
Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

Mixed Discontinuous Galerkin Scheme for a
Modified Cahn Hilliard Equation

Steven M. Wise

swise@math.utk.edu
University of Tennessee

30 April, 2012

S.M. Wise Mixed DG Scheme for a Modified Cahn Hilliard Equation



Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

References

A. Aristotelous, Adaptive Discontinuous Galerkin Finite Element
Methods for a Diffuse Interface Model of Biological Growth,
PhD Thesis, UTK, 2011.

A. Aristotelous, O. Karakashian, and SMW, Analysis of a Mixed
DGFE Convex Splitting Scheme for a Modified Cahn-Hilliard
Equation (in preparation).

A. Aristotelous, O. Karakashian, and SMW, Convergence of a
Primitive Variable DGFE Scheme for a Diffuse Interface Tumor
Model (in preparation).

S.M. Wise Mixed DG Scheme for a Modified Cahn Hilliard Equation



Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

Outline

1 The Cahn-Hilliard Equation

2 A Modified Cahn-Hilliard Equation

3 A Mixed SIP-DGFE Convex Splitting Scheme

4 Some Numerical Analysis of the Schemes

5 Numerical Convergence Tests

6 Work in Progress

S.M. Wise Mixed DG Scheme for a Modified Cahn Hilliard Equation



Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

The Cahn-Hilliard Equation
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The Cahn-Hilliard Equation

The Cahn-Hilliard equation in mixed formulation (Cahn, 1961):

∂tu = ∆w in Ω,

w = ε−1u3 − ε−1u − ε∆u in Ω,

∂nu = ∂nw = 0 on ∂Ω,

where ε > 0 is the interfacial width parameter.

Mixed weak formulation: find u ∈ L∞
(
0,T ; H1(Ω)

)
,

∂tu ∈ L2
(
0,T ; H−1(Ω)

)
and w ∈ L2

(
0,T ; H1(Ω)

)
such that

〈∂tu, χ〉+ (∇w ,∇χ) = 0 ∀χ ∈ H1(Ω),

ε−1
(
u3 − u, ϕ

)
+ ε (∇u,∇ϕ)− (w , ϕ) = 0 ∀ϕ ∈ H1(Ω),

for almost all t ∈ (0,T ).

Note: boundary conditions are natural in the mixed formulation.
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Conserved (H−1) Gradient Flow

Consider the typical Cahn-Hilliard energy (Cahn and Hilliard, 1957)

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

ε

2
|∇u|2

}
dx.

The chemical potential is

w = δuE = ε−1u3− ε−1u − ε∆u.

Weak solutions dissipate the energy at the rate

E
(
u(τ)

)
+

∫ τ

0

‖∇w‖2
L2 dt = E

(
u(0)

)
,
(

dtE (u) = −‖∇w‖2
L2

)
.

Mass conservation:∫
Ω

(u(x, t)− u(x, 0)) dx = 0, a.e. t > 0,

(
dt

∫
Ω

u(x, t) dx = 0

)
.
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Spinodal Decomposition: Energy Competition I

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

ε

2
|∇u|2

}
dx.
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Spinodal Decomposition: Energy Competition II
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Spinodal Decomposition: Energy Competition III
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Diffuse but Thin Interfaces and Adaptivity
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A Modified Cahn-Hilliard (MCH) Equation

A model for binary polymer dynamics (Choski et al., 2011):

∂tu = ∆w − θ (u − u0) in Ω,

w = ε−1u3 − ε−1u − ε∆u in Ω,

∂nu = ∂nw = 0 on ∂Ω,

where ε > 0, θ ≥ 0, u0 := 1
|Ω|
∫

Ω
u(x, 0)dx.

Mixed weak formulation: find u ∈ L∞
(
0,T ; H1(Ω)

)
,

∂tu ∈ L2
(
0,T ; H−1(Ω)

)
and w ∈ L2

(
0,T ; H1(Ω)

)
such that

〈∂tu, χ〉+ (∇w ,∇χ) + θ (u − u0, χ) = 0 ∀χ ∈ H1(Ω),

ε−1
(
u3 − u, ϕ

)
+ ε (∇u,∇ϕ)− (w , ϕ) = 0 ∀ϕ ∈ H1(Ω),

for almost all t ∈ (0,T ).
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Energy Dissipation and Mass Conservation

Solutions of the MCH equation dissipate the energy

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

ε

2
|∇u|2

}
dx +

θ

2
‖u − u0‖2

H−1

at the rate

E
(
u(τ)

)
+

∫ τ

0

‖∂tu‖2
H−1 dt = E

(
u(0)

)
,
(

dtE (u) = −‖∂tu‖2
H−1

)
.

Mass conservation: For a.e. t > 0,

0 =

∫
Ω

(u(x, t)− u(x, 0)) dx =

∫
Ω

(u(x, t)− u0) dx .
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Spinodal Decomposition and Arrested Coarsening

t = 0.002, θ = 15.0

t = 0.01, θ = 15.0 t = 0.01, θ = 5.0

t = 0.002, θ = 5.0 t = 0.002, θ = 0.0

t = 0.01, θ = 0.0

t = 0.02, θ = 15.0 t = 0.02, θ = 5.0 t = 0.02, θ = 0.0

Here u0 = −0.1.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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Crystallization and PFC-type Dynamics

u0 = −0.3, θ = 15.0.
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A Mixed SIP-DGFE Convex
Splitting Scheme
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Time Discretization via Convexity Splitting

Let 0 = t0 ≤ t1 ≤ · · · tM = T , be a uniform partition of [0,T ], with
τ = tm − tm−1.

Given um−1 ∈ H1(Ω), find um, wm ∈ H1(Ω) such that

(δτum, χ) + (∇wm,∇χ) + θ (um − u0, χ) = 0 ∀χ ∈ H1(Ω),

1

ε

(
(um)3−um−1, ϕ

)
+ ε (∇um,∇ϕ)− (wm, ϕ) = 0 ∀ϕ ∈ H1(Ω),

where

δτum =
um − um−1

τ
.
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DGFE Triangulations

Let Th = {K} be a (not necessarily conforming) family of
triangulations of Ω, where 0 < h < 1, h = maxK∈Th hK ,
hK = diam (K ).

Assume that Th is nice:

1 The elements (cells) of Th satisfy the minimal angle condition

2 Th is locally quasi-uniform. That is, if two cells K and K ′ are
adjacent, then hK ≈ hK ′ .

Define
E I := set of all interior edges/faces of Th.
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DGFE Function Spaces

Broken Sobolev spaces:

Hm(Th) :=
∏
K∈Th

Hm(K ) =
{

v ∈ L2(Ω)
∣∣ v |K ∈ Hm(K )

}
.

Broken polynomial spaces:

S (Th) := Pq(Th) :=
∏
K∈Th

Pq(K ) =
{

v ∈ L2(Ω)
∣∣ v |K ∈ Pq(K )

}
.

Clearly

S (Th) ⊂ H2 (Th) ⊂ L2(Ω),

S (Th) 6⊂ H2(Ω), S (Th) 6⊂ H1(Ω).
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SIPDG Bilinear Form and Broken Norms

For all u, v ∈ H2 (Th), define the symmetric bilinear form

αh(u, v) :=
∑
K∈Th

(∇u,∇v)K −
∑
e∈E I

(
〈{∂nu}, [v ]〉e + 〈[u], {∂nv}〉e

)
+
∑
e∈E I

γh−1
e 〈[u], [v ]〉e ,

where γ is a positive penalty parameter. If u ∈ H2(Ω), ∂nu = 0 on
∂Ω,

− (∆u, v) = αh(u, v) , ∀ v ∈ H2 (Th) .

For all v ∈ H2 (Th) define

|||v |||2 :=
∑
K∈Th

(∇v ,∇v)K +
∑
e∈E I

(
2
γ

he
|[v ]|2e +

he

γ
|{∇v}|2e

)
.
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Broken Norm Equivalence

Lemma

1 ||| · ||| a semi-norm on H2 (Th) and a norm on H2 (Th) ∩ L2
0(Ω).

2 Continuity:

|αh(u, v)| ≤ (1 + γ)|||u||| |||v |||, ∀ u, v ∈ H2 (Th) .

3 Coercivity: ∃ γ0 > 0 and Cα > 0 such that for γ ≥ γ0,

αh(u, u) ≥ Cα|||u|||2, ∀ u ∈ S (Th) .

4 Equivalence: |||v |||α :=
√
αh(v , v) is a semi-norm on S (Th) and

a norm on S̊ (Th) := S (Th) ∩ L2
0. ∃ 0 < C1 ≤ C2, independent of

h, such that,

C1|||v |||α ≤ |||v ||| ≤ C2|||v |||α, ∀ v ∈ S (Th) .

S.M. Wise Mixed DG Scheme for a Modified Cahn Hilliard Equation



Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

Mixed SIP-DGFEM-CS Scheme

For any 1 ≤ m ≤ M, given um−1
h ∈ S (Th) find um

h ,w
m
h ∈ S (Th) such

that

(δτum
h , χ) + αh(wm

h , χ) + θ (um
h − u0, χ) = 0, ∀χ ∈ S (Th) ,

ε−1
(

(um
h )3−um−1

h , ϕ
)

+ εαh(um
h , ϕ)− (wm

h , ϕ) = 0, ∀ϕ ∈ S (Th) ,

where
u0
h := Phu0.

Ph : H2 (Th)→ S (Th) is the elliptic projection:

αh(Phu − u, χ) = 0, ∀χ ∈ S (Th) , (Phu − u, 1) = 0.

It is easy to see that the scheme is discretely mass conservative:

(um
h − u0, 1) = 0, ∀ m ≥ 1.
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Why DGFE Methods?

1 Can easily handle inhomogeneous boundary conditions and
curved boundaries.

2 Allow the use of very flexible meshes, even those that have
hanging nodes.

3 Often less mesh propagation (if any at all) due to localized
refinement.

4 The mass matrices are block diagonal, making them trivial to
assemble from local element matrices. The (symmetric) stiffness
matrices are block structured, a fact that is particularly useful in
multigrid operations.

5 DGFE methods are naturally locally mass conservative.

6 Many inter-mesh operations, such as projections from a locally
refined mesh to a coarse mesh, are entirely local, which turn out
to be important in the multigrid setting. et cetera.

S.M. Wise Mixed DG Scheme for a Modified Cahn Hilliard Equation



Mixed DG
Scheme for a

Modified Cahn
Hilliard Equation

S.M. Wise

CH Eq.

MCH Eq.

The DGFE
Scheme

Analysis

Tests

Work in Progress

Some Numerical Analysis of the
Schemes

A. Aristotelous, O. Karakashian, and SMW, Analysis of a Mixed DGFE
Convex Splitting Scheme for a Modified Cahn-Hilliard Equation (in
preparation).

See also (Kay, Styles, Süli, 2009).
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The Key Tool: A Broken “−1” Norm

Define Th : S̊ (Th)→ S̊ (Th) via the following variational problem:
given ζ ∈ S̊ (Th), find Th(ζ) ∈ S̊ (Th) such that

αh(Th(ζ), χ) = (ζ, χ) ∀χ ∈ S̊ (Th) .

Lemma

Let ζ, ξ ∈ S̊ (Th) and set

(ζ, ξ)−1,h := αh(Th(ζ),Th(ξ)) = (ζ,Th(ξ)) = (Th(ζ), ξ) .

( · , · )−1,h defines an inner product on S̊ (Th), and the induced
negative norm satisfies

‖ζ‖−1,h :=
√

(ζ, ζ)−1,h = sup
06=χ∈S̊(Th)

(ζ, χ)

|||χ|||α
.
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The Key Tool: A Broken “−1” Norm (cont.)

Lemma (cont.)

Consequently, for all χ ∈ S (Th) and all ζ ∈ S̊ (Th),

|(ζ, χ)| ≤ ‖ζ‖−1,h |||χ|||α.

Furthermore, for all ζ ∈ S̊ (Th), we have the Poincare and inverse
estimates, respectively,

‖ζ‖−1,h ≤ C ‖ζ‖L2 , ‖ζ‖L2 ≤ Ch ‖ζ‖−1,h ,

for some C > 0 that is independent of h.
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Unconditional Unique Solvability

Theorem

The mixed SIP-DGFE-CS scheme is uniquely solvable for any mesh
parameters τ and h and for any phase parameters θ ≥ 0 and ε > 0.

Proof.

Set um
h = vm

h + u0, vm
h ∈ S̊ (Th), m = 0, . . . ,M. For all vh ∈ S̊ (Th),

define the functional

Gh(vh) :=
τ

2β

∥∥∥∥βvh − vm−1
h

τ

∥∥∥∥2

−1,h

+
1

4ε
‖vh + u0‖4

L4 +
ε

2
|||vh|||2α

−1

ε

(
vm−1
h + u0, vh

)
, β := 1 + τθ.

Gh is strictly convex and coercive on the linear subspace S̊ (Th).
Consequently, Gh has a unique minimizer, call it vm

h ∈ S̊ (Th).
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Unconditional Energy Stability

Lemma

Let um
h ,w

m
h ∈ S (Th) denote the unique solution of the mixed

SIP-DGFE-CS scheme. Then the following energy law holds for any
τ, h > 0 and any θ ≥ 0 and ε > 0:

Eh

(
u`h
)

+τ
∑̀
m=1

‖δτum
h ‖

2
−1,h+τ 2

∑̀
m=1

{
ε

2
|||δτum

h |||2α+
1

4ε

∥∥δτ (um
h )2
∥∥2

L2

+
1

2ε
‖um

h δτum
h ‖

2
L2 +

1

2ε
‖δτum

h ‖
2
L2 +

θ

2
‖δτum

h ‖
2
−1,h

}
= Eh

(
u0
h

)
, ∀ 0 ≤ ` ≤ M,

where

Eh(uh) :=
1

4ε

∥∥∥(uh)2 − 1
∥∥∥2

L2
+
ε

2
|||uh|||2α +

θ

2
‖uh − u0‖2

−1,h .
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Time-independent Stabilities

Lemma

Let um
h , wm

h ∈ S (Th) be the unique solution of the mixed
SIP-DGFE-CS scheme. Then the following estimates hold for any
h, τ > 0:

max
0≤m≤M

[
ε|||um

h |||2α +
1

4ε

∥∥∥(um
h )2 − 1

∥∥∥2

L2
+
θ

2
‖um

h − u0‖2
−1,h

]
≤ C ,

max
0≤m≤M

(
‖um

h ‖
2
L2 + |||um

h |||2α
)
≤ C ,

τ

M∑
m=1

‖δτum
h ‖

2
−1,h ≤ C ,

for some h, τ , and T -independent constant C > 0.
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Time-dependent Stabilities

Lemma

Let um
h , wm

h ∈ S (Th) be the unique solution of the mixed
SIP-DGFE-CS scheme. Suppose T ≥ 1. Then the following
estimates hold for any h, τ > 0:

τ

M∑
m=1

[
|||wm

h |||2α+‖∆hum
h ‖

2
L2 +‖um

h ‖
4
L∞+‖wm

h ‖
2
L2 +‖δτum

h ‖
2
L2

]
≤ TC ,

max
1≤m≤M

[
‖wm

h ‖
2
L2 + ‖∆hum

h ‖
2
L2 + ‖um

h ‖
4
L∞

]
≤ TC ,

for some h, τ , and T -independent constant C > 0.
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Convergence

Theorem

Let p ≥ 1 and 1 ≤ s ≤ p. Suppose u0 ∈ Hs+1(Ω) and (u,w) is a
weak solution to the Modified CH equation, with sufficient additional
regularities. Then, provided 0 < τ < τ0, for some τ0 sufficiently small,

‖u − uh,τ‖L∞(0,T ;H1(Th)) + ‖w − wh,τ‖L2(0,T ;H1(Th)) ≤ C (T )(hs + τ),

for all 1 ≤ s ≤ p, for some C (T ) > 0 that is independent of τ and s.
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L2 Convergence Test: Quadratic Elements

L2 Convergence Test: q = 2
True solution:

u(x, y , t) = x2(1− x)2y2(1− y)2 cos(t)

τ = h2 τ = h

h
∥∥∥u(·,T )− uM

h

∥∥∥
L2

rate
∥∥∥u(·,T )− uM

h

∥∥∥
L2

rate

1/2 1.359104× 10−04 — 2.607801× 10−04 —

1/4 3.495827× 10−05 1.958950161 1.360830× 10−04 0.938346931

1/8 8.824486× 10−06 1.986049638 6.947138× 10−05 0.969996191

1/16 2.211532× 10−06 1.996466131 3.507789× 10−05 0.985856786

1/32 5.532142× 10−07 1.999136024 1.762315× 10−05 0.993090152

Table: T = 1.5, ε = 0.5, θ = 0, Ω = (0, 1)2. The global error at T
measured in ‖ · ‖L2 is expected to be O(τ = h2) + O(h3) (quadratic) and
O(τ = h) + O(h3) (linear), respectively. The data above are consistent
with these predictions.
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Broken H1 Convergence Test: Quadratic Elements

Broken H1 Convergence Test: q = 2
True solution:

u(x, y , t) = x2(1− x)2y2(1− y)2 cos(t)

τ = h2 τ = h

h |||u(·,T )− uM
h ||| rate |||u(·,T )− uM

h ||| rate

1/2 3.122755× 10−04 — 5.201555× 10−04 —

1/4 7.389662× 10−05 2.079239103 2.426696× 10−04 1.099949591

1/8 1.835997× 10−05 2.008944676 1.195414× 10−04 1.021483045

1/16 4.581559× 10−06 2.002653198 5.945521× 10−05 1.007635202

1/32 1.144499× 10−06 2.001122396 2.966275× 10−05 1.003150883

Table: T = 1.5, ε = 0.5, θ = 0, Ω = (0, 1)2. The global error at T
measured in ||| · ||| is expected to be O(τ = h2) + O(h3) (quadratic) and
O(τ = h) + O(h3) (linear), respectively. The data above are consistent
with these predictions.
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Efficient Multigrid Solvers: h-Independence
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Work in Progress:
Applications, Efficient Error
Estimators, and Adaptivity
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A Cahn-Hilliard Equation with a Source

∂tu = ∆µ+ S ,

µ = u3 − u − ε∆u.

This is essentially the first tumor model with out the advective
velocity.

This model has an energy, which its solutions dissipate.

Models cell adhesion and growth, but contains essentially no
mechanical response due to tissue growth.
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Adaptive Mixed DG Computations of Growth

Joint work with A. Aristotelous (SAMSI) and O. Karakashian (UTK).
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