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Introduction

My Favorite Integer Program (Jeroslow Problem)

An Easy Problem

min
x∈{0,1}n+1

{xn+1 | 2x1 + 2x2 + . . .+ 2xn + xn+1 = 2k+ 1}

Yes, this problem is very easy!

Let’s try to solve it using branch and bound.

(This problem comes from Bertsimas and Tsitsiklis’s Introduction to
Linear Programming)
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Introduction

Solving an Easy Problem with Branch and Bound

n k Time (seconds) Nodes
20 5 3.24 54,262
20 6 6.97 116,278
20 7 12.24 203,400
20 8 17.83 293,928
20 9 21.68 352,714
20 10 21.74 352,714
25 5 13.86 23,228
25 6 38.96 657,798
25 7 92.71 1,562,273
30 5 42.7 736,284
30 6 160.15 2,629,573

What happened!?!
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Introduction

The Branch-and-Bound Tree (N=4 K=1)

min
x∈{0,1}5

{x5 | 2x1 + 2x2 + 2x3 + 2x4 + x5 = 3}
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Subproblem at node D can be
written as:

min
x∈{0,1}5

{x5 | 2x3 + 2x4 + x5 = 1}

Subproblem at node E can be
written as:

min
x∈{0,1}5

{x5 | 2x3 + 2x4 + x5 = 1}
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Introduction

Preliminaries

Πn
def
= the set of all permutations of In = {1, . . . , n}.

Given π ∈ Πn, σ ∈ Πm, let A(π, σ)
def
= the matrix obtained by

permuting the columns of A by π and the rows of A by σ, i.e.
A(π, σ) = PσAPπ,

The symmetry group G of the matrix A is the set of permutations of
the columns such that there is a corresponding permutation of the
rows that when applied yields the original matrix

G(A) def
= {π ∈ Πn | ∃σ ∈ Πm such that A(π, σ) = A}
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Introduction

Facts About Symmetry

π(x)
def
= (xπ(1), xπ(2), . . . xπ(n)) permutes the coordinates of x

π ∈ G(A)⇒ x feasible ⇔ π(x) feasible .

eTx = eTπ(x)
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Introduction

Symmetry in the Real World

Symmetry appears in

graph coloring problems,
cutting stock problems,
scheduling problems
and more!

In a recent paper, Leo Liberti shows that many commonly used test
problems for integer programming contain symmetry.

CPLEX has recently implemented symmetry handling techniques.

Gurobi implemented techniques based on an idea from my thesis,
“Orbital Branching”.
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Introduction

Don’t Take My Word For It
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Mathematical Preliminaries

General Idea

Turn this:
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9 / 28



Mathematical Preliminaries Mathematical Stuff

More Preliminaries

For a set S ⊆ In, the orbit of S with respect to G(A) is the set of all
subsets of In to which S can be sent by permutations in G(A):

orb(S)
def
= {S′ ⊆ In | ∃π ∈ G(A) such that S′ = π(S)}.
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Orbital Branching

Orbital Branching—The Whole Idea

Let O ∈ Γa be an orbit of the symmetry group of subproblem a.

Surely we can branch as∑
i∈O

xi ≥ 1 or
∑
i∈O

xi ≤ 0.

If at least one variable i ∈ O is going to be one, and they are all
“equivalent”, then you might as well pick (i∗) one arbitrarily.

xi∗ = 1 or
∑
i∈O

xi = 0
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Orbital Branching

Another Way to View Orbital Branching

Suppose that you have found that the variables xe, xf, xg and xh
share an orbit at node a, O = {e, f, g, h}.

Then you can surely branch as:

a

e f g h
xe = 1 xf = 1 xg = 1 xh = 1

∑
j∈O xj = 0

But the best solution you can find from nodes f, g, and h will be the
same as the best solution you can find from node e

In fact, solutions will be isomorphic⇒ Prune nodes f, g, and h
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Orbital Branching

Branching with Symmetry

max
x∈{0,1}|V |

{∑
i∈V

xi | xi + xj ≤ 1 ∀(i, j) ∈ E

}
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Intuition

Variables
{x1, x2, . . . x8}

are “the same”

Variables
{x9, x10, . . . x24}

are “the same”
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Orbital Branching

Example: Orbital Branching Subproblems

Branching on orbit {9, 10, . . . , 24}, gives subproblems:

x9 = 1
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Orbital Branching

Orbital Branching and Jeroslow

Jeroslow Problem

min
x∈{0,1}5

{x5 | 2x1 + 2x2 + 2x3 + 2x4 + x5 = 3}
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Orbital Branching

Computational Results – Some Symmetric BIPs

(Binary) Error Correcting Codes (cod(n,d)): Find maximum number
of (0, 1) n−vectors such that the Hamming distance between each
pair is ≥ d
Covering Design (cov(v,k,t)): v > k > t: Find minimum number of
k-sets of {1, . . . , v} to “cover” all t-sets of {1, . . . , v}.

Covering Code (codbt(b,t)): Find minimum number of “codewords”
such that every word in the alphabet is at most a (Hamming)
distance 1 from a codeword. Football Pool Problem: codbt(0,6)

Steiner Triple System: (sts(n)): Find the “incidence width” of a
Steiner Triple System of order n
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Orbital Branching

Measure for Measure – Gurobi v3.0

Symmetry = 0 Symmetry = 2
Instance Time Gap% Nodes Time Gap% Nodes
cod105 7200 50.0 150

173 0.0 7

cod83 7200 15.0 724601

6 0.0 372

cod93 7200 20.0 108572

905 0.0 54650

codbt05 7200 7.4 352025

7200 3.7 359268

codbt33 8 0.0 604

6 0.0 401

codbt42 159 0.0 75569

111 0.0 45912

codbt61 10 0.0 1485

7 0.0 950

cov1053 7200 5.9 919836

77 0.0 10958

cov1054 7200 2.0 189645

2330 0.0 103657

cov1075 7200 5.0 549355

17 0.0 665

cov954 58 0.0 31950

1 0.0 166

sts27 1 0.0 4044

0 0.0 78

sts45 18 0.0 61194

23 0.0 34839

sts63 7200 4.4 8698168

85 0.0 43135

sts81 7200 16.4 3252747

70 0.0 6317

17 / 28



Orbital Branching

Measure for Measure – Gurobi v3.0

Symmetry = 0 Symmetry = 2
Instance Time Gap% Nodes Time Gap% Nodes
cod105 7200 50.0 150 173 0.0 7
cod83 7200 15.0 724601 6 0.0 372
cod93 7200 20.0 108572 905 0.0 54650

codbt05 7200 7.4 352025 7200 3.7 359268
codbt33 8 0.0 604 6 0.0 401
codbt42 159 0.0 75569 111 0.0 45912
codbt61 10 0.0 1485 7 0.0 950
cov1053 7200 5.9 919836 77 0.0 10958
cov1054 7200 2.0 189645 2330 0.0 103657
cov1075 7200 5.0 549355 17 0.0 665
cov954 58 0.0 31950 1 0.0 166
sts27 1 0.0 4044 0 0.0 78
sts45 18 0.0 61194 23 0.0 34839
sts63 7200 4.4 8698168 85 0.0 43135
sts81 7200 16.4 3252747 70 0.0 6317

17 / 28



Orbital Branching

Measure for Measure – CPLEX v12.1

Symmetry = 0 Symmetry = 5
Instance Time Gap% Nodes Time Gap% Nodes
cod105 7200 52.4 13201 606 0.0 1120
cod83 7200 14.3 1418001 79 0.0 15452
cod93 7200 18.9 389028 7200 6.3 639001

codbt05 7200 5.6 1035046 150 0.0 23059
codbt33 8 0.0 1049 1 0.0 14
codbt42 89 0.0 84039 4 0.0 2141
codbt61 8 0.0 1833 1 0.0 61
cov1053 7200 5.9 1495461 2234 0.0 448008
cov1054 7200 2.0 191970 7200 2.0 169371
cov1075 7200 6.4 1505168 57 0.0 12227
cov954 64 0.0 36563 3 0.0 1351
sts27 0 0.0 3532 0 0.0 1307
sts45 10 0.0 59890 6 0.0 28775
sts63 1585 0.0 7692765 736 0.0 3607609
sts81 7200 13.1 23933498 7200 11.5 23415204
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Applications

Symmetry in Scheduling Problems

Scheduling problems can have a great deal of symmetry.

Identical machines.
Identical jobs.

This symmetry is more structured than typical problems, allowing us
to better exploit the symmetry.
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Applications Unit Commitment

The Unit Commitment Problem

The Unit Commitment (UC) problem is a large scale MINLP that
finds a low-cost generating schedule for power generators.

These problems have quadratic objective functions, and transmission
constraints can be highly nonlinear.

These problems are typically solved as integer programs.

I have been working on developing formulations and algorithms to
solve the UC problem faster.
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Applications Unit Commitment

The Basic Problem

The UC Problem

Minimize
∑
t∈T

∑
j∈J
cj(pj(t))

subject to ∑
j∈J
pj(t) ≥ D(t), ∀ t ∈ T

pj ∈ Πj, ∀j ∈ J.

c(p(t)) gives the cost of generator j producing pj(t) units of
electricity at time t.

In every time periods, demand D(t) must be met.

Each generator must work within its physical limits (ramping
constraints, minimum shut down times, etc.).
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Applications Unit Commitment

Symmetry in The Unit Commitment Problem



Time Gen 1 Gen 2

1 1 0

2 1 1

3 1 1

4 1 1

5 0 1

6 0 1

7 0 1

8 1 1

9 1 0

10 1 0


On/Off status of
Generators 1 & 2

If generators 1 and 2 are
identical, permuting their
schedules will give an equivalent
solution.

Permutations schedules between
like generators are symmetries.

Orbital branching works, but we
have developed more a tailored
version for this problem.
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Applications Unit Commitment

Symmetry in UC

Multiple generators of the same type can introduce symmetry into the
problem.

Suppose we had J types of generators. We can think of the on/off
status of an optimal solution to UC as J many T × nj 0/1 matrices.
All column permutations of each of these matrices are symmetries in
the UC problem.

23 / 28



Applications Unit Commitment

Finding Symmetry in Subproblems is Easy

xi =


1 1 1 ? ?
? ? ? ? ?
0 0 ? ? ?
? ? ? ? ?



Suppose xi represented a partial solution
for the on/off status of generators of type i.

All relabellings of the columns of xi are in
the symmetry group at the root node.

After fixings, columns 4 and 5 are still
symmetric (neither column contains
variables fixed by branching).

Even though columns 1 and 2 contain fixed
variables, they are still symmetric (the
fixings in column 1 are identical to the
fixings in column 2).
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Applications Unit Commitment

Orbital Branching on UC

xiLP =


.55 .55 .55 .55

? ? ? ?
? ? ? ?
? ? ? ?



Suppose we chose to perform orbital
branching, and branch on the orbit
representing the first row of xi.

Branch is xi1,1 = 1∨
∑4
j=1 x

i
1,j = 0.

It is likely that the right branch is strong,
but how strong is the left branch? My
current LP solution is already suggesting
that more than one machine of type i
should be on.

This is not a very useful branch (but better
than non-orbital branching!).
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Applications Unit Commitment

Modified Orbital Branching in UC

Suppose you were branching on the first row of

xiLP =


.55 .55 .55 .55

? ? ? ?
? ? ? ?
? ? ? ?

 .
What about the disjunction “Either at least 3 generators are on or at
least 2 are off”?

Using symmetry, we can strengthen this to

{xi1,1 = x
i
1,2 = x

i
1,3 = 1} ∨ {xi1,3 = x

i
1,4 = 0}.
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Applications Unit Commitment

Computational Results

# of CPLEX Only
Generators Dynamic Search B&B OB Modified OB

Nodes Time Nodes Time Nodes Time Nodes Time
21 923 544.0 - - 5498 482.8 190 57.9
23 499 386.5 82539 6415.5 3190 342.2 390 78.9
23 878 1227.6 - - - - 715 308.6
24 3259 1169.3 - - 6259 691.2 517 155.7
26 972 978.4 - - 37150 5461.1 206 138.4
26 516 529.5 - - 2574 366.2 180 68.4
26 558 558.4 - - 3830 628.6 219 107.4
26 500 425.6 - - 13790 1552.5 158 74.4
26 515 465.3 - - 27890 2015.2 218 111.4
26 4369 1320.9 - - 16805 1758.5 341 104.0
27 579 535.3 - - 3323 494.5 187 105.4
27 545 594.3 - - - - 7222 1339.8
28 522 679.5 - - - - 720 307.7
28 532 444.0 - - 5162 578.0 358 107.8
29 1182 975.6 - - - - - -
30 1793 1514.6 - - - - 2523 631.0
30 541 862.7 - - - - 1252 381.8
31 1268 1210.3 - - 4010 6553.9 6521 1197.4
31 538 783.5 - - 13475 3660.6 113 107.3
31 537 712.5 - - - - 842 296.1
31 1172 1360.8 - - 19929 4599.6 570 220.7
34 544 739.0 - - - - 4201 1401.9
35 600 1204.9 - - 21612 4697.3 1190 404.5
37 4029 2808.2 - - - - 946 447.0
42 994 1540.1 - - - - 495 396.8
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Conclusion

Thank You, Come Again

Results

Symmetry is an important area in optimization.

Ignoring the presence of symmetry can make problems unsolvable.

Symmetry can be found in a variety of interesting real-world
problems.

Problem specific symmetry-breaking techniques can improve
computation time considerably.
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