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Shallow water equations with a non-flat bottom topography
ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghbx

• h : water height; u : velocity;
b : bottom topography; g : gravitational constant.

• Other source terms, friction and variations of the channel
width, can be added.
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Shallow water equations (SWE)

• The SWE are a system of hyperbolic PDEs governing fluid
flow in the oceans (sometimes), coastal regions (usually),
estuaries (almost always), rivers and channels (almost always).

• The SWE can be used to predict tides, and coastline changes
from hurricanes, ocean currents. It also arise in atmospheric
flows.

• The SWE are derived from the Navier-Stokes equations,
which describe the motion of fluids.

• The general characteristic of shallow water flows is that the
vertical dimension is much smaller than the typical horizontal
scale. In this case we can average over the depth to get rid of
the vertical dimension.
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Numerical challenge

� Well-balanced property:

• Still water at rest steady state:

u = 0 and h + b = const.

• Traditional numerical schemes usually fail to capture the steady
state well and introduce spurious oscillations. The grid must
be extremely refined to reduce the size of these oscillations.

• Well-balanced methods are developed to reduce the
unnecessarily refined mesh. They are specially designed to
preserve exactly these steady-state solutions up to machine
error with relatively coarse meshes.

• Several high order well-balanced methods were proposed:
Xing and Shu 2005, 2006
Noelle, Pankratz, Puppo and Natvig 2006
Gallardo, Parés and Castro 2006, 2007
Caleffi, Valiani and Bernini 2006
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Numerical challenge

Figure: Numerical computation of Lake Rursee with 296 cells. Left:
bottom topography and still water level at time T = 0; Right: water level
at time T = 0.2 (76 time steps) by standard methods. Note: they are
copied from Dr. Noelle’s Abel Lecture slides with his permission.
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Numerical challenge

� Appearance of dry areas:

• Many applications involve rapidly moving interfaces between
wet and dry areas, such as dam breaks, flood waves and
run-up phenomena etc.

• Standard numerical methods may fail near dry/wet front and
may produce unacceptable negative water height.

• Most existing wetting and drying treatments for high order
methods focused on post-processing reconstruction of the
numerical solution at each time level. It is a challenge to
design stable and high order accurate numerical schemes which
also have mass conservation.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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The main objective

Develop positivity-preserving high order accurate well-balanced
methods for the shallow water equations, which has the key
advantage

• High order accurate

• Well-balanced

• Positivity-preserving without loss of mass conservation

• Good resolution for smooth and discontinuous solutions

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Notation

• We denote the mesh by Ij = [xj− 1
2
, xj+ 1

2
], for j = 1, . . . ,N.

• The center of the cell is xj = 1
2 (xj− 1

2
+ xj+ 1

2
).

• The mesh size is denoted by ∆xj = xj+ 1
2
− xj− 1

2
, with

∆x = max1≤j≤N ∆xj being the maximum mesh size.

• The piecewise-polynomial space V∆x is the space of
polynomials of the degree up to k in each cell Ij , i.e.

V∆x = {v : v ∈ Pk(Ij) for x ∈ Ij , j = 1, . . . ,N}.

Note that functions in V∆x are allowed to have discontinuities
across element interfaces.
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Discontinuous Galerkin (DG) methods

• Denote the shallow water equations by

Ut + f (U)x = s(h, b)

where U = (h, hu)T , f (U) is the flux and s(h, b) is the source
term.

• Seek an approximation, still denoted by U with an abuse of
notation, which belongs to V∆x . Similarly, we project b to
obtain an approximation, which is denoted by b.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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DG methods

∫
Ij

∂tUvdx −
∫

Ij

f (U)∂xvdx + f̂j+ 1
2
v(x−

j+ 1
2

)− f̂j− 1
2
v(x+

j− 1
2

) =

∫
Ij

s(h, b)vdx ,

where v(x) is a test function belonging to V∆x ,

f̂j+ 1
2

= F (U(x−
j+ 1

2

, t),U(x+
j+ 1

2

, t)),

and F (a1, a2) is a numerical flux. We could, for example, use the
simple Lax-Friedrichs flux (α = max(|u|+

√
gh))

F (a1, a2) =
1

2
(f (a1) + f (a2)− α(a2 − a1)).

Forward Euler or total variation diminishing (TVD) high order
Runge-Kutta time discretization can be used.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Well-balanced methods

• Preserve the steady state solution

u = 0 and h + b = const.

exactly, with only round-off error.

• At the steady state, the first equation (hu)x = 0 is satisfied
exactly for any high order scheme.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Well-balanced methods: Approach 1

• Notice the splitting of the source term:

−ghbx = −g(h + b)bx +
g

2
b2
x ,

and the fact that (when h + b = const):

D1

(
1

2
gh2

)
− D2

(
1

2
gb2

)
+ g(h + b)D3(b)

= D

(
(

1

2
g(h + b)(h − b)

)
+ g(h + b)D(b)

= D

(
1

2
g(h + b)2

)
= 0

if the operators (D :=)D1 = D2 = D3 are linear operators.

• Approximate the two derivatives in the source term by the
operator used towards the approximation of the flux term.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Well-balanced methods: Approach 2

∫
Ij

∂tU
nvdx −

∫
Ij

f (Un)∂xvdx + f̂ l
j+ 1

2
v(x−

j+ 1
2

)

−f̂ r
j− 1

2
v(x+

j− 1
2

) =

∫
Ij

s(hn, b)vdx ,

Reference: Y. Xing and C.-W. Shu, A new approach of high order well-balanced finite volume WENO schemes

and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Communications in

Computational Physics, 1 (2006), pp. 100-134.
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Well-balanced fluxes

After computing boundary values U±
j+ 1

2

, we set

h∗,±
j+ 1

2

= max
(

0, h±
j+ 1

2

+ b±
j+ 1

2

−max(b+
j+ 1

2

, b−
j+ 1

2

)
)

and redefine the left and right values of U as:

U∗,±
j+ 1

2

=

(
h∗,±

j+ 1
2

h∗,±
j+ 1

2

u±
j+ 1

2

)
.

Then the left and right fluxes f̂ l
j+ 1

2

and f̂ r
j− 1

2

are given by:

f̂ l
j+ 1

2
= F (U∗,−

j+ 1
2

,U∗,+
j+ 1

2

) +

(
0

g
2 (h−

j+ 1
2

)2 − g
2 (h∗,−

j+ 1
2

)2

)

f̂ r
j− 1

2
= F (U∗,−

j− 1
2

,U∗,+
j− 1

2

) +

(
0

g
2 (h+

j− 1
2

)2 − g
2 (h∗,+

j− 1
2

)2

)
.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Well-balanced properties

At the steady state h + b = const, hu = 0, we have

f̂ l
j+ 1

2
= f (Un(x−

j+ 1
2

, t)), f̂ r
j− 1

2
= f (Un(x+

j− 1
2

, t)).

Then the residue R becomes:

R = −
∫

Ij

f (Un)∂xvdx + f̂ l
j+ 1

2
v(x−

j+ 1
2

)− f̂ r
j− 1

2
v(x+

j− 1
2

)−
∫

Ij

s(hn, b)vdx

= −
∫

Ij

f (Un)∂xvdx + f (Un(x−
j+ 1

2

, t))v(x−
j+ 1

2

)

−f (Un(x+
j− 1

2

, t))v(x+
j− 1

2

)−
∫

Ij

s(hn, b)vdx

=

∫
Ij

∂x f (Un)vdx −
∫

Ij

s(hn, b)vdx

=

∫
Ij

(∂x f (Un)− s(hn, b))vdx = 0.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Weighted essentially non-oscillatory (WENO) methods

Ūj(t) approximates the cell averages 1
∆xj

∫
Ij

U(x , t) dx , and satisfies

d

dt
Ūj(t) +

1

∆xj

(
f̂j+ 1

2
− f̂j− 1

2

)
=

1

∆xj

∫
Ij

s(h, b)dx ,

where
f̂j+ 1

2
= F (U−

j+ 1
2

,U+
j+ 1

2

).

U−
j+ 1

2

and U+
j+ 1

2

, the high order pointwise approximations to

U(xj+ 1
2
, t) from left and right respectively, are computed through

the neighboring cell average values Ūj by a high order WENO
reconstruction procedure.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Well-balanced WENO methods

d

dt
Ūj(t) +

1

∆xj

(
f̂ l
j+ 1

2
− f̂ r

j− 1
2

)
=

1

∆xj

∫
Ij

s(hn, b)dx .

To compute
∫
Ij

s(h, b)dx , we use interpolation to obtain a high

order polynomial hh (or bh) on the cell Ij , based on the
reconstructed boundary values, and compute

∫
Ij

s(hh, bh)dx exactly

by a suitable Gauss quadrature.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Main result

Proposition: Consider the scheme satisfied by the cell averages of
the water height in the well-balanced DG/WENO method. If h−

j− 1
2

,

h+
j+ 1

2

and hn
j (x) are all non-negative, then h

n+1
j is also

non-negative under the CFL condition

λα ≤ ŵ1.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Cell averages

Consider the cell averages in the well-balanced DG/WENO
methods, with a simple Euler forward time discretization.

The cell averages of the height satisfy

h
n+1
j = h

n
j − λ

[
F̂

(
h∗,−
j+ 1

2

, u−
j+ 1

2

; h∗,+
j+ 1

2

, u+
j+ 1

2

)
− F̂

(
h∗,−
j− 1

2

, u−
j− 1

2

; h∗,+
j− 1

2

, u+
j− 1

2

)]
,

where

F̂

(
h∗,−
j+ 1

2

, u−
j+ 1

2

; h∗,+
j+ 1

2

, u+
j+ 1

2

)
=

1

2

(
h∗,−
j+ 1

2

u−
j+ 1

2

+ h∗,+
j+ 1

2

u+
j+ 1

2

− α(h∗,+
j+ 1

2

− h∗,−
j+ 1

2

)

)
.
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First order scheme with the well-balanced flux

Lemma 3.1: Under the CFL condition λα ≤ 1, with
α = max(|u|+

√
gh), consider the following scheme

hn+1
j = hn

j − λ
[
F̂
(
h∗,+j , un

j ; h∗,−j+1 , u
n
j+1

)
− F̂

(
h∗,+j−1, u

n
j−1; h∗,−j , un

j

)]
h∗,+j = max

(
0, hn

j + bj −max(bj , bj+1)
)

h∗,−j = max
(
0, hn

j + bj −max(bj−1, bj)
)
.

If hn
j , hn

j±1 are non-negative, then hn+1
j is also non-negative.

Proof:

hn+1
j =

[
1− 1

2
λ
(
α + un

j

) h∗,−j

hn
j

− 1

2
λ
(
α− un

j

) h∗,+j

hn
j

]
hn

j

+

[
1

2
λ
(
α + un

j−1

) h∗,+j−1

hn
j−1

]
hn

j−1 +

[
1

2
λ
(
α− un

j+1

) h∗,−j+1

hn
j+1

]
hn

j+1.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Gauss-Lobatto quadrature

N-points Legendre Gauss-Lobatto quadrature points on Ij :

Sj =
{

xj− 1
2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂N
j = xj+ 1

2

}
,

exact for the integral of polynomials of degree up to 2N − 3 ≥ k.
ŵt be the quadrature weights for the interval [−1/2, 1/2].

We have

h
n

j =
1

∆x

∫
Ij

hn
j (x)dx =

N∑
t=1

ŵth
n
j (x̂ t

j ) =
N−1∑
t=2

ŵth
n
j (x̂ t

j ) + ŵ1h
+
j− 1

2

+ ŵNh−
j+ 1

2

since the quadrature is exact for polynomials of degree k .

Yulong Xing, ORNL/UTK High order methods for the shallow water equations



Introduction Well-balanced methods Positivity-preserving 2D extension Numerical results Conclusion

Main result

Proposition 3.2: Consider the scheme satisfied by the cell
averages of the water height in the well-balanced DG/WENO

method. If h−
j− 1

2

, h+
j+ 1

2

and hn
j (x) are all non-negative, then h

n+1
j is

also non-negative under the CFL condition

λα ≤ ŵ1.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Main result

Proof:

h
n+1

j =
N−1∑
t=2

ŵth
n
j (x̂ t

j ) + ŵ1h
+
j− 1

2

+ ŵNh−
j+ 1

2

−λ
[
F̂
(
h∗,−

j+ 1
2

, u−
j+ 1

2

; h∗,+
j+ 1

2

, u+
j+ 1

2

)
− F̂

(
h∗,+

j− 1
2

, u+
j− 1

2

; h∗,−
j+ 1

2

, u−
j+ 1

2

)
+ F̂

(
h∗,+

j− 1
2

, u+
j− 1

2

; h∗,−
j+ 1

2

, u−
j+ 1

2

)
− F̂

(
h∗,−

j− 1
2

, u−
j− 1

2

; h∗,+
j− 1

2

, u+
j− 1

2

)]
=

N−1∑
t=2

ŵth
n
j (x̂ t

j ) + ŵNHN + ŵ1H1,

where

H1 = h+
j− 1

2

− λ

ŵ1

[
F̂
(
h∗,+

j− 1
2

, u+
j− 1

2

; h∗,−
j+ 1

2

, u−
j+ 1

2

)
− F̂

(
h∗,−

j− 1
2

, u−
j− 1

2

; h∗,+
j− 1

2

, u+
j− 1

2

)]
HN = h−

j+ 1
2

− λ

ŵN

[
F̂
(
h∗,−

j+ 1
2

, u−
j+ 1

2

; h∗,+
j+ 1

2

, u+
j+ 1

2

)
− F̂

(
h∗,+

j− 1
2

, u+
j− 1

2

; h∗,−
j+ 1

2

, u−
j+ 1

2

)]
.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Positivity-preserving limiter

To enforce the conditions of this proposition, we introduce the
following limiter on the DG polynomial Un

j (x) = (hn
j (x), (hu)n

j (x))T ,

Ũn
j (x) = θ

(
Un

j (x)− U
n
j

)
+ U

n
j , θ = min

{
1,

h
n
j

h
n
j −mj

}
,

with
mj = min

x∈Ij
hn
j (x).

and use this Ũn
j (x) to compute the numerical flux.

Easy to observe that h̃n
j (x) ≥ 0.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Properties of this limiter

• Keeps water height non-negative;

• Preserves the local conservation of h and hu;

• Does not destroy the high order accuracy;

• Only active in the dry or nearly dry region.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Implementation of this limiter

We need to evaluate the minimum of a polynomial in

mj = min
x∈Ij

hn
j (x), (1)

which can be difficult in the 2D case.

In the implementation, we replace it by:

mj = min(h+
j− 1

2

, h−
j+ 1

2

, ξj), (2)

where

ξj =
1∑N−1

r=2 ŵr

N−1∑
t=2

ŵrpj(x̂
r
j ) =

h
n
j − ŵ1h

+
j− 1

2

− ŵNh−
j+ 1

2

1− ŵ1 − ŵN
.

It can be proven that this simplified limiter (2) inherits the
desirable properties of the original limiter (1).

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Comments

• Works for TVD high order Runge-Kutta and multi-step time
discretizations.

• Positivity preserving CFL condition is λα ≤ 1/6 for k = 2, 3.
Recall that the CFL condition for linear stability for the DG
methods is λα ≤ 1/5 for k = 2.

• Any other positivity-preserving exact or approximate Rieman
solver, including Godunov, Boltzmann type and
Harten-Lax-Van Leer, can also be used.

• Works for non-well-balanced DG/WENO methods.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Table: The CFL condition for 2 ≤ k ≤ 5 and the Gauss-Lobatto
quadrature points on [− 1

2 ,
1
2 ].

k CFL quadrature points on [−1
2 ,

1
2 ]

2 λα ≤ 1
6 {−1

2 , 0,
1
2}

3 λα ≤ 1
6 {−1

2 , 0,
1
2}

4 λα ≤ 1
12 {−1

2 ,−
1√
20
, 1√

20
, 1

2}
5 λα ≤ 1

12 {−1
2 ,−

1√
20
, 1√

20
, 1

2}

Yulong Xing, ORNL/UTK High order methods for the shallow water equations



Introduction Well-balanced methods Positivity-preserving 2D extension Numerical results Conclusion

Algorithm flowchart

• Evaluate mj .

• Use the positivity-preserving limiter to compute Ũn
j (x).

• Compute the well-balanced fluxes from Ũn
j (x).

• Use Ũn
j (x) instead of Un

j (x) in the scheme with the
corresponding CFL condition.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations



Introduction Well-balanced methods Positivity-preserving 2D extension Numerical results Conclusion

1 Introduction

2 Well-balanced methods

3 Positivity-preserving limiter

4 Two-dimensional extension

5 Numerical results

6 Summary and future work

Yulong Xing, ORNL/UTK High order methods for the shallow water equations



Introduction Well-balanced methods Positivity-preserving 2D extension Numerical results Conclusion

Two-dimensional shallow water system
ht + (hu)x + (hv)y = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(
hv2 +

1

2
gh2

)
y

= −ghby .

• Still water at rest steady state:

h + b = const, hu = 0, hv = 0.

• Consider rectangular meshes.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Quadrature points

• N-points Gauss-Lobatto quadrature points

Ŝx
i = {x̂ t

i : t = 1, · · · ,N}
Ŝy

j = {ŷ t
j : t = 1, · · · ,N}

on [xi− 1
2
, xi+ 1

2
] and [yj− 1

2
, yj+ 1

2
], respectively.

• L-points Gauss quadrature points

Sx
i = {xβi : β = 1, · · · , L}

Sy
j = {yβj : β = 1, · · · , L}

to compute the integrals.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Main result

Proposition: Consider the well-balanced DG scheme solving the
2D shallow water equations. If hn

i ,j (x , y) ≥ 0 for all the i , j , then

h
n+1
i ,j ≥ 0 under the CFL condition

∆t

∆x
‖ (|u|+

√
gh) ‖∞ +

∆t

∆y
‖ (|v |+

√
gh) ‖∞≤ ŵ1.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Positivity preserving limiter

Ũn
ij (x , y) = θ

(
Un

ij (x , y)− U
n

ij

)
+ U

n

ij , θ = min

{
1,

h
n

ij

h
n

ij −mi,j

}
,

where
mi ,j = min

(x ,y)∈Iij
hn
ij(x , y).

In the implementation, we replace it by

mi ,j = min(h±ij (xβi , yj∓ 1
2
), h±ij (xi∓ 1

2
, yβj ), ξ1

i ,j , ξ
2
i ,j),

where

ξ1
i,j =

h
n

i,j − ŵ1

∑L
β=1 wβh

n
i,j(x

β
i , yj− 1

2
)− ŵN

∑L
β=1 wβh

n
i,j(x

β
i , yj+ 1

2
)

1− ŵ1 − ŵN
,

ξ2
i,j =

h
n

i,j − ŵ1

∑L
β=1 wβh

n
i,j(xi− 1

2
, yβj )− ŵN

∑L
β=1 wβh

n
i,j(xi+ 1

2
, yβj )

1− ŵ1 − ŵN
.
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Numerical methods

• The third order finite element DG methods (i.e. k = 2),
coupled with the third order TVD Runge-Kutta time
discretization are implemented.

• The CFL number is taken as 0.16.

• The gravitation constant g is fixed as 9.812 m/s2.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Tests for well-balanced property
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Figure: The surface level h + b and the bottom b for the stationary flow.
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Tests for well-balanced property

Table: L1 and L∞ errors for different precisions for the stationary
solution.

L1 error L∞ error
precision h hu h hu

single 2.89E-07 1.14E-07 5.81E-07 4.20E-07

double 7.16E-16 1.94E-16 1.11E-15 1.42E-15

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Accuracy test

• Initial conditions

h(x , 0) = 5 + ecos(2πx), (hu)(x , 0) = sin(cos(2πx)),

b(x) = sin2(πx), for x ∈ [0, 1],

with periodic boundary conditions.

• Use N = 12, 800 cells to compute a reference solution, and
treat this as the exact solution in computing the numerical
errors.

• The TVB constant M in the limiter is taken as 32. We
compute up to t = 0.1.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Accuracy test

Table: L1 errors and numerical orders of accuracy for the example.

No. of h hu
cells L1 error order L1 error order

25 2.12E-03 1.83E-02

50 1.10E-04 4.27 9.73E-04 4.23

100 1.15E-05 3.26 1.02E-04 3.25

200 8.79E-07 3.72 7.72E-06 3.72

400 9.38E-08 3.23 8.26E-07 3.22

800 1.07E-08 3.13 9.41E-08 3.13

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Riemann problem over a flat bottom

Consider two Riemann problems over a flat bottom

• Test case 1: in [-300, 300]

hu(x , 0) = 0 and h(x , 0) =

{
10 if x ≤ 0,
0 otherwise.

• Test case 2: in [-200, 400]

h(x , 0) =

{
5 if x ≤ 0,
10 otherwise,

and u(x , 0) =

{
0 if x ≤ 0,
40 otherwise.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Riemann problem: Test case 1
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Figure: The numerical and exact solutions of the first Riemann problem
at different time with 200 uniform cells. Left: the water height h; Right:
the discharge hu.
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Riemann problem: Test case 1
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Figure: Zoom-in of the wet/dry front.
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Riemann problem: Test case 2
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Figure: The numerical and exact solutions of the second Riemann
problem at different time with 300 uniform cells. Left: the water height
h; Right: the discharge hu.
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Riemann problem: Test case 2
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Figure: , zoom-in of the wet/dry front.
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Dam break over a plane

• Computational domain [-15, 15] and initial conditions:

hu(x , 0) = 0, h(x , 0) =

{
1− b(x) if x ≤ 0,
0 otherwise,

b(x) = 1− x tan(α),

with some angle α which will be defined later.

• The discharge q = 0 is imposed at the left boundary x = −15
and a free boundary condition is considered at the right
boundary x = 15.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Dam break over a plane

• Exact position of the wet/dry front and its velocity

xf (t) = 2t
√

g cos(α)− 1

2
gt2 tan(α),

uf (t) = 2
√

g cos(α)− gt tan(α),

• Three different values of α considered:
1 emerging topography α = π/60,
2 the flat bottom α = 0
3 bottom with decreasing depth α = −π/60.

• Stopping time t = 2, with 300 uniform cells.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Dam break over a plane
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Figure: The numerical results of the dambreak problem over an
emerging topography with α = π/60. Left: the initial condition; Right:
time evolution of wet/dry front location.
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Dam break over a plane
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Figure: The numerical results of the dambreak problem over an
emerging topography with α = π/60. Left: surface level at time t = 2;
Right: zoom-in of surface level at t = 2.
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Dam break over a plane
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Figure: Time evolution of wet/dry front location. Left: flat bottom with
α = 0; Right: bottom with decreasing depth α = −π/60.
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Drain on a non-flat bottom

• In the computational domain [0, 25],

b(x) =

{
0.2− 0.05(x − 10)2 if 8 ≤ x ≤ 12,
0 otherwise.

• The initial data is a still flat water

h(x , 0) = 0.5− b(x), hu(x , 0) = 0.

• The left boundary condition is a free condition on h and zero
on hu. The right boundary condition is an outlet condition on
a dry bed.

• 250 uniform cells are used in the computation.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Drain on a non-flat bottom
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Figure: Drain on a non-flat bottom. Left: surface level at different time;
Right: discharge at different time.
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Vacuum occurrence by a double rarefaction wave

• In the computational domain [0, 25],

b(x) =

{
1 if 25/3 ≤ x ≤ 12.5,
0 otherwise.

• The initial data is

h(x , 0) = 10− b(x), hu(x , 0) =

{
−350 if x ≤ 50/3,
350 otherwise.

• 250 uniform cells are used in the computation.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Vacuum occurrence by a double rarefaction wave
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Figure: Vacuum occurrence by a double rarefaction wave over a step.
Left: surface level at different time; Right: discharge at different time.
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Two-dimensional oscillating lake

• A rectangular computational domain [−2, 2]× [−2, 2].

• The parabolic bottom topography takes the form

b(x , y) = h0
x2 + y2

a2
,

with constants h0 and a to be specified later.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Two-dimensional oscillating lake

• The analytical solutions, are given by

h(x , y , t) = max

(
0,
σh0

a2
(2x cos(ωt) + 2y sin(ωt)− σ + 0.1− b(x , y))

)
,

u(x , y , t) = −σω sin(ωt), v(x , y , t) = σω cos(ωt),

periodic with the period T = 2π/ω and ω =
√

2gh0/a.

• Pick a = 1, σ = 0.5 and h0 = 0.1 for our test case. The initial
conditions are then defined by the above formula with t = 0.

• Stopping time 2T with 100× 100 uniform cells

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Two-dimensional oscillating lake
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Figure: The 2D plot of the water surface level in the two-dimensional
oscillating lake problem along the line y = 0 at different time. Left:
t = T/6; Right: t = T/3.
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Two-dimensional oscillating lake
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Figure: The 2D plot of the water surface level in the two-dimensional
oscillating lake problem along the line y = 0 at different time. Left:
t = T/2; Right: t = 2T .
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Two-dimensional oscillating lake

(Loading movie...)
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Summary and future work

• A simple positivity-preserving limiter based on high order
DG/WENO methods for the shallow water equations, which
can

1 keep the water height non-negative,
2 preserve the mass conservation,
3 does not affect the high order accuracy for the general

solutions.

• Two dimensional problems with triangular meshes, high order
finite difference methods and multi-layer problems.

Yulong Xing, ORNL/UTK High order methods for the shallow water equations
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Thank you!
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