
A Comprehensive Performance Evaluation of
OpenSHMEM Libraries on InfiniBand Clusters ?

Jithin Jose, Jie Zhang, Akshay Venkatesh, Sreeram Potluri, and
Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University,
{jose, zhanjie, akshay, potluri, panda}@cse.ohio-state.edu

Abstract. OpenSHMEM is an open standard that brings together sev-
eral long-standing vendor-specific SHMEM implementations and allows
applications to use SHMEM in a platform-independent fashion. Several
implementations of OpenSHMEM have become available on clusters in-
terconnected by InfiniBand networks, which has gradually become the
de facto high performance network interconnect standard. In this pa-
per, we present a detailed comparison and analysis of the performance of
different OpenSHMEM implementations, using micro-benchmarks and
application kernels. This study, done on TACC Stampede system using
up to 4,096 cores, provides a useful guide for application developers to
understand and contrast various implementations and to select the one
that works best for their applications.

Keywords: OpenSHMEM, Clusters, InfiniBand, Performance Evalua-
tion

1 Introduction and Motivation

Data-driven applications often pose challenges associated with load balancing
and often exhibit irregular communication patterns. These issues are harder to
address with a traditional message-passing programming paradigm. The Par-
titioned Global Address Space (PGAS) programming models present an al-
ternative approach compared to message passing and are believed to improve
programmability of such applications. PGAS languages like Unified Parallel C
(UPC) [14] and Co-array Fortran (CAF) [1] have been undergoing standardiza-
tion for over a decade now. More recently, there has been the OpenSHMEM effort
to standardize API for the different vendor specific implementations of SHMEM,
a library-based PGAS model. The OpenSHMEM standard is gaining attention
as it allows existing codes that were written using vendor-specific SHMEM API
to be made platform-independent with minimal effort. It is also being seen as
an alternative to PGAS languages for designing new applications.

? This research is supported in part by National Science Foundation grants #OCI-
0926691, #OCI-1148371 and #CCF-1213084.

2

Multi-core processors and high-performance interconnects have been driv-
ing the growth of modern high-end supercomputing systems. Earlier work has
shown different alternatives of designing OpenSHMEM communication and syn-
chronization operations on multi-core nodes [2, 10]. InfiniBand (IB) has emerged
as the most popular interconnect on these systems. Around 41% of the most
recent Top 500 list of supercomputers use IB. Several designs have also been
presented for implementing OpenSHMEM operations on InfiniBand clusters [4].
Several full-fledged implementations of OpenSHMEM are available for modern
InfiniBand clusters. The performance of each of these implementations can differ
based on the design choices they make. It is important for application developers
to understand the performance of the various implementations to choose the one
that is right for their application and system. Lack of a systematic performance
comparison and analysis of the different implementations makes it harder for
application developers to make this choice.

In this paper, we address this by providing a detailed comparison and analyze
the performance of different publicly available OpenSHMEM implementations,
using micro-benchmarks and application kernels. We analyze the scalability of
the implementations in terms of performance and memory footprint. The study
is conducted on TACC Stampede system using up to 4,096 cores.

To summarize, the following contributions are made in this paper:

1. We present a detailed comparison of the performance of different OpenSH-
MEM implementations using pt-to-pt and collective micro-benchmarks.

2. We provide a detailed analysis of the performance trends observed in different
implementations.

3. We analyze the performance of application kernels showing how users can
draw a correlation between the micro-benchmark results and application
performance.

The rest of the paper is organized as follows: Section 2 provides an overview
of OpenSHMEM communication routines and introduce different OpenSHMEM
implementations over InfiniBand. In Section 3, we present our evaluation method-
ology and we present our evaluation results in Section 4. We discuss our perfor-
mance results in Section 5, and finally conclude in Section 6.

2 Background

2.1 PGAS Models and OpenSHMEM:

In Partitioned Global Address Space (PGAS) programming models, each Pro-
cessing Element (PE) has access to its own private local memory and a global
shared memory space. The locality of the global shared memory is well de-
fined. Such a model allows for better programmability through a simple shared
memory abstraction while ensuring performance by exposing data and thread
locality. SHMEM (SHared MEMory) [12] is a library-based approach to realize
the PGAS model and offers one-sided point-to-point communication operations,

3

along with collective and synchronization primitives. SHMEM also offers primi-
tives for atomic operations, managing memory, and locks. There are several im-
plementations of the SHMEM model that are customized for different platforms.
However, these implementations are not portable due to minor variations in the
API and semantics. OpenSHMEM [8] aims to create a new, open specification to
standardize the SHMEM model to achieve performance, programmability, and
portability.

2.2 OpenSHMEM Communication Operations:

The OpenSHMEM Specification v1.0 [8] defines several types of communication
operations — data transfer, atomics, and collective communication operations.
We provide a brief overview of these operations in this section.

Data Transfer Operations: The data transfer operations defined in OpenSH-
MEM are shmem put and shmem get, and their variants. The source/destination
address of data transfer operations can either be in symmetric heap or symmetric
static memory, as defined in the OpenSHMEM specification. shmem put writes
the local data to the corresponding data objects at target process. shmem get

fetches the data from a remote processes and stores it in the local data object.

Atomic Operations: These routines allow operations on a symmetric object
guaranteeing that another process will not update the target between the time
of the fetch and the update. In OpenSHMEM specification, six atomics rou-
tines are defined. shmem swap performs an atomic swap operation. shmem cswap

conditionally updates a target data object on an arbitrary processing element
(PE) and returns the prior contents of the data object in one atomic operation.
shmem fadd and shmem finc perform atomic fetch-and-add and atomic fetch-
and-increment operations, respectively. Similarly, shmem add and shmem inc op-
erations do atomic add and atomic increment operations.

Collective Operations: The collective operations defined in OpenSHMEM
specification consist of shmem broadcast, shmem collect, shmem reduce, and
shmem barrier. The broadcast operation copies a block of data from one PE to
one or more target PEs. Collect operation concatenates elements from the source
array to a target array over the specified PEs. Reduction operation performs an
associative binary operation over the specified PEs. Barrier operation provides
collective synchronization in which no PE may leave the barrier prior to all PEs
entering the barrier.

2.3 Overview of OpenSHMEM Libraries for InfiniBand Clusters:

There are several implementations of OpenSHMEM libraries that support one-
sided OpenSHMEM semantics for clusters interconnected by InfiniBand (IB)

4

networks. The OpenSHMEM group from University of Houston, led by Barbara
Chapman, introduced the reference OpenSHMEM implementation [8] that first
conformed to the then standardized, one-sided semantics. The reference imple-
mentation is based on data transfers over InfiniBand networks that leveraged on
its RDMA capabilities for one-sided operations. This reference implementation
uses GASNet [3] as the underlying communication runtime. In this paper, we
denote this reference implementation as ‘UH-SHMEM’.

ScalableSHMEM [5] is another OpenSHMEM implementation that supports
the standard’s point-to-point and collective routines over InfiniBand networks
that utilize custom advanced features [11]. OpenMPI [7], likewise, also provides
an implementation of OpenSHMEM semantics over IB and leverages on many of
Mellanox’s IB features. These stacks are represented as ‘Scalable-SHMEM’ and
‘OMPI-SHMEM’, respectively in this paper.

MVAPICH2-X [6] provides a unified high-performance runtime that sup-
ports both MPI and PGAS programming models on InfiniBand clusters. The
unified runtime also delivers superior performance compared to using separate
MPI and PGAS libraries by optimizing the use of network and memory resources.
MVAPICH2-X supports two PGAS models: Unified Parallel C (UPC) and Open-
SHMEM. The MVAPICH2-X OpenSHMEM is denoted as ‘MV2X-SHMEM’ in
this paper.

We consider all four of the above-mentioned implementations (UH-SHMEM,
Scalable-SHMEM, OMPI-SHMEM, and MV2X-SHMEM) in our performance
evaluation.

3 Evaluation Methodology

Memory
Footprint

Application
Performance

Pt-to-pt Atomics
Performance

Pt-to-pt Data Movement
Performance

Collectives
Performance

Fig. 1. Evaluation Methodology

We follow a five-pronged approach
to evaluate the different OpenSH-
MEM implementations available for
InfiniBand clusters, as shown in Fig-
ure 1. We start with a comparison of
the performance of different OpenSH-
MEM API including put/get opera-
tions, atomics and collectives. We use
micro-benchmarks to evaluate each of
these operations separately. We then
compare the memory scalability of the
implementations by measuring their
memory footprint as they scale to an
increasing number of cores. We finally
use several application kernels to com-
pare the performance of different implementations. We draw a correlation be-
tween the performance of OpenSHMEM implementations using application ker-
nels to that we see in micro-benchmarks. We summarize the performance results

5

along these five dimensions in Section 5. This methodology helps application
developers to select an implementation that is best for their use case.

4 Experimental Evaluation

In this section, we describe our experimental test-bed and discuss our evalua-
tions. We study the performance characteristics of point-to-point and collective
operations, application-level performance, and scalability characteristics for the
different OpenSHMEM libraries. In the experiment evaluations, we use the fol-
lowing acronyms to denote the different OpenSHMEM libraries — UH-SHMEM
(University of Houston - OpenSHMEM), MV2X-SHMEM (MVAPICH2X-Open-
SHMEM), OMPI-SHMEM (OpenMPI OpenSHMEM), and Scalable-SHEM (Mel-
lanox ScalableSHMEM).

4.1 Experiment Setup

We use TACC Stampede [13] for our performance studies. This cluster is equipped
with compute nodes composed of Intel Sandybridge series of processors using
Xeon dual eight-core sockets, operating at 2.70 GHz with 32 GB RAM. Each
node is equipped with MT4099 FDR ConnectX HCAs (54 Gbps data rate) with
PCI-Ex Gen3 interfaces. The operating system used is CentOS release 6.3, with
kernel version 2.6.32-279.el6 and OpenFabrics version 1.5.4.1.

For UH-SHMEM, we use version 1.d in combination with GASNet version
1.20.2. We configure GASNet with --enable-segment-fast option. The MV2X-
SHMEM is based on MVAPICH2-X v2.0a. The OpenMPI OpenSHMEM is from
the public repository https://bitbucket.org/jladd math/mlnx-oshmem.git.
We use “--mca btl openib,self --mca btl openib if include mlx4 0” as
runtime parameters for OMPI-SHMEM. We use Scalable-SHMEM version 2.2
in our experiments. For all microbenchmark evaluations, we report results that
are averaged across 1,000 iterations and three different runs to eliminate exper-
imental errors.

4.2 Data Movement Operation Performance

In this section, we evaluate the performance of OpenSHMEM point-to-point data
movement (shmem put and shmem get) operations. We use OSU OpenSHMEM
microbenchmarks [9] for these evaluations.

The osu oshm put benchmark measures latency of a shmem putmem operation
for different data sizes. In this benchmark, processing element (PE) ‘0’ issues
shmem putmem to write data at PE 1 and then calls shmem quiet. PE 1 waits on
a shmem barrier. The put operation is repeated for a fixed number of iterations,
depending on the data size. The average latency per iteration is reported. A few
warm-up iterations are run without timing to ignore any start-up overheads.
Both PEs call shmem barrier all after the test for each message size. Similarly,
osu oshm get benchmark measures the shmem get operation. In this benchmark,

6

PE 0 does a shmem getmem operation to read data from PE 1 in each iteration.
The average latency per iteration is reported.

The latency results of shmem put and shmem get are presented in Figure 2
and 3, respectively. For clarity, the results are presented in two graphs — for
small messages and large messages. There exists slight difference in performance
for different OpenSHMEM libraries. For a 4 byte shmem put operation, the laten-
cies reported are 1.92, 1.47, 1.41, and 1.83 µs for UH-SHMEM, MV2X-SHMEM,
Scalable-SHMEM and OMPI-SHMEM, respectively. For a 64 KB shmem put op-
eration, the latencies reported are 14.83, 13.24, 17.85, and 18.54 µs for UH-
SHMEM, MV2X-SHMEM, Scalable-SHMEM and OMPI-SHMEM, respectively.

The performance results for shmem get operation is similar. For a 4 byte
shmem get operation, the latencies reported are 2.07, 1.79, 2.31, and 1.79 µs for
UH-SHMEM, MV2X-SHMEM, Scalable-SHMEM and OMPI-SHMEM, respec-
tively. For a 64 KB shmem put operation, the latencies reported are 15.2, 12.88,
16.84, and 13.14 µs for UH-SHMEM, MV2X-SHMEM, Scalable-SHMEM and
OMPI-SHMEM, respectively. For all the different message sizes, MV2X-SHMEM
consistently performs the best for both shmem put and shmem get operations.

 0

 1

 2

 3

 4

 5

 1 4 16 64 256 1K

L
at

en
cy

 (
u
s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(a) Small Messages

 0

 50

 100

 150

 200

4K 16K 128K 1M

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(b) Large Messages

Fig. 2. Put Performance Results

4.3 Atomic Operation Performance

The OpenSHMEM atomic operation performance is presented in Figure 4. We
use the OSU benchmark for this evaluation also. The osu oshm atomics bench-
mark measures the performance of atomic fetch-and-operate and atomic operate
routines for 64-bit data types. In this benchmark, the first PE in each pair issues
back-to-back atomic operations of a type to its peer PE. The average latency
per atomic operation and the aggregate operation rate are reported. This is
repeated for each of the atomic operations — Fetch and Add (shmem fadd),
Fetch and Increment (shmem finc), Add (shmem add), Increment (shmem inc),

7

 0

 1

 2

 3

 4

 5

 1 4 16 64 256 1K

L
at

en
cy

 (
u
s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(a) Small Messages

 0

 50

 100

 150

 200

 250

 300

4K 16K 128K 1M

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM
MV2X-SHMEM

Scalable-SHMEM
OMPI-SHMEM

(b) Large Messages

Fig. 3. Get Performance Results

Compare and Swap (shmem cswap), and Swap (shmem swap). The performance
results indicate that MV2X-SHMEM provides much lower latency for all the dif-
ferent atomic routines. In MV2X-SHMEM, the atomic routines are implemented
directly over Remote Direct Memory Access (RDMA). The latencies reported
for a shmem fadd operation are 4.52, 3.04, 17.1,1 and 25.74 µs for UH-SHMEM,
MV2X-SHMEM, Scalable-SHMEM, and OMPI-SHMEM, respectively.

 0

 5

 10

 15

 20

 25

 30

 35

 40

fadd finc add inc cswap swap

T
im

e(
us

)

OMPI−SHMEM
Scalable−SHMEM
UH−SHMEM
MV2X−SHMEM

Fig. 4. Atomic Operation Performance

4.4 Collectives Performance

In this section, we compare the performance of various collective operations in
OpenSHMEM specification - shmem broadcast, shmem reduce, shmem collect,
and shmem barrier - across various implementations and design choices, with a

8

varying number of processes. We use OSU OpenSHMEM collective benchmarks
for these evaluations. The benchmarks measure the average latency of the col-
lective operation across N processes, for various message lengths, over multiple
iterations. In these experiments, we vary the number of processes from 128 to
2,048. The results are presented in Figures 5, 6, 7, and 8. The Y-axis represents
latency reported in µs and X-axis represents message size.

We compare the performance of each collective operation, among the Open-
SHMEM libraries. In UH-SHMEM library, two versions of collective operations
are available — linear and tree algorithm based implementations. We include
these also in our evaluations, which are denoted as ‘UH-SHMEM (Linear)’ and
‘UH-SHMEM (Tree)’, respectively.

In Figure 5, we compare the performance of shmem reduce operation. As we
can see from the results, MV2X-SHMEM offers lower latency for all the different
system scales. The performance of Scalable-SHMEM and OMPI-SHMEM are
similar, but the latencies are little higher. However, UH-SHMEM linear and tree
versions shows very high latency. Thus, we show UH-SHMEM results for smaller
system sizes (128 and 256 processes) and exclude these results for higher system
sizes. For 2,048 processes, the latencies measured for a 4 byte shmem reduce

operation for MV2-X SHMEM, OMPI-SHMEM, and Scalable-SHMEM are 25,
384, and 376 µs, respectively.

shmem broadcast latency results are presented in Figure 6. These results also
exhibit same pattern as the shmem reduce results. MV2X-SHMEM offers lower
latencies for all the message sizes for varying system sizes. MV2X-SHMEM uti-
lizes a combination of hardware based multicast scheme and tuned algorithms
realized in software for implementing the broadcast operation. At 2,048 sys-
tem scale, the latencies measured for a 4 byte shmem broadcast operation for
MV2-X SHMEM, OMPI-SHMEM, and Scalable-SHMEM are 7, 129, and 145
µs, respectively.

The performance results for shmem collect also exhibit similar pattern.
There is no tree algorithm based implementation in UH-SHMEM for shmem collect.
Results for UH-SHMEM linear algorithm based design results and other Open-
SHMEM stacks are presented in Figure 7. At 2,048 system size, the latencies
measured for a 4 byte shmem collect operation for MV2-X SHMEM, OMPI-
SHMEM, and Scalable-SHMEM are 74, 11704, and 13649 µs, respectively.

shmem barrier and shmem barrier all performance results are presented
in Figure 8. The only difference between these barrier operations is that in
shmem barrier, the participating processes can be dynamically specified, but
in shmem barrier all, all the PEs participate in barrier operation (just like
MPI Barrier(MPI COMM WORLD)). The time for shmem barrier operation with
2,048 processes are 83, 234, and 316 µs, for MV2X-SHMEM, Scalable-SHMEM,
and OMPI-SHMEM, respectively. There is no tree-based algorithm implementa-
tion for shmem barrier all. At 2,048 processes, the latency reported for shmem barrier all

operation are 83, 250, 361µs, for MV2X-SHMEM, Scalable-SHMEM, and OMPI-
SHMEM, respectively.

9

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 10000

 100000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 10000

 100000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 5. Reduce Performance Results

10

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 6. Broadcast Performance Results

11

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(a) 128 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

UH-SHMEM(Linear)
UH-SHMEM(Tree)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(b) 256 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(c) 1,024 Processes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 16 64 256 1K 4K 16K 128K

L
at

en
cy

 (
u

s)

Message Size (bytes)

MV2X-SHMEM
Scalable-SHMEM

OMPI-SHMEM

(d) 2,048 Processes

Fig. 7. Collect Performance Results

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

128 256 512 1,024 2,048

T
im

e(
us

)

Number of Processes

UH−SHMEM(Linear)
UH−SHMEM(Tree)
OMPI−SHMEM
Sclable−SHMEM
MV2X−SHMEM

(a) shmem barrier Performance

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

128 256 512 1,024 2,048

T
im

e(
us

)

Number of Processes

UH−SHMEM(Linear)
OMPI−SHMEM
Sclable−SHMEM
MV2X−SHMEM

(b) shmem barrier all Performance

Fig. 8. Barrier Performance Results

12

4.5 Memory Scalability

This section presents the memory footprint analysis results. Memory footprint
refers to memory consumption of a particular process. It is imperative to keep a
lower memory footprint for scalability, especially considering the modern multi/
many-core architectures. We used a simple OpenSHMEM ‘Hello World’ program
with a shmem barrier all call, for this evaluation. We executed this program
over different system scales, ranging from 128 to 4,096. The memory footprint
is measured by reading the VmHWM entry in/proc/self/status. As it can ob-
served from the figure, the memory requirement of MV2X-SHMEM is lower com-
pared to other OpenSHMEM libraries. At 4,096 processes, the memory footprints
are 1,658, 372, 439, and 494 MB, for UH-SHMEM, MV2X-SHMEM, Scalable-
SHMEM, and OMPI-SHMEM, respectively.

 0

 500

 1,000

 1,500

 2,000

 2,500

128 256 512 1,024 2,048 4,096

M
em

or
y

F
oo

tp
rin

t(
M

B
)

Number of Processes

UH−SHMEM
OMPI−SHMEM
Scalable−SHMEM
MV2X−SHMEM

Fig. 9. Memory Scalability Evaluation

4.6 Application Performance

In this section, we present the application kernel evaluation results. We consider
two application kernels — Heat Image and DAXPY. These are part of OpenSH-
MEM test suite [8]. We first explain the communication characteristics of these
kernels and then we present the performance evaluation results.

Heat Image Kernel: This application kernel solves the heat conduction task
based on row-based distribution of the matrix. The application distributes the
matrix in rows among PEs and then exchanges the result of computation. The
major communication operation is the data transfer across the matrix rows/columns
(using shmem put) and the synchronization operations (using shmem barrier all.)
Finally, after doing all the transfers, the output is written to a file in image for-
mat. The matrix size is specified as input. In our experiments, we used an input
matrix of size 32,768 × 32,768 bytes.

13

The performance results of Heat Image kernel is presented in Figure 10(a). In
these experiments, we kept the input size constant (32 K × 32 K) and varied the
system scale from 256 processes to 4,096 processes. We plot the execution time
(in seconds) in the Y-axis and the system scale is plotted on X-axis. We present
the results for all the OpenSHMEM stacks. For UH-SHMEM, we evaluate using
both ‘Linear’ and ‘Tree’ based algorithms, and are denoted as ‘UH-SHMEM
(Linear)’ and ‘UH-SHMEM (Tree)’, respectively. As it can be observed from the
results, the execution time reduces for MV2X-SHMEM, OMPI-SHMEM, and
Scalable-SHMEM, as the system size increases. However, the execution time
remains constant for linear and tree based UH-SHMEM versions. This is mainly
because of the collective communication overheads. Also, there is no difference
in performance for UH-SHMEM(Linear) and UH-SHMEM(Tree) versions. This
is because there is no tree based algorithm implementation for UH-SHMEM and
it uses the linear algorithm (as seen in Section 4.4). For all the system sizes,
MV2X-SHMEM performs better compared to other OpenSHMEM libraries. At
4,096 processes, the Heat Image kernel execution time reported are 538, 537, 19,
257, and 361 seconds, for UH-SHMEM (Linear), UH-SHMEM (Tree), MV2X-
SHMEM, Scalable-SHMEM, and OMPI-SHMEM, respectively.

 1

 10

 100

 1,000

 10,000

 100,000

256 512 1,024 2,048 4,096

T
im

e(
s)

Number of Processes

OMPI_SHMEM
Scalable−SHMEM
UH−SHMEM(Linear)
UH−SHMEM(Tree)
MV2X−SHMEM

(a) Heat Image

 1

 10

 100

 1,000

 10,000

256 512 1,024 2,048 4,096

T
im

e(
s)

Number of Processes

OMPI−SHMEM
Scalable−SHMEM
UH−SHMEM(Linear)
UH−SHMEM(Tree)
MV2X−SHMEM

(b) DAXPY

Fig. 10. Application Performance Results

DAXPY Kernel: This kernel is a simple DAXPY like kernel with computation
and communication. It simulates a typical application that uses one dimensional
array for local computation and does a reduction collective operation of the re-
sult. Here the data transfer is done using shmem put operation, synchronization
using shmem barrier all, and reduction using shmem reduce operations. The
execution time reported by the benchmark involves the OpenSHMEM initial-
ization time also. The performance results are presented in Figure 10(b). The
execution time (in seconds) is plotted in the Y-axis and the system size is pre-
sented in the X-axis.

14

In the benchmark, the problem size increases with increase in the system
size. However, there is a significant difference in performance between different
OpenSHMEM libraries. OMPI-SHMEM and Scalable-SHMEM execution times
are much higher compared to UH-SHMEM and MV2X-SHMEM. At 4,096 pro-
cesses, the execution times reported are 151, 83, 29, 1594, 1776 seconds, for UH-
SHMEM (Linear), UH-SHMEM (Tree), MV2X-SHMEM, Scalable-SHMEM, and
OMPI-SHMEM, respectively. For both the application kernels, MV2X-SHMEM
performs better as compared to other OpenSHMEM libraries.

5 Discussion of Performance Results

Memory
Footprint

Application
Performance

Pt-to-pt Atomics
Performance

Pt-to-pt Data Movement
Performance

Collectives
Performance

MV2X-SHMEM
UH-SHMEM
Scalable-SHMEM
OMPI-SHMEM

(Closer to center is better)

Fig. 11. Evaluation Results

We summarize the comparison between the different libraries using the five-
pronged diagram presented earlier, depicted in Figure 11. We see that all the
libraries perform very similar to one another, when we consider the performance
of Put and Get operations. This is because of the direct simple implementation of
Put and Get operations over underlying RDMA operations. For OpenSHMEM
atomics, we see that MV2X-SHMEM and UH-SHMEM perform considerably
better than the other two implementations. MV2X-SHMEM outperforms UH-
SHMEM due to its IB atomics-based implementation. We see a distinct difference
in the performance of OpenSHMEM collectives between the different implemen-
tations owing to the different algorithms used. We see that MV2X-SHMEM
outperforms all other implementations for all the collectives. When memory
scalability is considered, we see that MV2X-SHMEM, Scalable-SHMEM, and
OMPI-SHMEM have much smaller memory footprints compared to the reference
implementation on up to 4,096 processes. For application level performance, we
see that MV2X-SHMEM outperforms other libraries, owing to the better atomics
and collective implementation.

15

6 Conclusion

In this paper we provided a comprehensive performance evaluation of differ-
ent OpenSHMEM implementations over InfiniBand. We compare University of
Houston OpenSHMEM, Mellanox Scalable-SHMEM, OpenMPI OpenSHMEM,
and MVAPICH2-X OpenSHMEM. We presented a detailed comparison of the
performance of different OpenSHMEM implementations using point-to-point
and collective micro-benchmarks. We also provided a detailed analysis of the
performance trends observed in different OpenSHMEM implementations. We
analyzed the performance of two application kernels - Heat Image and DAXPY.
The study indicates that MVAPICH2-X OpenSHMEM stack delivers best perfor-
mance and scalability. The study also demonstrates how application developers
can draw a correlation between the micro-benchmark results and application
performance using various OpenSHMEM stacks on InfiniBand clusters.

References

1. Co-Array Fortran. http://www.co-array.org
2. Brightwell, R., Pedretti, K.: An Intra-Node Implementation of OpenSHMEM Using

Virtual Address Space Mapping. In: The 5th Conference on Partitioned Global
Address Space (PGAS) (2011)

3. Dan Bonachea: GASNet Specification v1.1. Tech. Rep. UCB/CSD-02-1207, U. C.
Berkeley (2008)

4. Jose, J., Kandalla, K., Luo, M., Panda, D.: Supporting Hybrid MPI and OpenSH-
MEM over InfiniBand: Design and Performance Evaluation. In: 41st International
Conference on Parallel Processing (ICPP) (2012)

5. Mellanox Scalable SHMEM: http://www.mellanox.com/page/products dyn?produ-
ct family=133&mtag=scalableshmem

6. MVAPICH2-X: Unified MPI+PGAS Communication Runtime over OpenFab-
rics/Gen2 for Exascale Systems: http://mvapich.cse.ohio-state.edu/

7. OpenMPI: Open Source High Performance Computing: http://www.open-
mpi.org/

8. OpenSHMEM: http://openshmem.org/
9. OSU Micro-benchmarks: http://mvapich.cse.ohio-state.edu/

benchmarks/
10. Potluri, S., Kandalla, K., Bureddy, D., Li, M., Panda, D.K.: Efficient Intranode

Desgins for OpenSHMEM on Multicore Clusters. In: The 6th Conference on Par-
titioned Global Address Space (PGAS) (2012)

11. Shainer, G., Wilde, T., Lui, P., Liu, T., Kagan, M., Dubman, M., Shahar, Y., Gra-
ham, R., Shamis, P., Poole, S.: The Co-design Architecture for Exascale Systems,
a Novel Approach for Scalable Designs. Computer Science-Research and Develop-
ment pp. 1–7 (2013)

12. Silicon Graphics International.: SHMEM API for Parallel Programming.
http://www.shmem.org/

13. TACC Stampede Cluster: www.xsede.org/resources/overview
14. UPC Consortium: UPC Language Specifications, v1.2. Tech. Rep. LBNL-59208,

Lawrence Berkeley National Lab (2005)

