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Figure 1: Some Applications of Thin Films. Images from Google Images

2



Figure 2: A quantum dot structure – InAs/GaAs on GaAs with GaAs

buffers.

Lita, Goldman, Phillips, & Bhattacharya, Nanometer-scale studies of

vertical organization and evolution of stacked self assembled InAs/GaAs

quantum dots, Appl. Phys. Lett. (1999).
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Stacked Quantum Dot Fabrication

GaAs Buffer Layer

GaAs Buffer Layer

InAs/GaAs Layer

InAs/GaAs Layer

GaAs Substrate

Stacked Quantum Dots are made by Molecular Beam Epitaxy.

Alternating layers of different materials are deposited onto a

substrate.
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ELASTIC ENERGY

Cells
Unit

Due to misfit the bottom configuration has less elastic energy than

the top one.
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GROWTH MODES

Wetting Layer

Layer-by-Layer
(FM)

-observed when elastic
effects are negligible

-surface forces
dominate

-minimize
surface area

Stranski-Krastanov
(SK)

-expected when elastic
effects are significant.

-commonly observed
in experiments

-results from
an interplay
between elastic and
surface forces

Volmer-Weber
(VM)

-expected when elastic
effects are
overwhelming

-not commonly
observed in
experiments
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Modeling and Computational Approaches

• Molecular Dynamics

• Kinetic Monte Carlo (Temporally Coarse Grained MD)

• Semi-Discrete –Step flow Models ( Level Set Methods, Phase

Field)

• Full Continuum (Phase Field, Sharp Interface)
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Our Focus

• This talk will focus on Kinetic Monte Carlo.

• As a point of comparison we will briefly review a well used

continuum model.
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Continuum Model for Film Growth

with Elastic Effects
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Continuum Model

• Film is assumed to be in:

– mechanical equilibrium

– local thermodynamic equilibrium

• Free Energy: F= Elastic energy + Surface energy

• F = F [h]; h = h(x, t) where h is the film profile
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Continuum Model

Film

Substrate

Ω = Film + Substrate

∂Ω = Film/Vacuum Interface

χF = characteristic function
of the film

Elastic Energy

W =

∫

Ω

w(x, y)dxdy

w =
∑

ij cij(eij − χF e0
ij)

2

eij =strain tensor, e0
ij misfit strain

Surface Energy

S =
∫

∂Ω
γ(n)ds

Free Energy

F = S + W
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Continuum Model

• Surface Chemical Potential: F - F(one surface atom removed)

• Chemical Potential: µ = µ(x) = va
δF
δh

• Flux of Atoms: j = −νD
kT ∇sµ (Herring’s Law)

• Mass Conservation: ht + va∇s · j = 0

where ∇s is the surface gradient operator, D is the surface

diffusivity, ν is the number density of surface atoms, and va is the

atomic volume.

12



Kinetic Monte Carlo Model for Film Growth

with Elastic Effects
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Kinetic Monte Carlo - Basic Idea

Current State Transistion State Final State
E

ne
rg

y

Reaction Coordinate

∆Ε

energy 

KMC is based on transition state theory
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Kinetic Monte Carlo - Basic Idea

• Rates are based on transition state theory which gives

R = ω exp(−∆E/kT )

• ∆E = E(current state) − E(transition state)

• ω is the attempt frequency, kT is the thermal energy

• One needs to know or assume what are the important events
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Ball and Spring Model [Baskaran, Devita, Smereka, (2010)]

• Atoms are on a square lattice

• Semi-infinite in the y-direction

• Periodic in the x-direction

• Nearest and next to nearest neighbor
bonds with strengths: γSS , γSG, γGG

• Nearest and next to nearest neighbor
springs with contants: kL and kD

• System evolves by letting the surface
atoms hop: Surface Diffusion

Red = “Germanium”
Green = “Silicon”

∗ without intermixing this model is due to:
Orr, Kessler, Snyder, and Sander (1992)
Lam, Lee and Sander (2002)
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The Model

• Hopping Rate Rp = ω exp [(U − Up)/kBT ]

• U = total energy, Up=total energy without atom p

• U =

N
∑

i>j

φ(rij) where φ(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

• ω is a prefactor, kBT is the thermal energy

• rij is the distance between atoms i and j

• ǫij =
√

ǫiǫj and σij =
σi+σj

2

• ǫSi = 0.4, ǫGe = 0.3387, σSi = 2.731, σGe = (1 + µ)σSi

• µ = σSi−σGe

σSi
, µ is the misfit

• Periodic in the x-direction

• Semi-infinite in the y-direction
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Rejection-Free Kinetic Monte Carlo
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• Make a list of hopping rates, Rp, for all surface atoms

• s(j) =

j
∑

p=1

Rp, array of partial sums

• Rtot = Rd +

N
∑

p=1

Rp: total rate for all processes, Rd : deposition rate

• Draw a random number r between (0, Rtot)

• The first atom j for which s(j) > r is the atom that hops.

• If r > s(N), deposit an atom
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KMC Computational Bottlenecks

• In principle we need to compute Rp = ωe(∆U/kT ) for all atoms.

• This means removing each surface atom and relaxing the full

system with nonlinear conjugate gradient (NlCG)

• Relax the whole system after each hop or deposition

• NlCG involves a hessian matrix with dimension D × D where

D = 2 × NSi + NGe. NSi = 256 × 40

• Thus full on computations of heteroepitaxy are very time

consuming and memory intensive.

• We perform local relaxation (local NlCG) in a small region

around hopped/deposited atom

• Global relaxations periodically, also triggered by a flag

• Approximate Rp using local distortion around atom p. 97%

accuracy.
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Previous Work Using The Lennard-Jones Potential

• F. Much, M. Ahr, M. Biehl, and W. Kinzel, Europhys. Lett, 56

(2001) 791-796

• F. Much, M. Ahr, M. Biehl, and W. Kinzel, Comput. Phys.

Commun, 147 (2002) 226-229

• M. Biehl, M. Ahr, W. Kinzel, and F. Much Thin Solid Films, 428

(2003) 52-55

• F. Much, and M. Biehl Europhys. Lett, 63 (2003) 14-20

• They compute saddle points but we do not.

• They use a substrate depth of 6 monolayers which is not ideal
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Figure 3: Strain Energy per atom vs Substrate Depth. µ = −0.04.
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κ = C
µhf

h2
s

, C > 0
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Figure 4: Curvature (κ) –9 ML of substrate and 3ML of film.

µ = ±0.04
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Figure 5: Curvature (κ)–15 ML of substrate and 3ML of film. µ =

±0.04
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Figure 6: µ = −0.02, deposition flux (F) = 1ML/s
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Figure 7: µ = −0.02, r̄ij to nearest neighbors
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3 % misfit

3.5 % misfit

4 % misfit

Figure 8: FM, SK and VW growth, µ = −0.04, F = 0.1ML/s
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4 % misfit

4.5 % misfit

5 % misfit

Figure 9: SK and VW growth, µ = −0.04, F = 0.1ML/s
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Figure 10: , r̄ij to nearest neighbors, F = 0.1ML/s
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Figure 11: , r̄ij to nearest neighbors, F = 0.1ML/s

29



 
3 % misfit

 

 
3.5 % misfit

 

 

4 % misfit

 

1

1.5

2

2.5

1

1.5

2

2.5

1

1.5

2

2.5

Figure 12: FM, SK and VW growth showing energy of each atom.

F = 0.1ML/s
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Figure 13: SK and VW growth showing energy of each atom. F =

0.1ML/s
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Figure 14: Volmer Weber growth showing energy of each atom.

µ = −0.1, F = 1.0ML/s
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Figure 15: VM growth showing energy of each atom.

µ = −0.1, F = 0.25ML/s
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Figure 16: Edge dislocations in nature.

By Peter J. Goodhew, Dept. of Engineering, University of Liverpool

released under CC BY 2.0 license
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Figure 17: Edge dislocations
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Summary

Our model

• Predicts the right curvature due to Stoney’s formula

• Clearly captures the effect of misfit strength on the growth

modes (FM, SK, VM)

• Captures dislocations and its physical effects

• Easily incorporates intermixing
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Connection Between

Continuum Mechanics

and Kinetic Monte Carlo
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Statistical Mechanics

• Consider Film in Thermodynamic Equilibrium

• Free Energy F = −kT log Z where Z =
∑

states e−U(state)/kT

• Ensemble Average 〈g〉 ≡ 1
Z

∑

states ge−U(state)/kT

• µ = F − F0 = kT log〈exp [(U − U0)/kT ]〉

• ⇒ 〈R〉 = ωeµ/kT
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Local Thermodynamic Equilibrium

• ⇒ 〈R〉(x) = ωeµ(x)/kT

• Fick’s Law ⇒ j = −M∇s〈R〉

• M depends on the details of the hopping rules

• j = −M〈R〉
kT ∇sµ

• D = M〈R〉/ν

• ⇒ j = −νD
kT ∇sµ (same as continuum)
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Summary

• The KMC formulation contains the same physics as this class

of continuum models

• But KMC also captures other physical effects, stochastic in

nature, such as:

– Nucleation of Islands or Pits

– Atomistic scale features that occur during intermixing

– Promotion of intermixing due to surface roughness

• Main drawback of KMC is that it can be computationally slow
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