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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

» Coupled set of time dependent nonlinear diffusion equations
for energy density and material temperature
» Applications:
» Diffusion approximation to neutral particle transport
» Astrophysics
> Inertial confinement fusion
» Atmospheric radiation
» Representative application for implicit time integration on
dynamic adaptively refined grids in ORNL OLCF3 project
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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

Model equations:

%fv.(prvE) — o(T*—E)  inQ=][0,1°
oT 4 . d
E_V.(Dth) = —0,(T*—E) in Q=10,1]
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Model equations:
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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

Model equations:

%fv.(prvE) — o(T*—E)  inQ=][0,1°
oT 4 . d
E_V.(Dth) = —0,(T*—E) in Q=10,1]

Constitutive law: 0, = %
Diffusion coefficients:

1
br = IVE]
(30,;—!— E )
D, = kT®/?
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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld
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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld

Initial conditions:
E=E, T=(E)?Y at t =0
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Non-Equilibrium Radiation-Diffusion

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld

Initial conditions:
E=E, T=(E)?Y at t =0

Boundary conditions:
%n-D,VE+§:R on 00gr, t>0
n-D,VE=0 ondQu, t>0
n-VT =0 ondQ, t>0
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Non-Equilibrium Radiation-Diffusion

Previous Work

» Rider, Knoll and Olson (JQSRT, 63, 1999; JCP, 152, 1999)
introduced the idea of physics based preconditioning in 1D

» Mousseau, Knoll, Rider (JCP, 2000) and Mousseau, Knoll
(JCP, 2003) demonstrated effectiveness for 2D problems

» Mavriplis (JCP, 175, 2002) compared Newton-Multigrid and
FAS using agglomeration ideas on unstructured grids.

» Stals (ETNA, 15, 2003), Newton-Multigrid and FAS, local
refinement on unstructured grids for equilibrium radiation
diffusion.

» Lowrie (JCP, 2004) compares different time integration
methods for non-equilibrium radiation diffusion
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Non-Equilibrium Radiation-Diffusion

Previous Work

» Brown, Shumaker, Woodward (JCP, 2005) consider fully
implicit methods and high order time integration.

» Shestakov, Greenough, and Howell (JQSRT, 2005) consider
pseudo-transient continuation on AMR grids using an
alternative formulation.

» Glowinski, Toivanen (JCP, 2005) consider using automatic
differentiation and system multigrid.

» Pernice, Philip (SISC, 2006), use JFNK with FAC

preconditioners on AMR grids for equilibrium
radiation-diffusion on SAMR grids.
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Discretization

Time Discretization: BDF2

1420 41 a2
- (1 n n n — At f n+1
71—1—0["“ (1+ ap)u +71+a,,u af (U")
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Discretization

Time Discretization: BDF2

1420 41 a2
- _ 1 n n n :At f n+]_
1+anu (1+ ap)u +1—|—a,,u af (U")
with
Aty
(8% g
! Atnfl

e - (5)
W = (¢ lovn o)
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Discretization

Time Discretization: Choice of timestep

> First step: Backward Euler with user selected initial guess for
timestep
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Discretization

Time Discretization: Choice of timestep

> First step: Backward Euler with user selected initial guess for
timestep
» Subsequent steps
» constant fixed timestep
» constant final timestep
> limiting relative change in energy
» predictor-corrector with adaptive timestep selection
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Discretization

Time Discretization: Predictor-Corrector?

1‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal
Laminar Flow‘, Gresho and Sani

Bobby Philip Computational Engineering and Energy Sciences ( 3D Structured Adaptive Mesh Refinement and Multilevel Prec



Discretization

Time Discretization: Predictor-Corrector?

» Predict using generalized leapfrog:

uptl = u" + (14 @) Aty — a2 (u” —u™ 1)

1‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal
Laminar Flow‘, Gresho and Sani
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Discretization

Time Discretization: Predictor-Corrector?

» Predict using generalized leapfrog:

uptl = u" + (14 @) Aty — a2 (u” —u™ 1)

» Solve for u"*! using BDF2

14 2an 01 a2 1
ST el (g n n_y"1 At F(u™h) = 0
Tra " (14 ap)u +1+a,,u af (U™

1‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal
Laminar Flow‘, Gresho and Sani
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Discretization

Time Discretization: Predictor-Corrector

» Estimate truncation error

(1+ap) (1 + (lj_‘gn)2> (

d"=u"—u(ty ) =
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Discretization

Time Discretization: Predictor-Corrector

» Estimate truncation error
1

(1+ap) (1 + (lj_‘gn)2>

» Compute time derivative approximation at current step

. 1 (142« a?
n+l _ non+l 1 n n n—1
u tn<1+anu (14 ap)u +1+anu )

d"=u"—u(ty ) =
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Discretization

Time Discretization: Predictor-Corrector

» Estimate truncation error
1
d"=u" —u(tyy) & (u”+:l — ugﬂ)

(1+ap) (1 + (lj_‘gn)2>

» Compute time derivative approximation at current step

. 1 (142« a?
n+l _ non+l 1 n n n—1
u tn<1+anu (14 ap)u +1+anu )

1

Note: Using f(u™*!) to approximate u™! accumulates

round off error, is costly, and leads to smaller timesteps
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Discretization

Time Discretization: Predictor-Corrector

» Estimate truncation error
1
d"=u" —u(tyy) & (u”+:l — ugﬂ)

(1+ap) (1 + (lj_‘gn)2>

» Compute time derivative approximation at current step

. 1 (142« a?
n+l _ non+l 1 n n n—1
u tn<1+anu (14 ap)u +1+anu )

1

Note: Using f(u™*!) to approximate u™! accumulates

round off error, is costly, and leads to smaller timesteps

Al e, | M3
| 4 Atn+1 = Atn (6 Hu||dn|||| € )
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Structured Adaptive Mesh Refinement

Discretization:

» Cell Centered Finite Volume Discretization for E, T

» Cell centered diffusion coefficients averaged to cell faces

» Fluxes are computed at cell faces

» Material discontinuities are aligned with cell faces for
simplicity

» Linear interpolation at coarse-fine interfaces to provide
centered ghost cell data

» Coarse-fine interpolation is programming intensive to account
for all special cases
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Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally
refined mesh as a union of logically rectangular meshes.

DB: summary.samral
Cycle: 1485 Tme:221768

Subset

Var: laveis

Mesn

Var: omi_mesh
0.8
0.6

¥-Axis

0.4
0.2
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Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally
refined mesh as a union of logically rectangular meshes.

DB: summary.samral
Cycle: 1485 Tme:221768

Subset T
Var: laveis

1




Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally
refined mesh as a union of logically rectangular meshes.

DB: summary.samral
Cycle: 1485 Tim: 6

Subset
Var: laveis




Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally
refined mesh as a union of logically rectangular meshes.

DB: summary.samral
Cycle: 1485 Tme:221768

Subset e I




Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally
refined mesh as a union of logically rectangular meshes.

DB: summary.samral
Cycle: 1830 Time:2.28518
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Preconditioned Newton-Krylov Methods

Nonlinear systems

Implicit time discretizations lead to a nonlinear system of equations
that needs to be solved at each timestep

Fu™™) =0
where
14+ 2« a? _
F(u"™1) = oo Odn"u”J“:l —(1+apu"+ Toar +"an ! — At f(u"t)

with u"t! a cell centered vector over an AMR mesh.
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Preconditioned Newton-Krylov Methods

Inexact Newton Methods

» Let F: R” — R” and consider solving F(u) = 0.
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Preconditioned Newton-Krylov Methods

Inexact Newton Methods

» Let F: R” — R” and consider solving F(u) = 0.

» The k" step of classical Newton’s method requires solution of
the Newton equations:

F'(uk)sk = —F(uk).
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Preconditioned Newton-Krylov Methods

Inexact Newton Methods

» Let F: R” — R” and consider solving F(u) = 0.
» The k" step of classical Newton’s method requires solution of
the Newton equations:

F'(uk)sk = —F(uk).

» With inexact Newton methods, we only require
IF (ui) + F'(ue)sell < mellF(w)ll, x> 0.
This can be done with any iterative method.
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Preconditioned Newton-Krylov Methods

[terative Linear Solvers

» System multigrid could be used directly, or

» Krylov subspace methods - need Jacobian-vector products,
which can be approximated by

Flugy ~ T = FUd) o e,

e

» The resulting Jacobian-free Newton-Krylov (JFNK) method is
easier to implement because only function evaluation and
preconditioning setup/apply is required.

» ¢ must take into account accuracy, efficiency, and
non-negativity considerations
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Preconditioned Newton-Krylov Methods

Preconditioned Krylov Methods

» Right-preconditioning of the Newton equations is used, i.e.,
we solve

(J(u )P~ HPsi = —F(uy).

where P is the preconditioner.
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Preconditioned Newton-Krylov Methods

Preconditioned Krylov Methods

» Right-preconditioning of the Newton equations is used, i.e.,
we solve
(J(ug)P~H)Psy = —F(uy).
where P is the preconditioner.
» For JFNK this requires the Jacobian-vector products:

() Pty ~ Fk P — Pl

9
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Preconditioned Newton-Krylov Methods

Preconditioned Krylov Methods

» Right-preconditioning of the Newton equations is used, i.e.,
we solve
(J(ug)P~H)Psy = —F(uy).
where P is the preconditioner.
» For JFNK this requires the Jacobian-vector products:
F(ug + P~ 1v) — F(uy)

(J(u )P v ~ . )

» The approximate Jacobian-vector is computed in two steps:

» Solve y = P~ v approximately

» Compute M
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Preconditioned Newton-Krylov Methods

Linear Systems

JFENK allows us to focus on developing effective preconditioners.
The Jacobian systems at each Newton step are of the form:

()~ (%)

where

£ A — VDKV + 0,1 —0.(Tk)3
- —0,l Az — V- DEV + 0,(TK)3
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Preconditioned Newton-Krylov Methods

Operator Split Preconditioner

We use a splitting of the form shown in our preconditioner
L~ P1P>

where

P1:<Alt_v'va / 0 k >
0 a; — VDV
and

P, _ (1+ Ato,)l  —Ato,(TF)3
2= —Atoyl |+ Ato,(T)3
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Preconditioned Newton-Krylov Methods

Grids and Notation for FAC

o L At = fe
A A
QO , v oo Ases =13
R Pi
941 | Asey =13
P
o | | A =r

= RE(fo — Awe), k=1,2,3
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Preconditioned Newton-Krylov Methods

Preconditioner: FAC

Compute composite grid residual ro = fo — Acue.
u-=20
Fork=J,...2{
Smooth : Aier = ry
Correct: uc < uc + Pgey.
Update : r_1 = RE71(f — Acue)
}
Solve: A1ey = n
Fork=2,...J¢
Correct: uc < uc + Pr_jex—1
Update : r, = RE(f. — Acuc)
Smooth : Axex = ry

}
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Preconditioned Newton-Krylov Methods

AMR Regridding: Data Transfer

» Error estimation based on gradient and curvature estimators
» Berger-Rigoutsos algorithm to determine new patches

» Linear interpolation of data from old to new grid hierarchy
» Old grid solution not a solution on new grid hierarchy

» Higher order interpolation helps minimize this?

» High solution gradients prevent high order interpolation

> Leads to high nonlinear residuals after regridding

2Philip, Chacon, Pernice, JCP, 2008
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Preconditioned Newton-Krylov Methods

Regridding: Time Integration

v

Linear interpolation causes jump in time derivative

» Warm restart to minimize timestep changes

v

Col restart results in time step cuts

v

Resolve at existing step to minimize perturbation to solution

v

Regrid can lead to non-positive values
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Numerical Results

Simulation Software

» SAMRAI package for AMR

» PETSc SNES package for inexact Newton

» PETSc Krylov solver - GMRES

» MLSolvers package for multilevel preconditioners and
operators - FAC, AFACx, MDS

» NRDF application code with implicit time integration
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

OE
=~ V- (DVE)

oo(T*—E) in Q =[o0,1]¢

) = —0a(T*—E) in Q=[0,1]¢
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

%fv.(prvE) — o(T*—E)  inQ=][0,1°
oT 4 . d
E_V.(Dth) = —0,(T*—E) in Q=10,1]

Constitutive law: 0, = %
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

E
%—V-(D,VE) = 0,(T*—E) in Q =[o0,1]¢
oT 4 . d
Constitutive law: o, = %33
Diffusion coefficients:
D= eany
(30a + I L |I>

D = 0.1T°/?
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld

Initial conditions:
E=1.0e—05 T =(1.0e—05)"* att=0
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Numerical Results

Non-Equilibrium Radiation-Diffusion

Model equations:

f’;’f_v.(prvg) — o(T*—E) inQ=1[0,1)¢
(ZE__V'(DtVT) = —Ua(T4_E) inQ:[O’lld

Initial conditions:
E=1.0e—05 T =(1.0e—05)"* att=0
Boundary conditions:

1 E
§nDrVE+Z:1 atX:O,tZO

1 E
SN DVEL =0 atx=1t>0

2
n-D,VE=0 onoQy, t>0
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Numerical Results

Solver parameters

> timestepper absolute tolerance: 1.0e — 7

> timestepper relative tolerance: 1.0e — 7

> nonlinear solver absolute tolerance: 1.0e — 15

> nonlinear solver relative tolerance: 1.0e — 12

> step tolerance: 1.0e — 10

» forcing term: n, = 0.01

> max. gmres subspace dimension: 50

» max. linear iterations: 100

» FAC V-cycle, R-B Gauss Seidel (2 pre and post smooths)

» final time: 1.0
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Numerical Results

AMR parameters

> refinement ratio: 2

» combine efficiency: 0.85

> error tagging: based on curvature and gradient of E
» Berger-Rigoutsos regridding algorithm

> linear interpolation at coarse-fine boundaries

> volume linear interpolation during regridding
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Numerical Results

Numerics: Material Properties
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Numerical Results
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Numerical Results

Performance: Linear lterations

L | L L
50T T 0 £y O 000 w0
nestes
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Numerical Results

Performance: Nonlinear lterations

| I
-
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Numerical Results

Performance: Degrees of Freedom
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Numerical Results

Conclusions and Future Work

» Conclusions

>

Developed an efficient solver for non-equilibrium radiation
diffusion on AMR grids

» Future work/Possible improvements

>

vV vy VY VvYy

Better discretizations for AMR grids for problems with
discontinous coefficients

Improved performance of preconditioners

Error estimation for finite volume discretizations

AMR Grid alignment

GPU acceleration (ongoing work)

Massively parallel simulations (ongoing work)
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