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The Problem
{

ut + (up+1)x + ǫuxxx = 0, 0 < x < 1, t >

u(x, 0) = u0(x), 0 < x < 1,

ǫ Positive parameter

p ≥ 1 integer

We are interested in periodic solutions
Conserved quantities

∫

1

0

u dx,

∫

1

0

u2 dx.
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The meshes
Th is a partition of [0,1]

0 = x0 < x1 < · · · < xM = 1.

We consider functions that are discontinuous.

Jumps and averages:

[u]m = u+
m − u−m is the jumpof u atxm

{u}m =
1

2
(u+

m + u−m) is the averageof u atxm

"periodicity":

x−0 := x−M , x+
M = x+

0 , u−0 := u+
M
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Broken Sobolev Spaces: W s,p(Th) = ΠI∈Th
W s,p(I).

Discontinuous finite element spaces: V q
h = ΠI∈Th

Pq(I).

Sobolev embedding/ trace inequality:

‖v‖L∞(I) ≤ ch
−1/2
I ‖v‖L2(I) + ch

1/2
I ‖vx‖L2(I), ∀v ∈ H1(I),

Approximation results:

|v − χ|j,I ≤ chi−j
I |v|i,I , 0 ≤ j ≤ i ≤ q + 1,

Inverse inequality:

|χ|j,I ≤ h−j
I |χ|I , ∀χ ∈ Pq .
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The weak formulation
Multiplying the nonlinear term in the equation byv ∈ H1(Th), integrating by parts and then

summing over cells we obtain

X

I∈Th

((up+1)x, v)I = −
X

I∈Th

(up+1, vx)I +

M−1
X

m=0

h

(u−m+1)
p+1 v−m+1 − (u+

m)p+1 v+m

i

= −
X

I∈Th

(up+1, vx)I −
M−1
X

m=0

[up+1v]m.

φ̂(u+
m, u

−
m) =

1

p+ 2

p+1
X

j=0

(u+
m)p+1−j(u−m)j .

With this in mind, we define the nonlinear operatorN : H1(Th) → V q
h by

(N (u), v) = −
X

I∈Th

(up+1, vx)I −
M−1
X

m=0

φ̂(u+
m, u

−
m) [vm]. (1)

The operatorN is well defined by virtue of the Riesz Representation Theorem. In addition we

have,
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Lemma 0.1. (i) The nonlinear form defined with the choice ofφ̂ indicated above is consistent in

the sense that for all 1-periodic functionsu in C1[0, 1] there holds

(N (u), v) = ((up+1)x, v), ∀v ∈ H1(Th).

(ii) The nonlinear termN is conservative in the sense that

(N (v), v) = 0 ∀v ∈ H1(Th).
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A bilinear form for the dispersive term

we perform integration by parts twice to obtain

X

I∈Th

(uxxx, v)I =
X

I∈Th

(ux, vxx)I −
M−1
X

m=0

[uxxv]m +

M−1
X

m=0

[uxvx]m.

Jump identities

[φψ]m = φ+
m[ψ]m + [φ]mψ

−
m = φ−m[ψ]m + [φ]mψ

+
m = {φ}m[ψ]m + [φ]m{ψ}m.

We define the operatorD : H3(Th) → V q
h by

(D(u), v) =
X

I∈Th

(ux, vxx)I −
M−1
X

m=0

“

u+
xx[v]m − [u]mv

+
xx

”

+

M−1
X

m=0

{ux}m[vx]m.
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Lemma 0.2. (i) The formD is consistent in the sense that for all 1-periodic functionsu in

C2[0, 1] ∩H3(Th) there holds

(D(u), v) = (uxxx, v), ∀v ∈ H3(Th).

(ii) The formD is conservative in the sense that

(D(v), v) = 0 ∀v ∈ H3(Th).
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Semidiscrete approximation
Defineuh : [0, T ] → V q

h by

(uht, v) + (N (uh), v) + ǫ(D(uh), v) = 0, ∀v ∈ V q
h , t ∈ [0, T ],

uh(0) = Pu0,

P is some projection operator intoV q
h with optimalO(hq+1) approximation properties.

The semidiscrete approximationuh satisfies

‖uh(t)‖ = ‖uh(0)‖, t > 0.

A unique global in time solution exists.

Note: The priodic B.C.’s are NOT enforced explicitely on theF.E. subspace oruh. Rather, it is

incorporated in the formulation via the assumption thatu is periodic.
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Error estimates
Givenu ∈ H3(Th), need some functionw ∈ V q

h which is optimally close tou and such that

(D(w), v) = (D(u), v) ∀v ∈ V q
h

Cheng-Shu projection:q ≥ 2

(w̃, v)I = (u, v)I , ∀v ∈ Pq−3(I), I ∈ Th

w̃(x−m) = u(x−m), m = 1, . . . ,M,

w̃x(x+
m) = ux(x+

m) m = 0, . . . ,M − 1,

w̃xx(x+
m) = uxx(x+

m), m = 0, . . . ,M − 1,

‖u− w̃‖W j,p(I) ≤ chq+1−j
I |u|W q+1,p(I), I ∈ Th, j = 0, 1, p = 2,∞.

The projectionw̃ defined by Cheng-Shu does not satisfy the required identity above but satisfies it

if D is replaced by their (dissipative) formulation.
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The "conservative" projection

(w, v)I = (u, v)I , ∀v ∈ Pq−3(I), I ∈ Th

w(x−m) = u(x−m), m = 1, . . . ,M,

{wx}m = {ux}m = ux(xm) m = 0, . . . ,M − 1, orm = 1, . . . ,M,

wxx(x+
m) = uxx(x+

m), m = 0, . . . ,M − 1.

• The difference with the Cheng-Shu projection is only in the third condition. BUT leads to

huge complications! Reason: It is not a local projection anymore, but a global one.

• The projection defined above satisfies(D(w), v) = (D(u), v), ∀v ∈ H3(Th).

Proposition 0.1. Assume thatu is sufficiently smooth and periodic. Assume further thatq ≥ 2 is

even and that the numberM of cells inTh is odd. Then there exists a uniquew satisfying the

above conditions. Furthermore forj = 0, 1, p = 2,∞ and for all I ∈ Th,

‖u− w‖W j,p(I) ≤ ch1−j
I

 

X

I∈T N
h

hq
I‖u‖W q+1,∞(I) +

X

I∈Th\T N
h

hq+1
I ‖u‖W q+2,∞(I)

!

,

whereT N
h is the set of cells whose length differs from that of its two neighbours.
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Proof
1. Comparew to w̃ so lete = w − w̃

2. Expande in Legendre polynomials and .....

(e, v)I = 0, ∀v ∈ Pq−3(I), ∀I ∈ Th

e(x−m) = 0, m = 1, . . . ,M,

ex(x−m) + ex(x+
m) = ux(xm) − w̃x(x−m) m = 0, . . . ,M − 1, orm = 1, . . . ,M,

exx(x+
m) = 0, m = 0, . . . ,M − 1.

With em denoting the restriction ofe to Im, we have

em(x) =

q
X

ℓ=0

αm,ℓPm,ℓ(x) =

q
X

ℓ=0

αm,ℓPℓ(t), m = 0, . . . ,M − 1,

we see that the first equation and the orthogonality of the Legendre polynomials imply

αm,ℓ = 0, ℓ = 0, . . . , q − 3, m = 0, . . . ,M − 1.
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Using the second and fourth equations:

αm,q−2 = −
q(q + 1)

(q − 2)(q − 1)
αm,q , αm,q−1 =

2(2q − 1)

(q − 2)(q − 1)
αm,q

Using the third equation:

αm−1,q

hm−1
+
αm,q

hm
=

q − 2

2q(2q − 1)

“

ux(xℓ) − w̃x(x−ℓ )
”

, m = 1, . . . ,M,

=
q − 2

2q(2q − 1)
hq

m−1

q−2
X

j=0

ρju
(q+1)(ζm−1,j),

whereαM,q := α0,q and where the constantsρj , j = 0, . . . , q − 2 depend only onq and the

valuesζm−1,j , j = 0, . . . , q − 2 belong to the cellIm−1.

The coefficient matrix of this system is anM ×M circulant matrix with first row[1, 1, 0, . . . , 0].

This matrix is invertible if and only ifM is odd, whence its inverse, also circulant, has
1
2
[1,−1, 1,−1, . . . ,−1, 1] as its first row. Thus, we have

α̂m,q =
q − 2

4q(2q − 1)

“

ηm −
X

ℓ∈σm

`

ηℓ − ηℓ+1

´

”

m = 0, . . . ,M − 1,
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If hℓ = hℓ+1, then|ηℓ − ηℓ+1| ≤ chq+1
ℓ ‖uq+2‖L∞(Iℓ∪Iℓ+1) by the MVT

Hence, it follows that

|αm,q| ≤ c(1 + ν)hq+1‖uq+1‖L∞(0,1) + chq+1‖uq+2‖L∞(0,1), m = 0, . . . ,M − 1.

Theorem 0.1. Assume that the solution of problem is sufficiently regular and thatuh(0) is

chosen to satisfy‖u0 − uh(0)‖ = O(hq). Then, there existh0 and a constantc both depending

onu, p andT such that for allh < h0 there holds

‖(u− uh)(t)‖ ≤ chq , 0 ≤ t ≤ T.

Note the estimate is suboptimal due to the derivative in the nonlinear term. This is also true for

the Cheng-Shu scheme.
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Conservative Fully discrete ap-
proximations
Midpoint rule

`

un,1 − un, v
´

+ κ
`

N (un,1), v
´

+ κǫ
`

D(un,1), v
´

= 0, ∀v ∈ V q
h ,

un+1 = un + 2(un,1 − un).

κ is time stepsize.

Easy to see that‖un‖ = ‖u0‖. Also can prove second order convergence in time

‖u(tn) − un‖ ≤ c(hq + κ2).

We have implemented two methods for solving the nonlinear systems

1. Newton’s method

2. explicit-implicit iteration

`

un,1
ℓ+1 − un, v

´

+ κ
`

N (un,1
ℓ ), v

´

+ κǫ
`

D(un,1
ℓ+1), v

´

= 0, ∀v ∈ V q
h ,

All results hold under the assumprion thatκh−3/2 is bounded.
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Numerical Experiments
We use two test functions which are solutions ofut + uux + ǫuxxx = 0:

Cnoidal wave

u(x, t) = A cn2 (4K(x− vt)) ,

1. 0 < m < 1

2. K = K(m) is the complete elliptic integral of the first kind

3. A = 192mǫK2, v = 64ǫ(2m− 1)K2,

4. cn is a Jacobi elliptic function

In the experiments we havem = 0.9 andǫ = 24−2.

Solitary wave

u(x, t) = A sech2 (K(x− vt− x0))

A is the amplitude,K = 1
2

q

A
3ǫ

, x0 = 1/2.

In the experimentsA = 1, ǫ = 24−2.

Also, we use a priodic version ofu.
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Convergence rates

Table 1: Convergence rates, the cnoidal wave, uniform

mesh,q = 2.
N ∆t L2 error order L∞ error order

10 4.0E-02 1.3169E-00 1.9388E-00

20 1.0E-02 1.2735E-00 0.0483 2.1475E-00 -0.1475

C-C 40 2.5E-03 1.7869E-01 2.8333 3.0294E-01 2.8256

method 80 6.25E-04 1.2017E-02 3.8943 2.0728E-02 3.8694

160 1.5625E-04 7.6271E-04 3.9778 1.3499E-03 3.9407

320 3.90625E-05 4.8290E-05 3.9813 9.2342E-05 3.8697

10 4.0E-02 7.1270E-01 1.2985E-00

20 1.0E-02 5.9638E-01 0.2571 1.1130E-00 0.2224

NC-NC 40 2.5E-03 5.7218E-01 0.0598 1.0403E-00 0.0975

method 80 6.25E-04 1.0466E-00 -0.8712 1.6738E-00 -0.6861

160 1.5625E-04 2.0404E-01 2.3588 3.4832E-01 2.2646

320 3.90625E-05 2.6643E-02 2.9370 4.5632E-02 2.9323
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Table 2: Convergence rates, cnoidal wave, uniform

mesh,q = 3.
N ∆t L2 error order L∞ error order

10 4.0E-02 1.2083E-00 2.1869E-00

20 1.0E-02 1.5809E-01 2.9342 3.5795E-01 2.6110

C-C 40 2.5E-03 1.2153E-02 3.7014 3.3732E-02 3.4076

method 80 6.25E-04 1.2048E-03 3.3344 3.3640E-03 3.3259

160 1.5625E-04 1.3999E-04 3.1054 3.6877E-04 3.1894

10 4.0E-02 9.7806E-01 1.6220E-00

20 1.0E-02 7.4734E-01 0.3882 1.2326E-00 0.3961

NC-NC 40 2.5E-03 3.6619E-02 4.3511 6.2686E-02 4.2974

method 80 6.25E-04 1.3171E-03 4.7972 2.2584E-03 4.7948

160 1.5625E-04 4.8798E-05 4.7544 8.3729E-05 4.7534
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Table 3: Convergence rates, cnoidal wave, uniform

mesh andq = 4.
10 4.0E-02 8.6715E-01 1.4038E-00

C-C 20 5.0E-03 7.3741E-03 6.8777 1.5963E-02 6.4585

method 40 6.25E-04 2.2954E-04 5.0056 3.8679E-04 5.3670

∆t = C∆x3 80 7.8125E-05 3.6186E-06 5.9872 6.1312E-06 5.9792

160 9.765625E-06 5.6694E-08 5.9961 1.0019E-07 5.9354

10 4.0E-02 1.1452E-00 1.7881E-00

20 5.0E-03 2.6086E-02 5.4562 4.4169E-02 5.3392

NC-NC 40 6.25E-04 3.3303E-04 6.2914 5.6778E-04 6.2816

method 80 7.8125E-05 4.4421E-06 6.2283 7.5900E-06 6.2251

160 9.765625E-06 6.3137E-08 6.1366 1.0900E-07 6.1217
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Convergence rates: Nonuniform
mesh

Table 4: cnoidal wave,q = 2, non-uniform mesh of

type2∆x,∆x, · · · , 2∆x,∆x.
N ∆t L2 error order L∞ error order

10 4.0E-02 1.3340E-00 5.8547E-00

20 1.0E-02 9.1940E-01 0.5370 1.6786E-00 1.8023

C-C 40 2.5E-03 6.1914E-01 0.5704 1.0938E-00 0.6179

method 80 6.25E-04 2.3766E-01 1.3814 3.9930E-01 1.4538

160 1.5625E-04 6.5006E-02 1.8703 1.1072E-01 1.8506

320 3.90625E-05 1.6573E-02 1.9718 2.8665E-02 1.9496

10 4.0E-02 6.8821E-01 1.2660E-00

20 1.0E-02 6.5336E-01 0.0750 1.2087E-00 0.0668

NC-NC 40 2.5E-03 9.7878E-01 -0.5831 1.6384E-00 -0.4388

method 80 6.25E-04 1.2109E-00 -0.3070 1.8813E-00 -0.1994

160 1.5625E-04 3.2924E-01 1.8787 5.5988E-01 1.7485

320 3.90625E-05 4.4494E-02 2.8875 7.6207E-02 2.8771
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solution profiles
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Figure 1: Comparison of C-C, NC-C and NC-NC

methods, cnoidal wave problemt = 10 with q = 2.

Left: 80 uniform cells; Right:40 uniform cells.

Conservative Discontinuous Galerkin MethodsFor TheGeneralized Korteweg-de Vries equation – p. 21/32



X
X
XXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX
XX

XX
XX
XX
XX
XX
XX
X
X
X
X
X
XX
X
X
X
XX
XX
XX
XXXXXXX

X
X
XX
X
XX
X
X
X
XX
X
X
XX
XX
XXXXXXXXXXXXXXXXXXXXXXX

XXX
XX

XX
XX
XX
XX
XX
XX
X
X
X
X
X
XX
X
X
X
XX
XX
XX
XXXXXXX

X
X
XX
X
XX
X
X
X
XX
X

x

u

0 0.25 0.5 0.75 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

exact
C-C
NC-C
NC-NC

X

X
X
X
XX

XXXXXXXXXXXXXXX
XX

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
XX

XXXX
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
XX

XXXXXXXXXXXXXXX
XX

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
XX

XXXX
X
X
X
X
X
X
X
X
X
X
X
X
X
X

x

u

0 0.25 0.5 0.75 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

exact
C-C
NC-C
NC-NC

X

Figure 2: comparison of C-C, NC-C and NC-NC meth-

ods, cnoidal wave problem, timet = 10 with q = 2.

Left: 160 uniform cells; Right:80 nonuniform cells.
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Figure 3: comparison of C-C, NC-C and NC-NC meth-

ods, cnoidal wave problem,q = 3 and 80 uniform

cells. Left: timet = 10; Right: t = 200.
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solitary wave solution
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ods, solitary wave problem,t = 25 with q = 2. Left:

40 uniform cells; Right:80 uniform cells.
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Dependence ofL2 error on t
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Figure 5: cnoidal wave problem,q = 2 and80 uni-

form cells. Right graph is a zoom-in version of the left

graph.
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Figure 6: Left: cnoidal wave,q = 3 and80 uniform

cells; Right: solitary wave,q = 2 and80 uniform cells.
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Shape error
We define “Shape error" aŝe(x, t) = minξ∈[−0.5,0.5] ||uh(x, t) − u(x+ ξ, t)||
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Figure 7: Time history ofL2 error and shape error of

conservative method withq = 2 and80 uniform cells.

Left: the cnoidal wave problem, Right: the solitary

wave
Conservative Discontinuous Galerkin MethodsFor TheGeneralized Korteweg-de Vries equation – p. 27/32



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1

"plot_data"
"plot_ex"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  5  10  15  20  25

"error_t"

Figure 8: Dissipative method withq = 3 and41 uni-

form cells.
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Figure 9: Conservative method withq = 3 and41 uni-

form cells.
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Finite-time blowup
p = 5

Initial profile: Perturbed solitary wave, amplitude=2.02

Adaptive code, refinement/coarsening for spatial mesh

adaptive stepsize selection

Initial stepsize∆t = 10−4

M = 200
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