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Krylov Deferred Corrections

•What is an OPTIMAL stepsize?

•High Order/Spectral Methods for Initial Value 
Problems? Why? Why NOT?

•MoL or MoL^T?



Fundamentals I

Newton-Krylov Methods

How to solve f(x)=0?



Newton’s Method

Newton’s method:

 xn+1=xn-δx

where    Jf(xn) δx=b         (b=f(xn))

Assume x has N unknowns, then in general 
each iteration requires O(N^3) work.

Can we do better?



Krylov Subspace Methods

Suppose Jf(xn)=I-C, and most eigenvalues of 
C are clustered close to 0, then we can search 
for the optimal solution in the Krylov subspace 
defined by

 Kq(C,b)={b, Cb, C^2b, …, C^qb}

This should converge very fast! Consider 
Neumann series 1/(1-a)=1+a+a^2+a^3+…



Newton-Krylov Methods

•Newton Method and Krylov methods can be intertwined.

•Efficient implementation requires
–A formulation such that Jf is close to I (preconditioning)

–Efficient way to evaluate Jfb (fast matrix vector product). Here, a 
difference approximation can be used.

Jf(xn)b=(f(xn+hb)-f(xn))/h

Reference: C. T. Kelley, Solving Nonlinear Equations with Newton’s 
Method, SIAM, 2003



Fundamental II.

  

 Deferred Correction Methods.

Consider ODE initial value problem



Classical Deferred Correction

•Iterated defect corrections, Zadunaisky, 
1964;

•Iterated deferred corrections, Peyrera, 1967.

Idea: Iteratively improve the approximate 
solution using a low order method.



Classical Deferred Correction

Divide one “BIG" time step [Tn, Tn+1] (= [0, T] = [t0, tm]) into m 
smaller subintervals by using points ti;

Step 0: [Compute initial approximation]

Using a kth order method, compute an approximate solution 
Φi[0] ~ Φ (ti) at the grid points on the interval [0, T].

Example: Use the backward Euler's method.



Classical Deferred Correction

Step 1: [Compute successive corrections]

1) Compute an interpolating polynomial P(t) of Φi[0] .

2) Define the error function δ(t) = Φ(t)-P(t).

3) Form the error equation

 δ’(t) = f(t, δ(t) + P(t))) – P’ (t)

 δ(0) = 0.

4) Using a Kth order method, compute an approximate 
solution πi at the grid points ti.

5) Define a new approximate solution Φi[1] = Φi[0] + π

6) Go back to 1) if necessary.



Classical Deferred Correction

After J corrections, error has order
O(h min(K+J k,m)) .

• Not recommended for higher order (>8):
–The equal spaced interpolation error may increase without bound near 
the ends of the interpolation interval due to oscillations as the degree of 
the polynomial increases;
–Numerical differentiation loses accuracy. ( L. N. Trefethen and M. R. 
Trummer, An instability phenomenon in spectral methods, SIAM J. Numer. 
Anal., 24 (1987).

• How can we overcome this?



Spectral Deferred Correction

•Gaussian quadrature nodes.

Remark: Interpolation at Gaussian nodes = Orthogonal 
polynomial + Gaussian quadrature

•The Picard integral equation:

Φ(t)= Φ(0)+∫f(τ, Φ(τ))dτ

Remark: This avoids numerical differentiation.

- Reference: A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred 
correction methods for ordinary differential equations, BIT, 40(2), 2000.12.



SDC works!

•Extremely high order and good stability properties can be 
derived by implicit methods.

•Left one is for 20th order; right one is for 12th order:



From the Original Paper

●“Our preliminary tests indicate that the schemes with orders between 8 
and 20 are roughly competitive with the best existing ones”.
●“If actual accuracies are compared, rather than requested precision, a 
slightly different picture begins to emerge. The singly implicit deferred 
correction scheme achieves about eight digits of accuracy at a requested 
tolerance of 1e-5, using 4, 839 function calls. EULSIM, on the other hand, 
achieves eight digits of accuracy at a requested tolerance of 1e-10, using 
10, 490 function calls”.
●“Another interesting comparison can be made at ten digits of accuracy. 
The singly implicit deferred correction scheme requires 5, 887 function 
calls while the RADAU code of Hairer and Wanner [11], which is more 
efficient in this regime than EULSIM, requires 6, 517”.



Krylov Deferred Correction Methods



Problems with SDC.

1.Order Reduction

Consider the “stiff” system

Stiff: at least two scales in the system.

RK methods suffer from this problem too.



SDC (and other classical solver) results



Problems with SDC.

2. For DAE problems, the method may be 
divergent!!!

What is DAE: F(Y,Y’,t)=0

Example:  y’(t)=f(y,z)

       0=g(y,z)



SDC is divergent!



Linear Problem Study



Spectral Integration



Linear Problem Study



Linear Problem Study



Linear Problem Study



What we want vs What we can



Low Order Preconditioner



Why Order Reduction

•When there are “bad” eigenvalues in L, 
Neumann series will converge slowly.



SDC: Pros and Cons

•Pro: Low order method is a good 
preconditioner for high order method.

•Con: Neumann series type iteration may 
converge very slowly.



Krylov Deferred Correction Methods

Idea:

1.Use the Good preconditioner

2.Compute the solution using Newton-Krylov 
methods, instead of Neumann series 
expansion.



KDC Method for DAEs

●Consider a general DAE (ODEs are index 0 
DAE)

Define Y(t)=y’(t) as the new unknown, we 
have a Picard type equation

Its discretized version is



Krylov Deferred Correction

•Use Newton-Krylov solvers to find the zero of 
the preconditioned system.

•The function evaluation for each iteration is 
simplify one SDC correction.



Generalization to PDEs

•Consider PDEs of the form

• First discretize in time using Gaussian 
nodes, and define

•The discretized high order (pseudo-spectral) 
formulation is



KDC Accelerated MoLT

•The error equation is given by

•Assume it is easy to derive the low order 
solution

•We have a preconditioned system



KDC Accelerated MoLT: 
Pros and Cons

Pros:

•High Order in time, with optimized stepsize.

•Can use existing adaptive parallel elliptic 
equation solvers (MADNESS, FMM 
accelerated IEM)

Cons:

•Further analysis needed.

•Code development.



Analytical Results

Theorem:

For ODE problems, the KDC method 
using p Gaussian points is order 2p (super 
convergence), A-stable, B-stable, L-stable, 
symplectic (structure preserving), and 
symmetric (time reversible).



Numerical Results



The Ring Modulator Problem



DAE Problem

●Consider



Stepsize Comparison



Wheelset Problem



A Simple PDE Example

•We consider the PDE

With Periodic boundary condition and exact 
solution

 



Order of the Method



Summary

•Lower order methods are good 
preconditioners for higher order methods.

•The resulting system can be solved efficiently 
using Newton-Krylov methods.

•Based on this, it is possible to design 
“optimal” time stepping strategies for initial 
value problems



Thanks


	Multi-wavelet Based MADNESS and
Krylov Deferred Corrections
	Krylov Deferred Corrections
	Fundamentals I
	Newton’s Method
	Krylov Subspace Methods
	Newton-Krylov Methods
	Fundamental II.
	Classical Deferred Correction
	Classical Deferred Correction
	Classical Deferred Correction
	Classical Deferred Correction
	Spectral Deferred Correction
	SDC works!
	From the Original Paper
	page59
	Problems with SDC.
	SDC (and other classical solver) results
	Problems with SDC.
	SDC is divergent!
	Linear Problem Study
	Spectral Integration
	Linear Problem Study
	Linear Problem Study
	Slide 24
	What we want vs What we can
	Low Order Preconditioner
	Why Order Reduction
	SDC: Pros and Cons
	Slide 29
	KDC Method for DAEs
	Krylov Deferred Correction
	Generalization to PDEs
	KDC Accelerated MoLT
	KDC Accelerated MoLT: 
Pros and Cons
	Analytical Results
	Numerical Results
	The Ring Modulator Problem
	DAE Problem
	Stepsize Comparison
	Wheelset Problem
	A Simple PDE Example
	Order of the Method
	Summary
	page95

