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Abstract. PGAS models like OpenSHMEM provide interfaces to ex-
plicitly initiate one-sided remote memory accesses among processes. In
addition, the model also provides synchronizing barriers to ensure a con-
sistent view of the distributed memory at different phases of an applica-
tion. The incorrect use of such interfaces affects the scalability achiev-
able while using a parallel programming model. This study aims at un-
derstanding the effects of these constructs on the energy and power con-
sumption behavior of OpenSHMEM applications. Our experiments show
that cost incurred in terms of the total energy and power consumed de-
pends on multiple factors across the software and hardware stack. We
conclude that there is a significant impact on the power consumed by
the CPU and DRAM due to multiple factors including the design of the
data transfer patterns within an application, the design of the communi-
cation protocols within a middleware, the architectural constraints laid
by the interconnect solutions, and also the levels of memory hierarchy
within a compute node. This work motivates treating energy and power
consumption as important factors while designing compute solutions for
current and future distributed systems.

1 Introduction

Recent studies on the challenges facing the Exascale era express a need for
understanding the energy profile of applications that depend on inter-process
communication on large-scale systems. The amount of energy consumed due to
data movement poses a serious threat to the usability of distributed memory
models on future systems. One-sided communication in PGAS models are anal-
ogous to memory accesses in shared-memory models. However, its impact on the
performance and power consumption is different.



Shared memory models are characterized by implicit data transfers that are
bounded by the distance between the CPU and the different levels of the memory
hierarchy. Such data transfers include intra-node cache and memory accesses that
consume very low energy, typically of the order of 800-1000 pico Joules [7]. In
contrast, inter-process communication patterns in PGAS models are initiated by
the programmer and bounded by a number of factors internal and external to a
single compute node. In this paper, we present our study of the factors affecting
the energy and power consumption behavior of parallel programming models.
These can be categorized as either internal or external based on the associated
layers of the hardware and the software stack. Benedict [6] and Hoefler [12] list
some of the factors that have the potential to affect the energy consumption of
interconnect solutions. They include the router/switch organization, flow con-
trol, congestion control, routing and deadlock handling, network topology, load
balancing, reliability, and QoS support.

The scope of this paper is to discuss the energy consumption by the CPU and
the memory hierarchy while servicing remote data transfers and synchronization
constructs provided by the OpenSHMEM model.

PGAS implementations like OpenSHMEM stand out with respect to their
memory consistency model. To maintain a consistent view of the progress of ex-
ecution and the globally-shared memory among multiple processes (or processing
elements), OpenSHMEM provides synchronizing constructs like shmem barrier all(),
shmem fence(), and shmem quiet(). The impact of such barriers on the perfor-
mance and scalability of distributed applications is well known [17]. In Section 3,
we discuss our findings on the factors affecting the power consumption of appli-
cations that use such barriers.

The OpenSHMEM memory model permits RDMA operations. Our studies
indicate that during the progress of such operations, there is a significant impact
on the power consumed by the CPU and DRAM due to multiple factors including
the design of the data transfer patterns within an application, the design of the
communication protocols within a middleware, the architectural constraints laid
by the interconnect solutions, and also the levels of memory hierarchy within
a compute node. We present a study of the parameters that affect the power
consumption behavior of such interfaces in Section 4.

Our empirical study was carried out at the granularity of various OpenSHMEM
constructs. Because of the fine level of granularity, it was essential to reduce the
impact on the power readings by external noise like the host Operating system
and background processes. In Section 2, we describe our experimental setup for
collecting the energy and power readings under such conditions.

2 Notes on Experimental Setup

The details of the test environment used to obtain the empirical results in this
paper are listed in Table 1.



Table 1: Test machine and environment details

Processor Intel Xeon CPU E5-2670
Microarchitecture Intel’s Sandy Bridge
Maximum Thermal Design Power (TDP) 115 Watts
Hyperthreading support Disabled
Sockets 2
Cores/socket 8
L1 cache size (per core) 32KB
L2 cache size (per core) 256KB
L3 cache size (shared - 1/socket) 20MB
Infiniband card Mellanox MT26428 [ConnectX VPI PCIe 2.0 5GT/s]
Infiniband switch InfiniScale IV 36-Port QSFP 40 Gb/s, MTS 3600
Compiler gcc version 4.4.6
Compiler flags used -O3
OpenSHMEM version Mellanox OpenSHMEM ver. 2.2-23513

Intel Sandy Bridge Processor

Xeon CPU E5-2670

(cores + private L1&L2 caches)

Control

Registers

Model Specific Registers

/dev/cpu/*/msr

Device File System

devfs

PAPI RAPL Component

Vampir Trace API

Mellanox Infiniband card

MT26428

DRAM

Shared L3 cache

*.otf, *.def, *.events

otfprofile

tool

Vampir Visualizer

tool

Infiniband Switch

MTS3600

remote

compute

node

Fig. 1: Experimental Setup incorporating Intel’s RAPL interface for fine-grained power
monitoring



2.1 Setup for Monitoring Energy and Power consumption

In order to monitor energy consumption by different components of a compute
node (cores, socket, memory), we used Intel’s Running Average Power Limiting
(RAPL) interface [1]. Fig. 1 illustrates our experimental setup which incorporates
this interface by monitoring the thermal and power management values of the
model-specific registers (MSRs) exposed by the Intel Sandy Bridge processor,
E5-2670. Readings provided by these interfaces have certain shortcomings due
to its model-based approach for predicting results [11]. However, verifications by
David et al. [8], Hackenberg et al. [11], and Dongarra et al. [9] provide empirical
evidence of a high correlation between the energy consumption readings provided
by the RAPL interface and direct power measurements. Statistical evidence [8]
indicate that the estimated power as reported by RAPL is within 1% of direct
power readings3 with a standard deviation of 1.1% [8]. On our system the time
window for the RAPL interface was 0.046 seconds. This proved sufficient for
studying the behavior of the energy and power consumption patterns by different
OpenSHMEM interfaces.

In order to read the RAPL counters in MSRs from the device file system
( /dev/cpu/*/msr on devfs), we used the RAPL component provided by PAPI
v5.1 [18]. In addition, we used Vampir Trace [14] for fine-grained instrumentation
of our synthetic microbenchmarks.

2.2 Reducing Noise in Readings due to the OS and Background
Processes

To reduce OS noise and avoid other processes from being scheduled on the mon-
itored socket, we used Linux CPU shielding [13]. This ensured that all unrelated
processes/threads (including most OS service threads) were scheduled on the
extra unmonitored socket on the compute node (refer to Table 1 for the machine
details). We verified this approach by observing a steady power consumption
of 3.786 Watts when none of our experimental processes were scheduled on the
monitored socket.

3 Effects of Synchronization Barriers

For applications in which the work distribution among multiple processes is non-
uniform, using synchronizing constructs4 result in a subset of processes waiting
for varying intervals of time without making any progress. Thus, applications
become bounded by the speed of the slowest process, thereby significantly im-
pacting both its performance and scalability [17]. This impact worsens with the
rise in the number of processes executing the application. In this section, we

3 ‘Direct power reading’ implies power measurement obtained by AC instrumentation
that use power meters with high accuracy and calibration.

4 In the rest of the text, we use the words ‘synchronizing construct’ and ‘barriers’
interchangeably.



Table 2: Microbenchmark and line charts for studying the impact of barrier on energy
and power cost
(i) varying wait periods within a barrier (ii) varying number of processes participating
in a barrier

Line charts Code snippets

PE waiting in a barrier

PE suspended

PE0 PE1

Incremental wait 
periods within 

shmem_barrier_all()

for ( s l e e p c n t =0;
s l e e p c n t>=MAX SLEEP
; s l e e p c n t +=5)

{
shmem bar r i e r a l l ( ) ;
i f (me == 0)

s l e e p ( s l e e p c n t ) ;
else

s l e e p (MAX SLEEP) ;
// START monitoring
shmem bar r i e r a l l ( ) ;
// STOP monitoring

}

PE waiting in a barrier

PE suspended

1 PE waiting at barrier

2 PEs waiting at barrier

K PEs waiting at barrier

PE0 PE1 PE2 PEk PEk+1

0 PEs waiting at barrier

for ( cnt=num pes ( ) −1;
cnt>=0; cnt−−)

{
shmem bar r i e r a l l ( ) ;
i f (me <= cnt )

s l e e p (CONST SLEEP) ;
// START monitoring
shmem bar r i e r a l l ( ) ;
// STOP monitoring

}
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(b) Impact of number of processes participating in a barrier

Fig. 2: Empirical results illustrating the impact of barriers on the energy and power
cost of the system

underscore the notion that such a lack of progress by processes lead to signifi-
cant waste of computational resources. This in turn implies a rise in the energy
consumption of applications. We study this impact on the energy cost in terms
of two factors - the cost incurred by processes waiting for different time periods
within a barrier, and the cost incurred by the entire system with a rise in the
number of processes participating in a barrier.

PGAS implementations like OpenSHMEM decouple communication and syn-
chronization operations [10]. A process may progress in its execution of code seg-
ments while being oblivious to communication operations initiated by other pro-
cesses. In other words, processes are permitted to have an inconsistent view of the
globally shared memory during a phase of an application. To ensure sequential
consistency and an ordering of remote data transfer operations, OpenSHMEM
applications may use synchronizing constructs like shmem barrier all(), shmem fence(),
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Fig. 3: Comparing the types of instructions executed by the CPU while waiting at a
barrier. The count includes (i) Total number of instructions (ii) Number of conditional
branch instructions (iii) Number of conditional branch instructions that are ‘taken’
(iv) The number of conditional branch instructions that are ‘not taken’

and shmem quiet(). We discuss the impact of using the global barrier - shmem barrier all()
below:

– Energy and power consumption with respect to time spent within a barrier :

The line chart and the code snippet of the microbenchmark used to verify
this is presented in the first row of Table 2.

Fig.2a illustrates that a linear growth in the time spent by a process within
a barrier leads to a linear rise in total energy consumed by the system (cores
and the DRAM)5. In addition, we also observe that the power consumption
or the rate of change in energy, is independent of the time spent by a process
waiting at a barriers. We discuss this observation in Section 3.1

– Energy and power consumption with respect to the number of processes wait-
ing at a barrier :

The line chart and the code snippet of the microbenchmark used to verify
this is presented in the second row of Table 2

The results depicted in Fig. 2b verify the claim that an increase in the
number of processes waiting at a barrier leads to a linear rise in the energy
consumed over the entire system which, in turn implies a linear rise in the
average power consumption.

5 For our experiments, the linear relationship between the energy (E) consumed and
the time (T) spent within a barrier was: E = (33.1446*T)-1.88467. As expected, the
model was characterized with a high Coefficient of determination (r2=0.999027)



3.1 A Note on Implementation of Barriers

Common implementations of a barrier incorporate the use of shared semaphores
which are subjected to repeated atomic polling by each process. The purpose
of this polling is to keep track of the state of the semaphore objects. These
are typically globally shared so that they remain accessible by other processes6.
The polling is always atomic in nature to ensure that only one process can test
or set it at any point in time. Furthermore, this polling is typically performed
directly over the copy of the semaphore object within the remotely accessible
memory, thus avoiding accesses to stale cached versions. This in turn increases
the pressure on the memory. Additionally, the polling is repeatedly iterated, to
ensure that there is no significant delay between the time each process signals
entering the barrier and the time this event is detected.

Such software-based implementations of barriers result in the CPU repeat-
edly executing the same set of instructions without making any progress in the
application. It is only when a semaphore signals the end of the barrier, that the
CPU executes a code fragment that prepares the process to exit the barrier re-
gion. In accordance with this design, Fig. 3 depicts the change in the energy and
power consumption pattern with respect to the types of instructions executed
by the CPU. The waste in CPU cycles can be observed by the linear rise in
the difference between the number of conditional-branch instructions that are
‘taken’ and ‘not taken’.

Also, the high correlation between the total number of instructions executed
and the total number of conditional-branch instructions hint at the execution of
the same set of instructions, irrespective of the time spent in the barrier. This
homogeneity in the instruction types result in a constant power consumption by
the system (Fig. 2a)

4 Effects of Remote Data Transfers

This section discusses the impact of the use of explicit data transfer routines
on the energy cost of OpenSHMEM applications. While using these routines,
a programmer may decide to transfer the program data in multiple fragments
based on the design of an application. While this practice makes it easier to align
the semantics of an algorithm to an implementing program, our studies indicate
that such practices come at a significant cost.

Thus, we identify two application characteristics to analyze the communica-
tion patterns in OpenSHMEM programs:

– Total size of the data to be transferred
This factor is governed by the problem size of the application and granularity
of parallelism chosen7.

6 If RDMA is supported by the interconnect, the overhead of the management of
semaphores reduces when they are remotely accessible

7 The granularity of parallelism is typically determined by the number of processes
participating in the data/task distribution.



flow/congestion control
routing/deadlock handling

load balancing
quality-of-service

router/switch organization
network topology

reliability
latency

OpenSHMEM implementation
middleware design

communication protocols
interconnect drivers

internal caches (L1,L2)
shared caches (L3)
memory bandwidth

Hyperthreading

Intra-node  
factors

Inter-node 
factors

Software
stack

Hardware 
stack

1024 
bytes 

shmem_putmem(...,1024,...)

8 X shmem_putmem(...,128,...)

64 X shmem_putmem(...,16,...)

Number of fragments
(governed by 

algorithm design)

Total data transfer size
(governed by problem size)

Fig. 4: Top: Parameters that define communication patterns from an OpenSHMEM
programmer’s point of view. Bottom: Underlying factors within the software and hard-
ware stack that impact the power and energy cost of interfaces for remote data transfer

– Number of explicit calls (or fragments) used to transfer the data
This factor is dependent on the nature of the design of the application by
the programmer.

However, it must be noted that the actual progress of the data movement
depends on a number of factors related to the design and the capabilities of the
underlying software and hardware stack. Fig. 4 categorizes these factors depend-
ing on whether they impact the energy and power profiles of internal system-
components like the CPU and DRAM i.e. the intra-node factors, or external
components like the interconnect solutions i.e. inter-node factors.

The study of the effects of inter-node factors on the energy profile of remote
data transfers is outside the scope of this paper. Nevertheless, in order to account
for their impact, we abstract their effects in terms of the net achievable band-
width. Fig. 5 illustrates this constraint with respect to the two communication-
based parameters discussed above. We observe that for any given data transfer
size, maximum bandwidth is achievable with minimum amount of fragmentation.

The impact of the intra-node factors on the energy and power cost incurred
in Sections 4.1 and 4.2, respectively.
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Fig. 5: The impact of the interconnect solution can be summarized by the achievable
bandwidth with respect to:
(i) size of the total data to be transferred
(ii) number of fragments into which the transfer is divided into.

4.1 Energy Consumption Observations

Fig. 6 illustrates the energy consumption by the CPU and the DRAM with
respect to the different message sizes of data transferred (in bytes along X-axis)
and the number of fragments used to transfer the total data (along Y-axis). The
noteworthy observations are:

– Energy consumed holds a correlation to the number of instructions executed.
Since an increase in the number of data transfers initiated implies a rise in
the number of instructions executed, the energy consumption increases with
rise in fragmentation.

– For large bulk transfers with a fixed message size, the energy consumed
remains independent of the initial rise in fragmentation.

– Using a constant number of fragments, the energy consumed in servicing the
transfer of small to medium sized messages ( 2 to 65536 bytes) is independent
of the total size of the data transferred. This behavior can also be observed
in terms of the spectrum of the achievable bandwidth shown in Fig.5. This
behavior can be explained by the fact that for such small-sized messages,
the cost in managing the data buffers for remote transfers overshadows the
actual movement of the data. This cost is independent of the message size
and hence leads to a steady bandwidth and energy consumption.

– For large bulk transfers ( >65536 bytes), the energy consumed increases with
the size of the data to be transferred. This can be attributed to cost incurred
in handling data buffers. For large messages, this becomes dependent on the
actual size of data that is being transferred.



Table 3: Microbenchmark for evaluating energy and power consumption by varying the
total size of data payload and the number of fragments

Line chart Code snippet

shmem_barrier_all()

shmem_putmem()

PE waiting in a barrier

PE suspended

shmem_barrier_all()

PE 0 PE 1 me = my pe ( ) ;
for ( j=1 ; j<=MAX WRK SIZE ; j ∗=2)
{

for ( f r a g c n t=MIN MSG NUM;
f rag cn t<=j ; f r a g c n t ∗=2)

{
b y t e s p e r f r a g = j / f r a g c n t ;
shmem bar r i e r a l l ( ) ;
// START monitoring
i f (me == 0)

for ( i t =0; i t<f r a g c n t ;
i t ++)

shmem putmem( . . . . . ,
b y t e s p e r f r a g , 1) ;

shmem bar r i e r a l l ( ) ;
// STOP monitoring

}
}

4.2 Power Consumption Observations

Fig.s 7 depicts the power consumption by the CPU cores and the DRAM for
different message sizes and number of fragments.

– For small data transfer sizes, the power consumed by the CPU (16 Watts)
and the DRAM (7 Watts) is low.

– The power consumed by the CPU during transfer of large bulk data payloads
( 16.2 Watts) is marginally more (1.25%) than that consumed during small
data transfers.

– The power consumed by the DRAM during transfer of large bulk data pay-
loads ( 9 Watts) is significantly more (22%) than that consumed during small
data transfers.

– With very low fragmentation, the CPU consumes more power than with
fragmented data payload.

– As the message size is increased (along x-axis), the transition of the change
in the power consumption behavior by the CPU appears to hold a correlation
to the sizes of the intermediate levels of the cache hierarchy. The transition
levels correspond to the sizes of the L1 and L2 caches - 32KB and 256KB
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Fig. 6: Relationship between energy consumption by cores(left) and the total number of
instructions executed(right). Top: Results for cases where: Fragments ∈ [1, 2097152].
Bottom: Results for cases where: Fragments ∈ [1, 1024]

respectively. Since the caches were flushed after every set of readings, one
can speculate that every cache miss in L1 and L2 adds on to the memory
pressure on the shared L3 cache thereby resulting in a proportional rise in
cache misses. This effect can be observed in Fig. 7(III), which illustrates the
number of L3 cache misses.

– From Fig. 7, the average power consumption by the system (CPU+DRAM)
while servicing large bulk message sizes (28 Watts) is 21.73% higher than
that consumed by small message sizes (23 Watts).

5 Related Work

There has been a great deal of research directed towards measuring and manag-
ing the energy and power consumption of applications. Proposals like Thrifty [2]
have been put forth to direct large-scale research towards redesigning the com-
plete computing stack. The goal of such efforts is directed towards building
power-aware Exascale platforms.

Some of the model-based techniques provided by chip manufacturers to dy-
namically monitor and manage the power or energy consumption include: Intel’s
RAPL [1], AMD’s APM module [3], NVIDIA’s NVML [4].
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Fig. 7: (I,II,IV)Power consumed by CPU, DRAM, total system (III) Total L3 cache
misses. The various distinct levels of power are represented as:
(A)Small payload sized(up to 2KB) transfers lead to less power consumption by the
cores and DRAM;
(B)Medium to large message sizes(4K and beyond) imply accesses of large memory
regions and this impacts power consumption;
(C)Large payload sizes with minimum fragmentation leads to higher power consump-
tion by the cores. The underlying NIC is generally responsible for chunking such large
transfers, the effect on which is not accounted for by the cores.

Hoefler [12] mentions discussions by the IEEE standard on energy efficient
Ethernet specifications including - dynamic link-speed reduction, receiver modifi-
cation, network routing, and deep sleep states. However, initial research indicates
latencies and network jitter with these techniques.

Past efforts towards understanding and managing the power consumption
trends of applications have been significant. One of the static based approaches
for managing power consumption by processes is for the compiler to evaluate a
program and determine sections within the code where the energy consumption
profile changes. This knowledge in the form of power management hints can then
be conveyed to the runtime to adjust the voltage/frequency scaling of applica-
tions [5]. Korthikanti and Agha [15] study the power consumption behavior of
shared memory architectures while handling applications with different problem
sizes. Li et al. [16] use DCT and DVFS techniques to study the opportunities of
reducing power consumption of hybrid MPI-OpenMP applications. The focus of
our work has been to perform a fine-grained study of OpenSHMEM communi-
cation interfaces which are responsible for remote memory accesses.



6 Conclusion

In this paper we presented our study of the energy and power consumption
behavior of a system while participating in synchronizing global barriers and
remote data transfers.

We observed that the energy and power cost is dependent on the time spent
within barriers and the number of processes participating in the barriers.

Additionally, our study indicates that the energy and power cost incurred
by a system while servicing remote data transfers are dependent on a number
of factors characterizing the underlying the hardware and software stack. These
include the sizes of the memory hierarchy, design of the communication protocols,
and the capabilities of the interconnect solutions.

The impact of these factors depend on the size of the total data to be trans-
ferred within a communication phase of an application. In addition, the number
of data transfers initiated to transfer this load also impact the energy and power
consumption behavior of OpenSHMEM-like PGAS applications.

The results put forth in this paper motivate the need for taking energy and
power costs into account while designing efficient PGAS libraries for large-scale
systems.
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