCCS context, resources, and endpoints.

The interface for UCCS is divided between the core API and its run-time
environment (RTE) (Figure 2). The RTE API is an interface providing run-
time services such as process startup, out-of-band communication, and a key
storage and retrieval system, as well as other run-time services. UCCS does
not implement run-time services, but relies on external libraries such as ORTE
[13], SLURM [14], STCI [15], and other third party runtime libraries. Such an
approach allows it to decouple the core communication API from the run-time
environment, in a way that enables easy porting to different run-time libraries.

The core API features consist of initialization, remote memory access, atomic
memory operations, active messages, and collectives. Aside from the functions
required for creating descriptors for communication contexts, resources, and end-
points, UCCS also provides methods for querying network capabilities and reg-
istering, deregistering, and exporting memory segments for use in future calls.
Remote Memory Access (RMA) operations consist of functions for one-sided puts
and gets optimized for either short, medium, or large message sizes, as well as
functions for non-contiguous data. Atomic Memory Operation (AMO) functions
include atomic add, fetch-and-add, increment, fetch-and-increment, swap, and

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

UCCS Resource
Cray Gemini 2

UCCS Context

UCCS Resource
InfiniBand

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

Endpoint
Process K

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process M

UCCS Resource
Cray Gemini

Fig. 1: A relation between the UCCS communication context, resource, and end-
points

conditional swap for both 32 and 64 bit data sizes. The Active Message (AM)
interface can be used to support remote execution and two-sided communica-
tion operations. This is performed by first registering a callback handler, then
sending the data itself in a manner similar to the RMA put operations. Group
communication can also be performed using the provided collective operation
functions.

All communication calls in UCCS are inherently non-blocking, so their com-
pletion must be checked by waiting on a request handle created for tracking
an operation’s progress. To aid in the management of outstanding operations,
UCCS provides functions to test or wait on these handles in whichever way
best suits the given situation. The user may test or wait either on a specific
handle, all handles in a provided list, or any of the handles in a provided list.
These management functions result in a returned status that indicates whether
the operation completed successfully, an error occurred, or some other status as
appropriate. In addition to the test and wait functions for remote completion,
it is also possible to ensure local completion of all outstanding operations by
flushing all communication intended for a particular set of endpoints from the
local execution context calling the function.

4.3 UCCS and OpenSHMEM Integration

The UCCS and RTE APIs provide an interface that enables simple yet efficient
implementation of the OpenSHMEM API (Figure 3). The integration process
can be divided into two primary phases: UCCS library initialization and com-
munication semantics implementation.

Active Message API Atomic APIRDMA PUT/GET API Collectives API

Short,
Large

Short
Large

Medium

Contiguous Non-Contiguous

UCCS I/Ovec

Contiguous Non-Contiguous

Scatter
Gather
Generic

Fetch
Fetch and Add

Increment
SWAP

CSWAP

Barrier
Bcast
Gather
Scatter

Allgather
AlltoAll

….

RTE

Commercial and open
source bootstrap
environments and

schedulers

Core Communication API Run Time API

Fig. 2: UCCS API Layout

4.3.1 Initialization The initialization of the RTE starts up all the PEs in
the system, after which the number of participating PEs and each individual
caller’s index (PE number) can then be queried.

Once the RTE has been initialized, system data can then be exchanged be-
tween PEs without the need for the full communication framework to be online.
For a high performance implementation of OpenSHMEM, this can be especially
important for two reasons:

1. There is no requirement that the symmetric heaps on the PEs must exist in
memory at exactly the same address, so all PEs must be able to broadcast
the starting address of their own symmetric heap to all other PEs to allow
address translation.

2. Some network technologies such as InfiniBand may require some form of
memory registration information before being able to access remote devices,
which would also have to be communicated first before any communication
operations from client code may be called at all.

To communicate this data, the RTE layer’s Storage Retrieval System (SRS)
was used, which allows for the easy broadcasting of key-value pairs throughout
the system. The starting addresses for the symmetric heaps as well as data
on memory segments and associated registration information are individually
published to the SRS session, which automatically handles distribution of the
data to other PEs subscribed to the session in the system. To keep proper track of
this, all information collected about a particular PE is wrapped in a container,
such that the full view of the system is an array of these containers indexed
by PE id. After the initial bootstrapping is complete, the UCCS context may
be created, and resources discovered for it. After creating the descriptors for
the resources, those resources are then queried to discover what their network
capabilities are. These capabilities include the list of supported operations as well
threshold values for the maximum size for small and medium messages supported
by the network resource. This information is then stored so as to make the best
choices for what operations and message sizes to use in future communication.
When all this information is obtained and exchanged, the endpoints may then be
set up. During the PE initialization process, each PE will query UCCS endpoints
to determine the reachability of every other PE. Finally, a barrier is performed

based on the exchanged information, which will establish successful completion
of UCCS initialization upon return.

4.3.2 Communication Semantics OpenSHMEM RMA and AMO opera-
tions map directly to RMA and AMO interfaces in UCCS. Since UCCS ex-
poses only non-blocking semantics, OpenSHMEM communication calls are im-
plemented as a UCCS communication operation and then a wait on the op-
eration’s associated request handle. Once the handle has been completed, the
OpenSHMEM operation is marked for completion as well. In all cases, the des-
tination address must first be modified so that the offset of the address with
respect to the calling PE’s symmetric heap is the same as the offset for the new
address with respect to the destination PE’s heap. For puts and gets on arbitrary
sizes of data, the size of the message is first checked against the threshold values
discovered in intialization for the maximum allowed for short or medium mes-
sages. The destination endpoint is then looked up using the address translation
table built during initialization, and the put or get for the appropriate size is
invoked on it for the requested values. Atomics are similar, but don’t have the
requirement to check for message size, merely needing to have the appropriate
UCCS call invoked and waited for to satisfy OpenSHMEM’s completion policy.
Since all other communication operations are built off of these, all that is left is
to ensure that upon exit all associated memory is freed, and call the RTE’s own
finalize function.

UCCS

IB-VERBS uGNI PAMI

OpenSHMEM

RT
E

Shared
Memory

ORTE

STCI

SLURM

Hydra

Driver driver

Fig. 3: OpenSHMEM and UCCS software layers

5 Results

The evaluation of this implementation was conducted on an SGI Altix XE1300
system located at the Oak Ridge National Laboratory’s Extreme Scale System
Center. The system consists of 12 compute nodes, each with two Intel Xeon
X5660 CPUs for a total of 12 CPU cores and 24 threads. Compute nodes are
interconnected with Mellanox’s ConnectX-2 QDR HCA with one port. This par-
ticular system was selected due to the availability of SGI MPT version 2.03 that

comes with a state-of-the-art SHMEM implementation for InfiniBand intercon-
nects. In addition, we installed the newly updated OpenSHMEM 1.0 implemen-
tation, GASNet version 1.20.2, and pre-production UCCS version 0.4. This ver-
sion of the UCCS library provides high-performance communication services for
InfiniBand interconnects only. Evaluation of intra-node communication support
and other interconnects is out of the scope of this paper. All tests were run with
both the OpenSHMEM implementation’s GASNet and UCCS communication
layers, as well as SGI’s SHMEM and, when appropriate, are compared to results
obtained using InfiniBand verbs (IB-verbs) library. We were not able to evalute
the Mellanox ScalableSHMEM implementation, since the pre-production version
of the library did not run on our platform.

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI
IB−verbs

Fig. 4: SHMEM Put Latency

The first test measures the latency for put operations, by using a ping-pong
approach. The first PE puts to a location on the second PE, which is simply
waiting for the value at that location to fully update. Upon noticing the update,
it then puts to a location on the first PE that it likewise is waiting on, upon
receipt of which the ping-pong operation is complete. The time for the complete
exchange is halved to determine the latency for a single put operation, in order to
achieve a result similar to what the IB-verbs Perftest benchmark produces. This
test found median latencies for increasingly large message sizes ranging from 8
bytes to 4 megabytes (based on powers of two). The results of this test are com-
pared to that of IB-verbs, as seen in Figure 4. These results show performance

close to IB-verbs for message sizes larger than 512 bytes, with OpenSHMEM-
UCCS performing the closest to IB-verbs, the largest difference being only 3%.
For small messages, OpenSHMEM-UCCS had the best performance, ranging
from 2-11% slower than IB-verbs. In contrast, OpenSHMEM-GASNet was 1-
67% slower, and SGI’s implementation completed in 7-88% more time compared
to IB-verbs.

The second test measures the latency for messages of varying sizes using
gets. The median latency for a get of a particular size is recorded for all message
sizes based on a power of two, starting from eight bytes and continually dou-
bling up to four megabytes. The results are compared to those obtained using
IB-verbs in Figure 5. It can be seen that the performance seen with IB-verbs can
be closely matched in all implementations for all message sizes, with the UCCS
version consistently performing the closest to IB-verbs with negligible overhead
at its best and being 4% slower at its worst. The GASNet communication layer
performed similarly, though latency starts to drag noticeably behind IB-verbs
for increasingly large message sizes, resulting in higher overheads of 2-12%. SGI
SHMEM performed similar to GASNet runs for larger message sizes, but expe-
rienced more overhead for smaller sizes resulting in a 6-22% overhead.

 1

 10

 100

 1000

 10000

8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB256KB512KB 1MB 2MB 4MB

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI
IB−verbs

Fig. 5: SHMEM Get Latency

The third test measures the latency for atomics by using long long fetch-and-
add operations. This test was the most straightforward one, simply finding the
median time elapsed to perform one such operation and comparing the results to

IB-verbs. The fourth test measures the time it takes to perform a barrier opera-
tion on all PEs. This test was performed using two, four, eight, and twelve PEs,
with the median time recorded for only OpenSHMEM-GASNet , OpenSHMEM-
UCCS , and SGI, as there is no equivalent test for IB-verbs. For the runs done
using both of the OpenSHMEM implementations, a recursive doubling algo-
rithm was used for the barrier itself. The results for the fetch-and-add tests are
shown in Figure 6(a) and the barrier results are in Figure 6(b). When execut-
ing atomics, the UCCS communication layer consistently performed better than
SGI’s implementation, which in turn performed better than the GASNet layer.
OpenSHMEM-UCCS took 5% more time to execute compared to IB-verbs, while
SGI took 8% more and OpenSHMEM-GASNet took 27% more time. On barri-
ers, OpenSHMEM-UCCS again performed the best, with OpenSHMEM-GASNet
performing 9-58% slower, and SGI performing 25-36% slower.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

OpenSHMEM−UCCSOpenSHMEM−GASNet SHMEM SGI IB−verbs

L
a

te
n

c
y

 (
u

s
e

c
)

2.96358

3.59657

3.06426

2.83

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12

L
a

te
n

c
y

 (
u

s
e

c
)

Number of PEs (single process per node)

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI

(b)

Fig. 6: SHMEM Long Long Fetch-and-Add (a) and Barrier All (b)

The final test is based on the RandomAccess benchmark from the High Per-
formance Computing Challenge (HPCC) [16], used to measure the performance
of the memory architecture of a system in terms of Giga UPdates per Second
(GUPS). This is determined by the number of random memory locations that
can be updated in one second, which can be used to give an idea of peak perfor-
mance of the system with respect to random memory access. For each random
location, a value is retrieved through a get, a new value stored with a put, and
another value incremented with an atomic operation. This test was run for two,
four, and eight PEs, where the amount of work done for each run was multiplied
by the number of participating PEs. The GUPS achieved from these tests can
be seen in Figure 7. The UCCS communication layer achieved the highest per-
formance in all runs, with SGI achieving 82-92% of the GUPS when compared
agaisnt the UCCS layer. The GASNet layer, however, performed almost three
times slower than the UCCS layer, reaching between 35% and 39% of the GUPS
that the UCCS layer achieved. This is likely due to the extra overhead GASNet
incurs on its communication, particularly atomic operations, by relying on active

messages for successful execution of its calls. SGI’s SHMEM, on the other hand,
likely saw its relative performance difference due to the greater latency for small
put operations.

 5e−05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 2 3 4 5 6 7 8

G
U

P
S

Number of PEs (single process per node)

OpenSHMEM−UCCS
OpenSHMEM−GASNet

SHMEM SGI

Fig. 7: GUPS

6 Conclusion and Future Work

This paper presented OpenSHMEM-UCCS , an OpenSHMEM reference imple-
mentation whose communication is based on UCCS, a low-level communica-
tion middleware. An evaluation with microbenchmarks and the RandomAccess
benchmark for GUPS showed that it outperformed the current reference imple-
mentation (OpenSHMEM-GASNet) and the state-of-the-art SGI SHMEM. Par-
ticularly, the OpenSHMEM-UCCS RMA and atomic operations outperformed
OpenSHMEM-GASNet and SGI’s implementation. For example, for the widely
used put operation, OpenSHMEM-UCCS outperformed the current reference
implementation by as much as 53%, and SGI’s implementation by as much
as 83%. When running the RandomAccess benchmark for measuring GUPS,
using OpenSHMEM-GASNet resulted in only 35-39% the GUPS achieved by
OpenSHMEM-UCCS , while SGI’s implementation achieved 82-92% of the per-
formance. These results were able to be achieved due to a focus on minimizing
software overheads in the communication path while focusing on the needs and
capabilities of the underlying network hardware. The previous implementation

with GASNet relied heavily on active messages for atomic and some remote
memory operations, whereas the UCCS communication layer provides seman-
tics that directly map to low-level atomic and RDMA primitives of network
hardware. This allows for a much tighter and streamlined flow that can achieve
results much closer to what the network hardware supports.

Moving forward with UCCS and its integration with OpenSHMEM, we plan
to extend the UCCS library to support intra-node communication as well as
additional transport layers such as such Cray uGNI and IBM PAMI. Moreover,
we plan to extend the UCCS InfiniBand transport layer to support InfiniBand
Dynamically Connected Transport, extended AMOs, and on demand memory
registration.

7 Acknowledgments

This work is supported by the United States Department of Defense and used
resources of the Extreme Scale Systems Center located at the Oak Ridge National
Laboratory.

References

1. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model.
PGAS ’10, New York, NY, USA (2010)

2. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - Toward a Unified RMA Model. In: Encyclopedia of Parallel Com-
puting. (2011) 1379–1391

3. Pophale, S.S.: SRC: OpenSHMEM library development. In Lowenthal, D.K.,
de Supinski, B.R., McKee, S.A., eds.: ICS, ACM (2011) 374

4. Bonachea, D.: GASNet Specification, v1.1. Technical report, Berkeley, CA, USA
(2002)

5. Shamis, P., Venkata, M.G., Kuehn, J.A., Poole, S.W., Graham, R.L.: Universal
Common Communication Substrate (UCCS) Specification. Version 0.1. Tech Re-
port ORNL/TM-2012/339, Oak Ridge National Laboratory (ORNL) (2012)

6. Graham, R.L., Shamis, P., Kuehn, J.A., Poole, S.W.: Communication Middleware
Overview. Tech Report ORNL/TM-2012/120, Oak Ridge National Laboratory
(ORNL) (2012)

7. Yoon, C., Aggarwal, V., Hajare, V., George, A.D., III, M.B.: GSHMEM: A Portable
Library for Lightweight, Shared-Memory, Parallel Programming. In: Partitioned
Global Address Space, Galveston, Texas (2011)

8. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting Hybrid MPI and Open-
SHMEM over InfiniBand: Design and Performance Evaluation. In: Proceedings of
the 2012 41st International Conference on Parallel Processing. ICPP ’12, Wash-
ington, DC, USA, IEEE Computer Society (2012) 219–228

9. Brightwell, R., Hudson, T., Pedretti, K., Riesen, R., Underwood, K.D.: (Portals
3.3 on the Sandia/Cray Red Storm System)

10. Mellanox Technologies LTD: Mellanox ScalableSHMEM: Support
the OpenSHMEM Parallel Programming Language over InfiniBand.
http://www.mellanox.com/related-docs/prod software/PB ScalableSHMEM.pdf
(2012)

11. Mellanox Technologies LTD: Mellanox Messaging(MXM): Message Accelerations
over InfiniBand for MPI and PGAS libraries. http://www.mellanox.com/related-
docs/prod software/PB MXM.pdf (2012)

12. ho Lam, B.C., George, A.D., Lam, H.: TSHMEM: Shared-Memory Parallel Com-
puting on Tilera Many-Core Processors. In: 2013 IEEE 27th International Sympo-
sium on Parallel and Distributed Processing Workshops and PhD Forum. (2013)
325–334 http://www.odysci.com/article/1010113019802138.

13. Castain, R.H., Woodall, T.S., Daniel, D.J., Squyres, J.M., Barrett, B., Fagg, G.E.:
The Open Run-Time Environment (OpenRTE): A Transparent Multi-Cluster En-
vironment for High-Performance Computing. In: Proceedings, 12th European
PVM/MPI Users’ Group Meeting, Sorrento, Italy (2005)

14. Jette, M.A., Yoo, A.B., Grondona, M.: Slurm: Simple linux utility for resource
management. In: Lecture Notes in Computer Science: Proceedings of Job Schedul-
ing Strategies for Parallel Processing (JSSPP) 2003, Springer-Verlag (2002)

15. Buntinas, D., Bosilica, G., Graham, R.L., Vallée, G., Watson, G.R.: A Scalable
Tools Communication Infrastructure. In: Proceedings of the 22nd International
High Performance Computing Symposium (HPCS’08). (2008)

16. HPCC: RandomAccess Bechmark. http://icl.cs.utk.edu/hpcc/index.html (2013)

	Lecture Notes in Computer Science
	Authors' Instructions

