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» Particle methods for plasma simulation (PIC)

» State of the art algorithm: explicit approach

» Status of implicit PIC: problems and limitations

» Our approach: energy and charge-conserving implicit PIC

<~ Vlasov-Ampere vs. Vlasov-Poisson

~ Exact energy-conserving formulation

~ Exact charge-conserving mover

~ Momentum conservation error control: orbit adaptivity

» Implementation on GPU
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Particle-in-cell (PIC) methods for kinetic plasma simulation
oif +v- Vf—l—— Vaf = (?}{)

» lIgnoring collisions=- Lagrangian solution by the method of characteristics:
f(x,v,t):fo( dtvv——/th);xt: 0) =xp; v(t=0)=vy
» PIC approach follows characteristics employing macroparticles (volumes in phase space)

fx,v,t)=%,6(x—xp)6(v—vp)
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State-of-the-art classical PIC algorithm is explicit

» Classical explicit PIC approach “leap-frogs” particle positions and velocities, solves for fields after
position update:
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(E.B)j e—tp, J); [Birdsall and Langdon, Plasma physics via computer simulation]

» Severe performance limitations:

= Ax < Apepye (finite-grid instability: enforces a minimum spatial resolution)
= wpAt <1 (CFL-type instability: enforces a minimum temporal resolution)
<~ Inefficient for long-time, large-scale integrations

» In the presence of strong magnetic fields, gyro-averaging the Vlasov-Maxwell model can signif-
icantly ameliorate these limitations, but there are other issues (e.g. not asymptotic preserving,
required order of expansion to capture some physical effects, treatment of nonlinear terms)

WE FOCUS ON ELECTROSTATIC PIC AS A PROOF OF PRINCIPLE
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What about implicit PIC?

» Implicit PIC holds the promise of overcoming the difficulties and inefficiencies of explicit methods
» Exploration of implicit PIC started in the 1980s

> Moment method [Mason, 1981; Brackbill, 1982]
> Direct method [Friedman, Langdon, Cohen, 1981]

» Early approaches used linearized, semi-implicit formulations:

« Lack of nonlinear convergence
< Inconsistencies between particles and moments
< Inaccuracies! —Plasma self-heating/cooling [Cohen, 1989]

‘ Our goal is to explore the viability of a nonlinearly converged, fully implicit PIC algorithm I

WHAT IS THE NATURE OF THE RESULTING FULLY-COUPLED ALGEBRAIC SYSTEM?
IS IT PRACTICAL TO INVERT?
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Fully implicit PIC formulation

» A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):
fn—l—l fn fn—i—l _|_fn q (Dn—i—l + P fn+1 _|_fn
A TVV T mY 2 VT
vzq)nJrl — /dV fn+1 (X, v, t)

=0

» In PIC, ™1 is sampled by a large collection of particles in phase space, {x,v}’;ﬂ.

~ There are N, particles, each particle requiring 2 x d equations (d —dimensions),
< Field requires N, equations, one per grid point.

» |f implemented naively, an impractically large algebraic system of equations results:

G({x v}!*, {®"1}) =0 | — dim(G) = 2N, + N, > N,

=~ No current computing mainframe can afford the memory requirements
= Algorithmic issues are showstoppers (e.g., how to precondition it?)

» An alternative strategy exists: nonlinear elimination (particle enslavement)
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Particle enslavement (nonlinear elimination)

» Full residual G({x,v},, {®}g) = 0 is impractical to solve

~ \ery large storage requirements
= Inflexible particle-orbit treatment (crucial for long-term accuracy)

» Alternatively, one can nonlinearly eliminate particle quantities so that they are not explicit
unknowns:

«~ Formally, particle equations of motion are functionals of the electrostatic potential:

x1;+1 — xp[q)n+1] ; vz—l—l — vp[q)n+1]

G(Xpn+1, Vpn+1’ (I)n+1> — G(x[¢n+1],v[¢n+1]’¢n+l) — G(q)n+1>

‘ Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only! I

» JFNK storage requirements are dramatically decreased, making it tractable:

« Solver storage requirements « N,, comparable to a fluid simulation
~ Particle quantities = auxiliary variables: only a single copy of particle population
needs to be maintained in memory throughout the nonlinear iteration
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Jacobian-Free Newton-Krylov Methods

» After spatial and temporal discretization = a large set of nonlinear equations: | G(¥"*1)

I
ol

» Converging nonlinear couplings requires iteration: Newton-Raphson method:

G| =
ﬁ kéxk = —G(xk)

» Jacobian linear systems result, which require a linear solver = Krylov subspace methods (GMRES)

= Only require matrix-vector products to proceed.
~ Jacobian-vector product can be computed Jacobian-free:

G\ . . .. G(F+eif)— G
ox ky_]ky_llg(} €

=~ Krylov methods can be easily preconditioned: Pk_1 ~ ]k_1
JiP 1 Pox = —Gy

» In this study, we will use the identity preconditioner.
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Field equation: Vlasov-Poisson vs. Vlasov-Ampere

» Nonlinear elimination procedure leads to G(®) = 0 (or G(E) = 0)

» Two formulations are possible:

Vlasov-Poisson (VP) Vlasov-Ampére (VA)
E
f +0df +°0.f = 0 JE
oif +v0xf +-—0,f = 0
p m
o,E = — , .
€0 €E+] = (j)
E = —09
Two systems are equivalent in continuum, but not in the discrete.
» Conventionally used in explicit PIC. » Exact local charge conservation.
» Exact local charge conservation. » Exact global energy conservation.
» Exact global momentum conservation. » Suitable for orbit averaging.

» Unstable with orbit averaging in implicit | » Can be extended to electromagnetic sys-
context [Cohen and Freis, 1982]. tem.

» We will show, however, that an equivalent energy-conserving VP formulation exists.
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Energy-conserving (EC) Vlasov-Ampeére discretization

» Fully implicit Crank-Nicolson time discretization:

“ o+l n
Ef+ - E] n+li2g Cn+l/2 ~0 . .
b= T 2% (x;—%x, )= In time:
: ; centered, 2" order;
n+ n n+ n . . .
Y % (Yo IFVs implicit;
At 2 unconditionally stable;
. VI\ G ] - - -
%tV _ 4 3 E'+[E™ S(x. - £ non-dissipative.
At m PR

» (C-N enforces energy conservation to numerical round-off:

mp ol - . En+1 _ En En+1 + En )
—\\V +V V -V = - mv + 8 E = const.
; O V) Z f = E 2

» As a result, the formulation does not suffer from finite-grid instabilities (normal mode analysis)

= Unconstrained spatial resolution: | Ax £ Ap |!!

» Energy conservation is only realized when particles and fields are nonlinearly converged:

~ Requires a tight nonlinear tolerance
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Algorithmic implementation details

» The nonlinear residual formulation G(E"*!) based on Vlasov-Ampere formulation is as follows:

1. Input E (given by JFNK iterative method)
2. Move particles (i.e., find x,[E], v,|E] by solving equations of motion)
(a) Requires inner (local) nonlinear iteration: Picard (not stiff)
(b) Can be as complicated as we desire (substepping, adaptivity, etc)
3. Compute moments (current)
4. Form Vlasov-Ampere equation residual
5. return

» Because particle move is performed within function evaluation, we have much freedom.
» Rest of the talk will describe improvements in particle mover to ensure long-term accuracy

=~ Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact
energy conservation)

~ Exact charge conservation strategy (a new charge-conserving particle mover)

=~ Orbit adaptivity (to improve momentum conservation)
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Particle orbit substepping

» In applications of interest, field time-scale (At) and orbit time-scale (AT) can be well separated

~ Fields evolve slowly (dynamical time scale, At)
> Particle orbits may still undergo rapid change (AT < At)

» Particle orbits need to be resolved to avoid large orbit integration errors

‘ Accurate orbit integration requires particle substepping! I

» Field does not change appreciably: time-averaged value over long time scale is sufficient
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Energy conservation and orbit averaging

» Particle substepping breaks energy conservation.

» Energy conservation theorem can be recovered by orbit averaging Ampére’s law:

‘ . 1 t+At Ent+l _ En _ .
cE+i={) E/t drf] =5 @+ = ()

» Orbit-averaged current is found as:

_ 1 t—i—Atd 1 Ny
| = — |~ — — A v
] At/t T] At;;qpva(x Xp)AT

» With these definitions, exact energy conservation is recovered:

n n n+1 n
My vi1 v v+1 vy __ Ertl — ErErTL L EY
;; 5 O F )T — ) = =) ey

OAK
RIDGE

National Laboratory

Luis Chacon, chaconl@ornl.gov



Exact charge conservation: charge-conserving particle mover

» Local charge conservation (enforced in the continuum by Gauss' law) is violated in discrete
Vlasov-Ampeére formulation.

» Local charge conservation is essential to ensure long-term accuracy of numerical algorithm

» Exact charge conservation requires a particle mover that satisfies a discrete charge continuity
equation, dyp + V - j = 0 [Buneman 1968, Morse and Nielson, 1971]

~ Standard strategy based on current redistribution when particle crosses boundary.
= |In our context, current redistribution breaks energy conservation. Need new strategy.

‘ Here, charge conservation is enforced by stopping particles at cell boundaries. I

f\ Sm(x_xi-i-%) )

‘\ Pir) = LpTr—ax
+

(m=1,2) . nti
/ Sm—1(X—X; -] = e
fi=Lyqopg = P AV =0y
_ _Ax
S;n(x> Sim—1(x+ > )Axsml(x > ) /
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Equivalence of VA and VP in the discrete form

» Exact local charge conservation allows a strict equivalence between Vlasov-Ampere and
Vlasov-Poisson in the discrete:

n+l n
VA% 80 Ei Ei +J-:z+l/2=O,
At
n+l n n+1/2 n+1/2
cc>  Pinp=Pivpn _ _Jin T Ji ’ = E;:l — E;’”l = p;:llex.e\/p
At Ax

VP> E;:l - Ezn = p?+1/2Ax=

THEREFORE7 OUR APPROACH IS EQUIVALENT TO AN
exactly energy-conserving IMPLICIT Vlasov-Poisson FORMULATION.

» Properties of “equivalent” implicit Vlasov-Poisson:

= No orbit-averaging is needed (charge density p is not orbit-averaged).
~ It remains exactly energy conserving (but one needs to accumulate orbit-averaged
current to check)

» Why Vlasov-Ampere? Generalizes to the case with magnetic fields!
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Momentum conservation: adaptive orbit integrator

» EC/CC PIC algorithm does not enforce momentum conservation exactly.
=~ Controlling error in momentum conservation is crucial for long-term accuracy

» Orbit integration errors can significantly affect momentum conservation: particle tunneling

» Adaptive orbit integration can be effective in suppressing particle

Potential

tunneling and thus improve momentum conservation F barrier
» Approach: find At to control local truncation error "\"?:"'T
Adaptive steppin-;»o/ )
qpAT Ep vy, i
HleH p— 2 a_E ’Z)O —|— HOT < €0 —|_ GrAT qu Ndn-adaptive
dxlp”p m
» Electric field gradient is estimated from cell-based gradient:
OE| .~ Eit1—E - - - el S
ox|p ~ TAr Provides potential barrier! IS

\/

Quadratic equation is solved for AT.

\/

Particle is stopped at cell boundaries to ensure charge conservation.
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Landau damping test

| | At=0.1
0.001 R explicit ----------- E
implicit
~ lytical
S 0.0001 } analytica
8
NLL] 16-05 F
1e-06 |
» Periodic domain [0,1], N,, = 32 . e .
. 0 10 20 30 40 50
» One-step energy-conserving (EC) t
Crank-Nicolson solver 1
. . . o A2
» Single-species (electrons; cold uniform o T e v T —
. F implicit ]
ion background), N, = 4 x 10* analytical
" " 001} ]
» |nitial condition:
f(x,v,t =0) = fo[l + acos(kx)] 3 0.001
W 0.0001
1e-05
16-06 | ]
0 10 20 30 40 50
t
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Two-stream test: impact of charge conservation

»  Periodic domain [0,1], N, = 64

» One-step EC Crank-Nicolson solver
» Single-species (electrons), N, = 10*
» f(x,v,t =0) = fo[1+ acos(kx)]

102

10710
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lon acoustic wave (IAW): accuracy impact of different EC movers
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|IAW: explicit vs. implicit (accuracy)

» Compare large-time-step implicit AW vs explicit at CFL
» Found that explicit at CFL was not as accurate as implicit with At > Atcpp !

1e-01 —_—————
1e-02 AYATATAY
-
1e-03
1e-04 R S
ex,At=0.1 ——
° 1 ex, At=0.005 2
t (x1000) im,At=4 -

» CFL time-step is an “average” quantity (based on thermal velocity), and thus may still introduce
inaccuracies in fast particles.
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IAVW: effect on nonlinear tolerance

» Exact energy conservation of implicit mover only holds for exact nonlinear solve

» |t is of interest to understand robustness of mover when employing finite nonlinear tolerances

1e-01 T T T

4 f 4 / 4 f [ 4 4
° FXENEFYNENE N N\ AV ERY/]
~ 1e-02 : - ARVERVERVERYERV VRSN S A (A G GER
K | b 1 i 1 Vi 4 Y] Y ¥ % ! \J
A IR
i i b \ ] it -
1 . : 1

1e-03 | | | t im,cn, g ]

| | 16-6 —— a
1 1 1 t
R\ 3\ of " Iy ) 77 kg ) . K
NN TINTINTIN AN TNTN TN TN TNAN NN\ NN\ NS
NN d N N N N N N NS N N N N s\ N WA
— f F/ A W B I/ W/ A 7 B/ B V7 A\ V1 B\ K B U BV wlow R \ YA
:: e' 1 % hH b W s i\ s\ W\ W | \ \
[ 1 hH Y ilf b .
) y K 1
y

10-03 | | - im,sub-cn,g;

o 1e02 | | VRIS

| ' " im,acc-cn,e
1e-03 | | | o . t

0 0.5 1 15 2
t (x1000)

Adaptive-CC mover is the most robust!
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lon acoustic shock wave
t= 300, 1500, 2300, 3000.
31 ex, dt= 0.1 T T i
im, dt= 1.0
im, dt=10.0
~ 2t + +
>
3
s W
1 T N e S \ I 4
0 t t t t t t t t t t t t t t t t t t t t t t t
0.4} 1 1
T q T

20 40 60 80 100 120 140

X

20 40 60 80 100 120 140
X

20 40 60 80 100 120 140 20 40

X

60 80 100 120 140
X

» Propagating IAW with perturbation level € = 0.4, with 4000 particles/cell.
» Realistic mass ratio (m;/m, = 2000).
» Shock wave length scale~Debye length.
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CPU gain potential of implicit PIC vs. explicit PIC

» Back-of-the-envelope estimate of CPU gain:

T L ? solver Cimp

» Using reasonable estimates:

n,= const.

AT, ~ 0-1% (kv AT<1)
V

th
At, ~0.1/w,
kAx, ~0.2
kAx, ~ A, 13
Y, 1 ! >>1  if khy<<1.
CPU, (kA" N, D

OAK Coronado
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Atimp . CPU,, N (Aximp>d ATimp 1
FEATimp ’ CPuimp Axex Atex NFE
10 0.628 1 50 13.7 0.25
20 0314 2 100 20 0.58
40 0.157 A4 200 31.2 0.95
80 0.078 8 200 35.8 2.18
160 0.039 16 200 43.6 5.41
160 0.039 16 400 72.1 3.64
320 0.02 32 200 496 154
320 002 32 400 676 11.96
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Implementation of ACC particle mover on GPU architectures

2

» Particle orbits are independent of each other = PIC algorithms are naturally data parallel.

» Potential performance killers for our implicit PIC ACC particle mover:

__________________

__________________

( time leveln )

Maxwell eqs

JF|

NK

NONLINEAR ITERATION

n+l n+l
E .B

oo
OCessy,

Fluid moments

Nonlinear
elimination

n+l n+l_n+l
Ug > Eg s

{ time level n+1

Particle mover

Xlr‘Hl’VIr)Hl

]
Closure relations

+1 n+l
l'ln g e
o o

[Convergence

> Particle motion is self-adaptive (orbit accuracy) =workload imbalances.
« Particles stop at cell boundaries (charge conservation) =~dynamic control flows.

2Chen, Chacon, Barnes, JCP, submitted
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Algorithm optimization on GPU: roofline model’

Balanced
Operational Intensit
Memory-bounded ‘p ’y Compute-bounded
| | VPealé Theo. Pertf. (1581 GFlop/s)
e AETTTT———— Fused mul-add
1024 -
e Int mul-add
' BN S —— | Int add
256 | o
e, Implicit particle mover (1D)

64

Operational throughput (GOp/s)

0.25 1 4 16 64
Operational Intensity (Op/Byte)

35. Williams, A. Waterman, and D. Patterson, Comm. ACM, 52 (94) 2009
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| rsqrt, __ fdividef

| Sart (IEEE)

!/ (IEEE)
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Optimization of ACC implicit particle mover

» Computationally intensive —> compute-bounded (vs. explicit schemes, typically memory-bounded)

» While loop introduces control flow latencies and branch divergences.

» Requires expensive operations (sqrt, division), atomicAdd (for moment accumulation)

Estimate sub- L2 norm, quadratic
timestep equation
Crank-Nicolson Picard iteration
update

Particle cell- Quadratic equation
Crossing

Collect current(VA) Shared—>global
If(dtp==dt) break;

L
Collect charge(VP)

OAK
[ S —

L1 norm, split *Use fast operations.
estimate w. abs and

rel tol. *Use fast memory.
Direct solve using *Avoid memory

fast div + correction collisions.

Newton’s method ¥ *Use regular data-

structure.

Register—=> / _~ *Load balance.
shared—=>global

Particle sort;

—
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Run time (ms)

40 : .
L (VA LD+ST e | |
( )Time—estimathCN —
Cell-crossing mmmm |
Atomic-accumulation I |
20 + .
10
0
Baseline Optimized
OAK Garrae
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Performance results

on GPU (single precision)

» Factor of 3 overall improvement after
optimizations

- v" Absolute efficiency 20-25%

= real ops/Absolute theoretical peak (=1.6TGOps)

v Intrinsic efficiency 50-70%
= real ops/theoretical peak of the algorithm (-~600GOps)

» Memory operations are negligible.

« Atomic accumulations are expensive in VA
(negligible in VP).
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Sensitivity of GPU performance and efficiency

Nvidia GeForce GTX 580

500 | | | | | | | .
Vlasov-Ampére mmmmmm - 03
400 | Vlasov-Poisson mmmmm -
% 300 - - 02 ¢
& <
Q 200 - =
© - 01 5
100
O At T 1.0 " 2.0 " 4.0 ' 8.0 T — T — T T80 =0
E o1 — - 01 03 05 07 09 — — — 09
Np 216 — — — 216 217 218 219 220

» All operations including floating, integer, and special functions are counted.
» Varied E, At, N, to test performance sensitivity
= Performance is most sensitive to At: more efficient for large At!

» 300 to 400 GOps/s (20-30% efficiency of GPU peak) are obtained for large time steps, strong
fields and many particles.
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GPU scaling with number of threads

512

256 | Scale up to theoretical limit

Consistent with

Little’s law:

Needed parallelism
= Latency x # CUDA cores

= 18 clock cycles
Instruction level latency (Fermi)

128

64

32

16

Operational Throughput (GOp/s)

1 | | I | | |
32 64 128 256 512 1024 2048 4096 8192 16384

Number of threads

» Hardware limit is 512 threads (=32 cores/SMx16 SM/GPU) running concurrently;
» Large number of threads (>>512) are useful to hide latencies.
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Intel Xeon
X5460@3.16GHz
Single-core
theoretical peak
performance (SP)
25.2 GFLOPS

CPU, Serial

Run time {normalized)

0.1

0.01 -

0.001

CPU-GPU speedup

| 1
Vilasov-Ampére

Viasov-Poisson 1 |

ol

bhaseline

u
optimized

. GPU
baseline optimized

» Straightforward GPU implementation accelerates ~100 times;

Nvidia Geforce
GTX 580@1.54GHz
many-core
theoretical peak
performance (SP)
1.58 TFLOPS

GPU, Parallel

» Optimizations have larger effects on GPU; not all optimizations introduced are effective on CPU.
» GPU-CPU speedup ~ 200 — 300, depending on algorithm (VA, VP)
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lon acoustic wave: accuracy and performance comparison

Speed-up (CPU/GPU): 130

1e-01 T ‘ ‘ T T T T ‘ ‘ ‘ T T T T
\
o 1e-02 |
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500 | 1l
) l
X
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Elg 2es !
2 I
20 o
o<
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§‘§‘Q_ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
z 0 2 4 6 8
t (x1000)
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Summary and conclusions

» We have demonstrated, for the first time, a fully implicit, fully nonlinear PIC formulation that
features:

~ Exact charge conservation (via a novel particle mover strategy).

~ Exact energy conservation (no particle self-heating or self-cooling).

~ Adaptive particle orbit integrator to control errors in momentum conservation.
» The approach has been shown to be free of CFL and finite-grid numerical instabilities.
» As a result, the method is able to take time steps many times larger than explicit, and resolutions
many times coarser.
» The method has much potential for efficiency gains vs. explicit, with the CPU speedup scaling as

(kAp)~%1/Nrk.
» Central to our implementation is the concept of particle enslavement. Key to realizing the

potential of the approach is to minimize the number of nonlinear function evaluations.

~ This, in turn, requires preconditioning, which will be the subject of future work.
» \We have generalized formulation to use spatial adaptivity via mapped coordinates (not shown).
» We have ported the algorithm to GPU architectures (NVIDIA GeForce GTX 580)

~ 20-30% efficiency of GPU peak (single precision)

~ 130x speedup (full simulation) over a single Intel(R) Xeon(R) CPU X5460 © 3.16GHz

(single precision)
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