OFF-LATTICE KINETIC MONTE CARLO SIMULATION OF HETEROEPITAXY WITHOUT SADDLE POINTS

Henry A. Boateng University of Michigan, Ann Arbor

Joint work with Tim Schulze and Peter Smereka

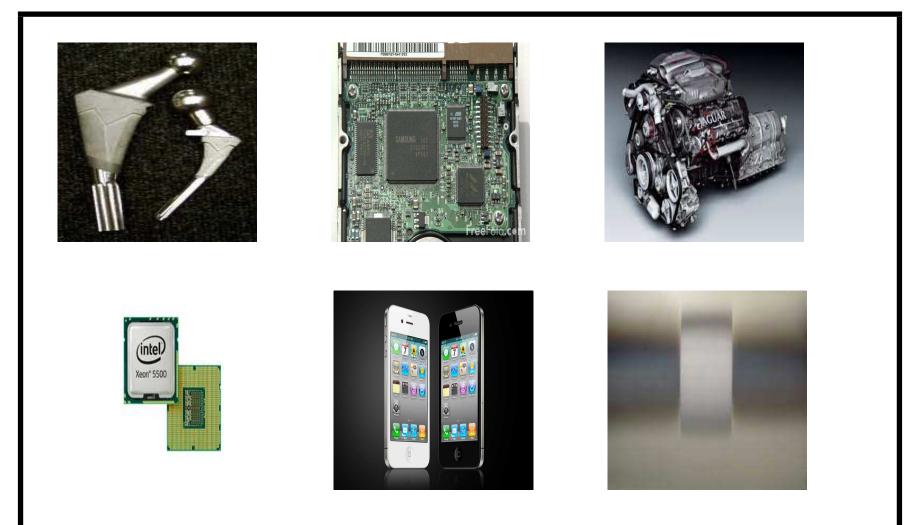


Figure 1: Some Applications of Thin Films. Images from Google Images

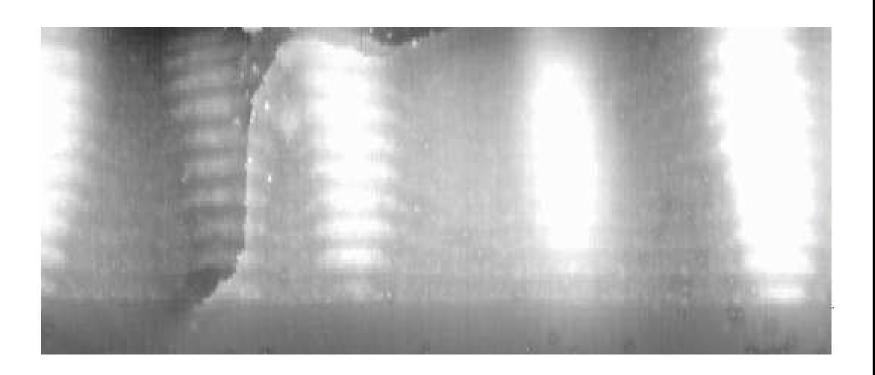
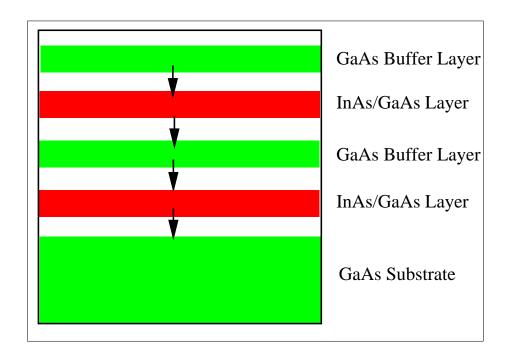


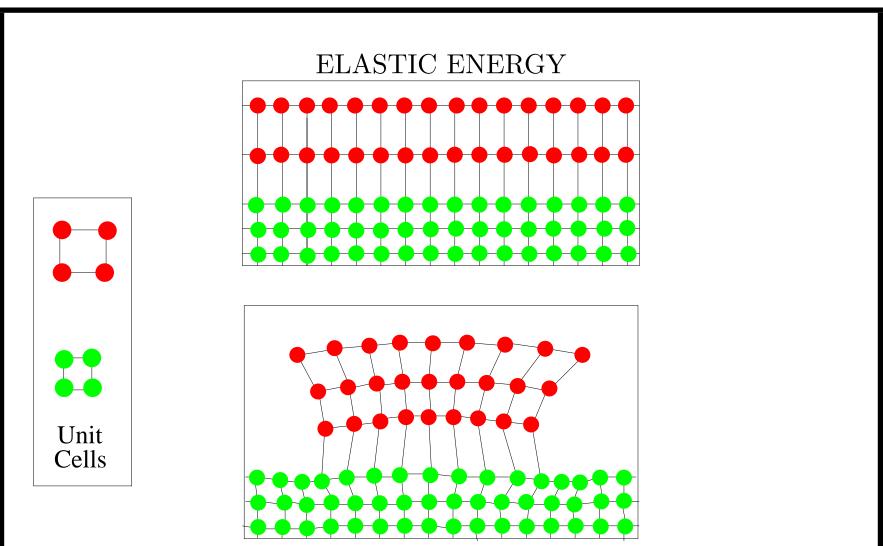
Figure 2: A quantum dot structure – InAs/GaAs on GaAs with GaAs buffers.

Lita, Goldman, Phillips, & Bhattacharya, Nanometer-scale studies of vertical organization and evolution of stacked self assembled InAs/GaAs quantum dots, *Appl. Phys. Lett.* (1999).

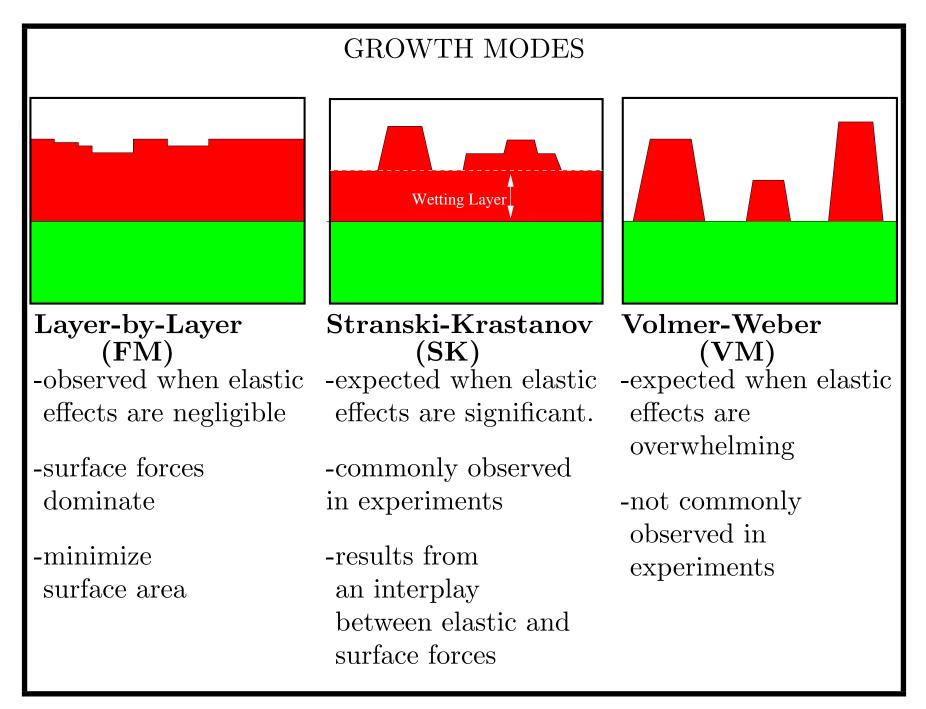
Stacked Quantum Dot Fabrication



Stacked Quantum Dots are made by Molecular Beam Epitaxy. Alternating layers of different materials are deposited onto a substrate.



Due to misfit the bottom configuration has less elastic energy than the top one.



Modeling and Computational Approaches

- Molecular Dynamics
- Kinetic Monte Carlo (Temporally Coarse Grained MD)
- Semi-Discrete –Step flow Models (Level Set Methods, Phase Field)
- Full Continuum (Phase Field, Sharp Interface)

Our Focus

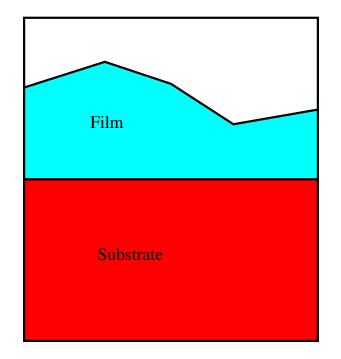
- This talk will focus on Kinetic Monte Carlo.
- As a point of comparison we will briefly review a well used continuum model.

Continuum Model for Film Growth with Elastic Effects

Continuum Model

- Film is assumed to be in:
 - mechanical equilibrium
 - local thermodynamic equilibrium
- Free Energy: F = Elastic energy + Surface energy
- F = F[h]; h = h(x, t) where h is the film profile

Continuum Model



 $\Omega = Film + Substrate$

- $\partial \Omega = \text{Film}/\text{Vacuum Interface}$
- χ_F = characteristic function of the film

ELASTIC ENERGY

$$W = \int_{\Omega} w(x, y) dx dy$$

$$w = \sum_{ij} c_{ij} (e_{ij} - \chi_F e_{ij}^0)^2$$

$$e_{ij} = \text{strain tensor}, e_{ij}^0 \text{ misfit strain}$$

SURFACE ENERGY

$$S = \int_{\partial\Omega} \gamma(n) ds$$

FREE ENERGY

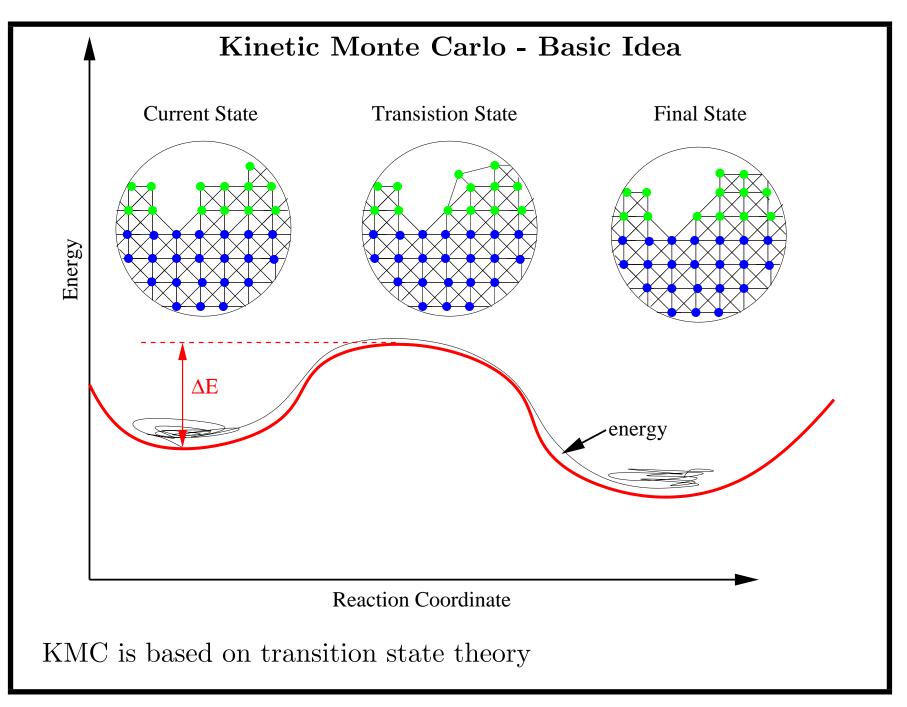
$$F = S + W$$

Continuum Model

- Surface Chemical Potential: F F(one surface atom removed)
- Chemical Potential: $\mu = \mu(x) = v_a \frac{\delta F}{\delta h}$
- Flux of Atoms: $\mathbf{j} = -\frac{\nu D}{kT} \nabla_s \mu$ (Herring's Law)
- Mass Conservation: $h_t + v_a \nabla_s \cdot \mathbf{j} = 0$

where ∇_s is the surface gradient operator, D is the surface diffusivity, ν is the number density of surface atoms, and v_a is the atomic volume.

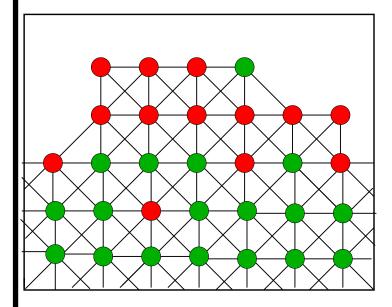
Kinetic Monte Carlo Model for Film Growth with Elastic Effects



Kinetic Monte Carlo - Basic Idea

- Rates are based on transition state theory which gives $R = \omega \exp(-\Delta E/kT)$
- $\Delta E = E(\text{current state}) E(\text{transition state})$
- ω is the attempt frequency, kT is the thermal energy
- One needs to know or assume what are the important events

Ball and Spring Model [Baskaran, Devita, Smereka, (2010)]



• Atoms are on a square lattice

- Semi-infinite in the *y*-direction
- Periodic in the *x*-direction
- Nearest and next to nearest neighbor bonds with strengths: $\gamma_{SS}, \gamma_{SG}, \gamma_{GG}$
- Nearest and next to nearest neighbor springs with contants: k_L and k_D
- System evolves by letting the surface atoms hop: Surface Diffusion

Red = "Germanium"Green = "Silicon"

* without intermixing this model is due to: Orr, Kessler, Snyder, and Sander (1992) Lam, Lee and Sander (2002)

The Model

- Hopping Rate $R_p = \omega \exp\left[(U U_p)/k_BT\right]$
- $U = \text{total energy}, \quad U_p = \text{total energy without atom } p$

•
$$U = \sum_{i>j}^{N} \phi(r_{ij})$$
 where $\phi(r_{ij}) = 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$

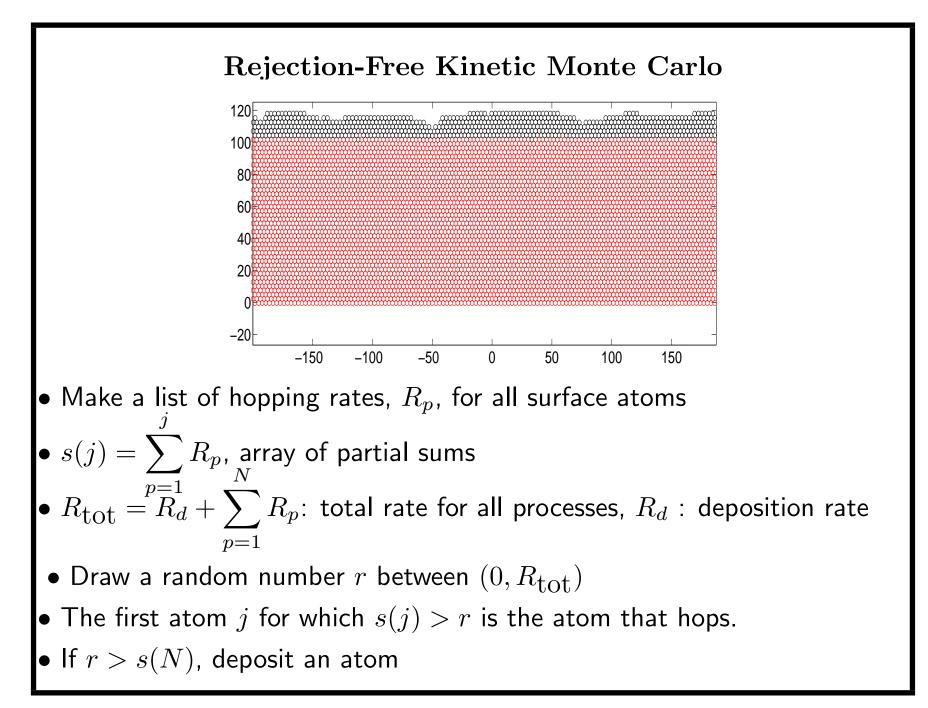
- ω is a prefactor, $k_B T$ is the thermal energy
- r_{ij} is the distance between atoms i and j

•
$$\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j}$$
 and $\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2}$

• $\epsilon_{Si} = 0.4, \ \epsilon_{Ge} = 0.3387, \ \sigma_{Si} = 2.731, \ \sigma_{Ge} = (1 + \mu)\sigma_{Si}$

•
$$\mu = \frac{\sigma_{Si} - \sigma_{Ge}}{\sigma_{Si}}$$
, μ is the misfit

- Periodic in the *x*-direction
- Semi-infinite in the *y*-direction

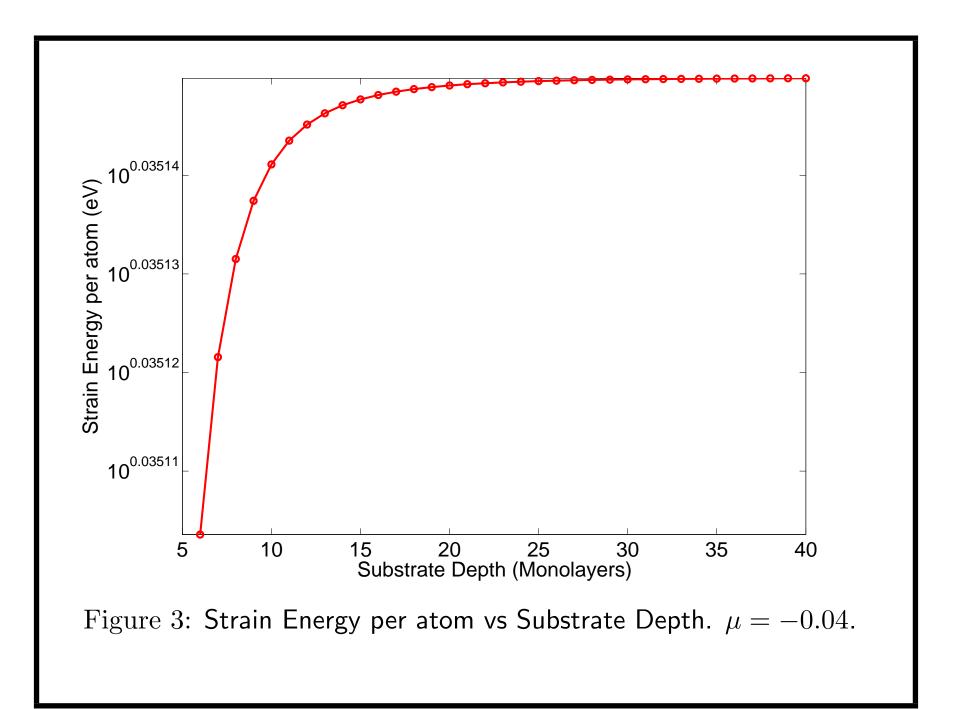


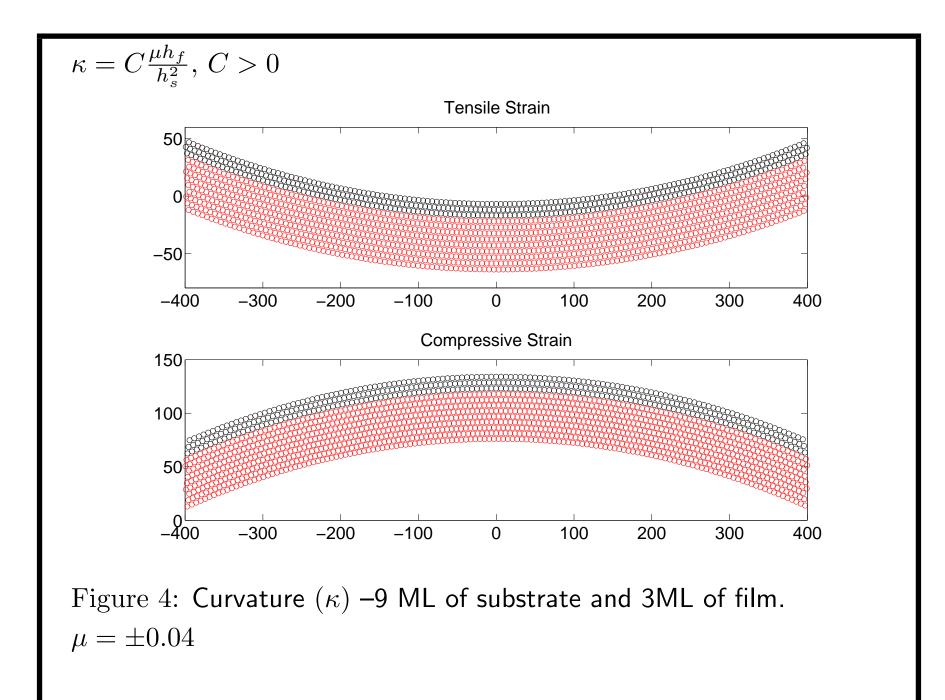
KMC Computational Bottlenecks

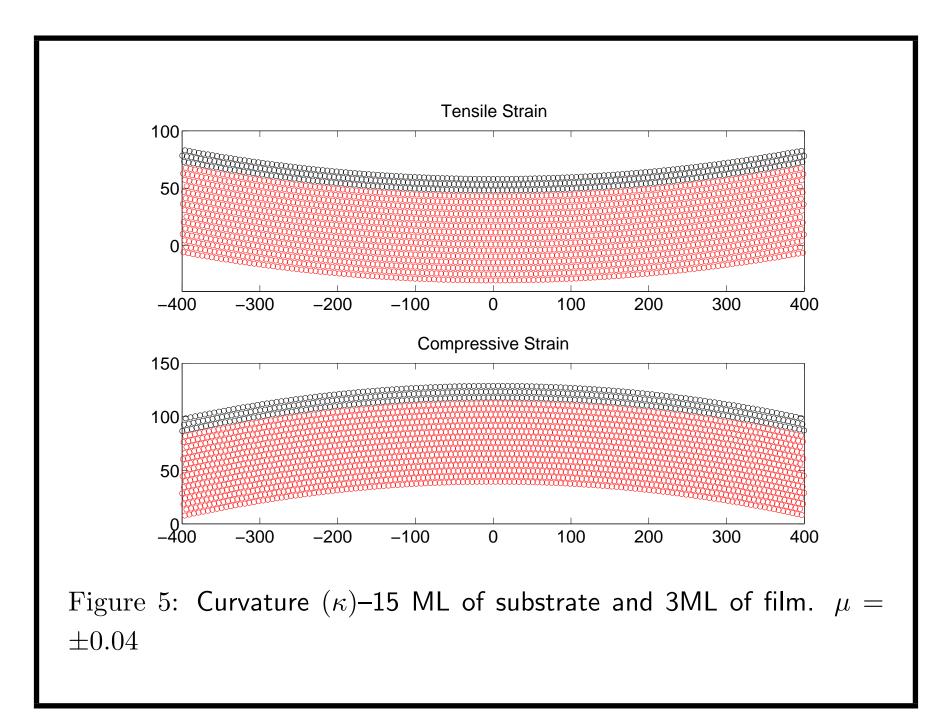
- In principle we need to compute $R_p = \omega e^{(\Delta U/kT)}$ for all atoms.
- This means removing each surface atom and relaxing the full system with nonlinear conjugate gradient (NlCG)
- Relax the whole system after each hop or deposition
- NICG involves a hessian matrix with dimension $D \times D$ where $D = 2 \times N_{Si} + N_{Ge}$. $N_{Si} = 256 \times 40$
- Thus full on computations of heteroepitaxy are very time consuming and memory intensive.
- We perform local relaxation (local NlCG) in a small region around hopped/deposited atom
- Global relaxations periodically, also triggered by a flag
- Approximate R_p using local distortion around atom p. 97% accuracy.

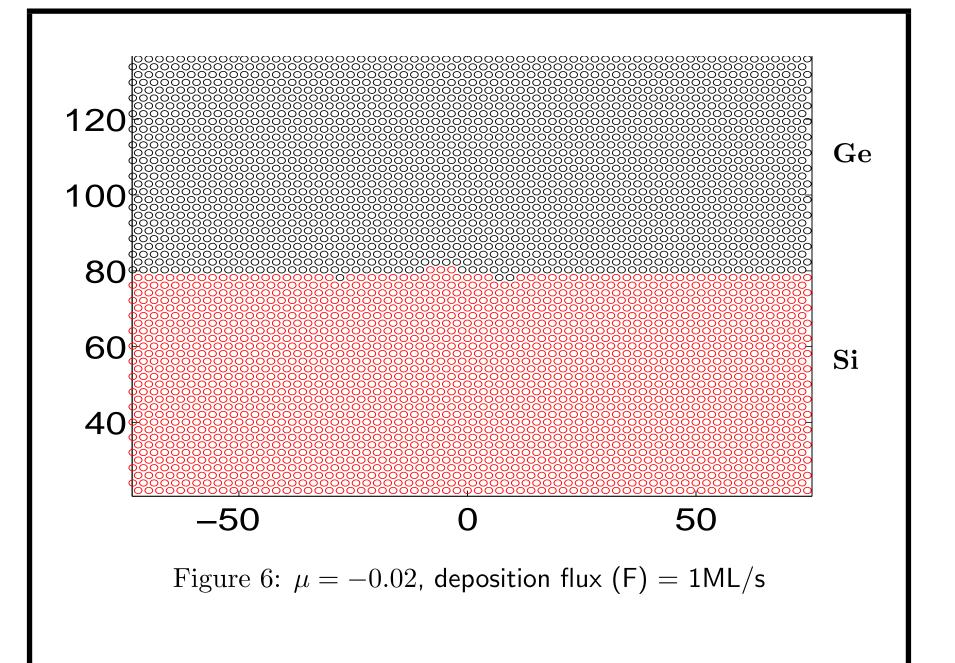
Previous Work Using The Lennard-Jones Potential

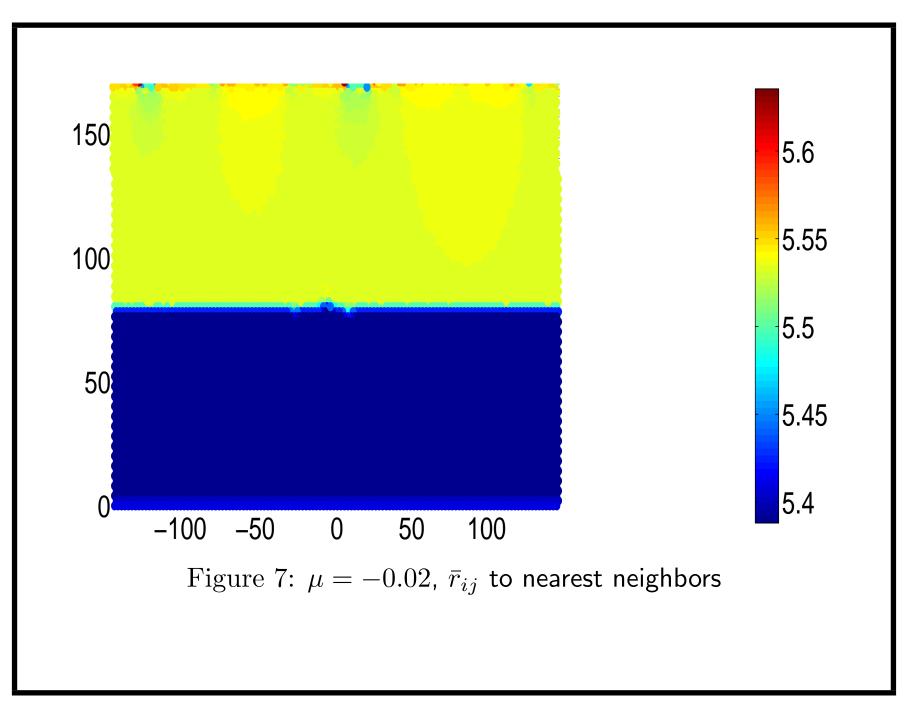
- F. Much, M. Ahr, M. Biehl, and W. Kinzel, *Europhys. Lett*, 56 (2001) 791-796
- F. Much, M. Ahr, M. Biehl, and W. Kinzel, *Comput. Phys. Commun*, 147 (2002) 226-229
- M. Biehl, M. Ahr, W. Kinzel, and F. Much *Thin Solid Films*, 428 (2003) 52-55
- F. Much, and M. Biehl *Europhys. Lett*, 63 (2003) 14-20
- They compute saddle points but we do not.
- They use a substrate depth of 6 monolayers which is not ideal

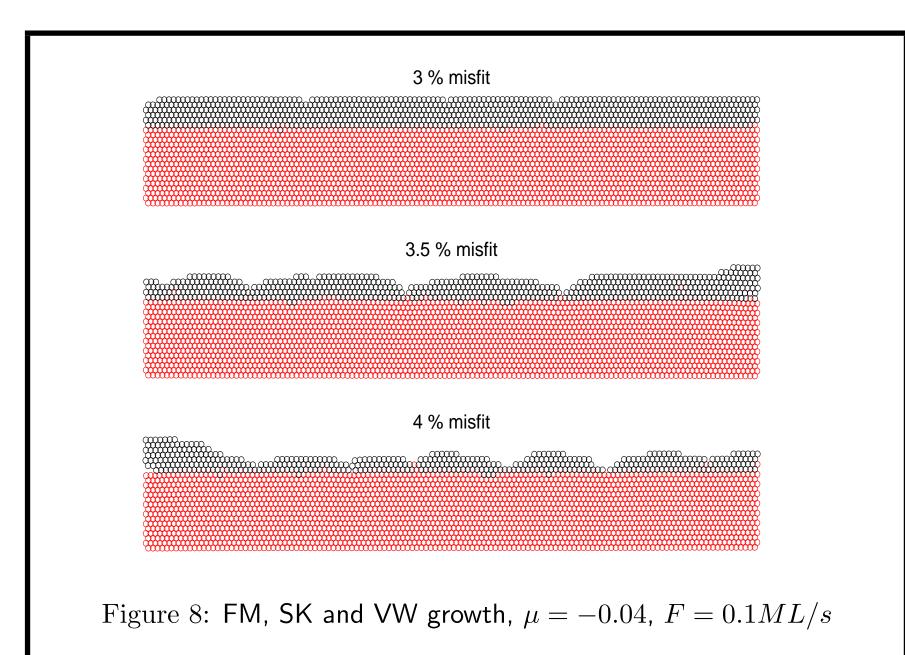


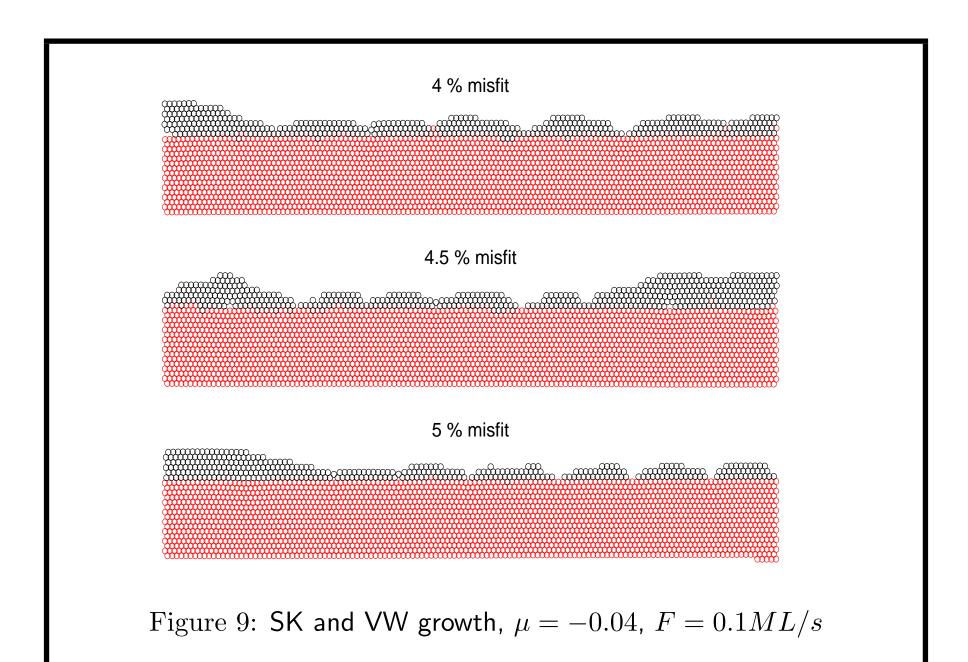


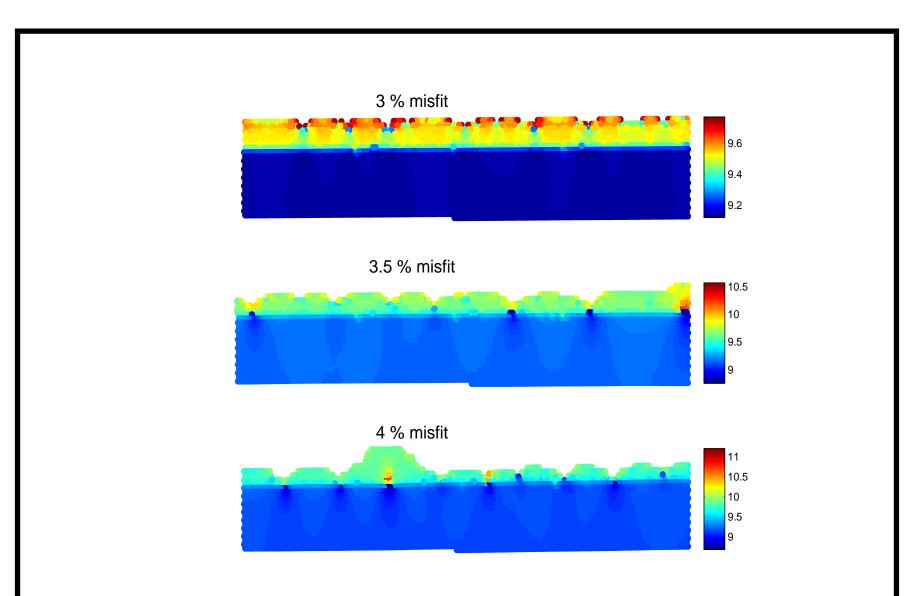












 $\rm Figure~10:$, \bar{r}_{ij} to nearest neighbors, ${\sf F}=0.1{\sf ML/s}$

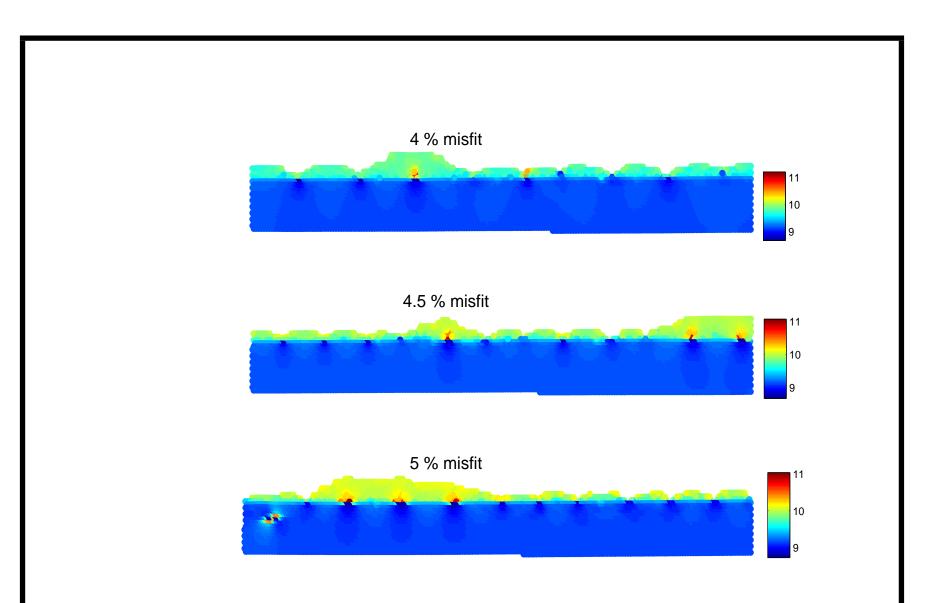


Figure 11: , \bar{r}_{ij} to nearest neighbors, F=0.1ML/s

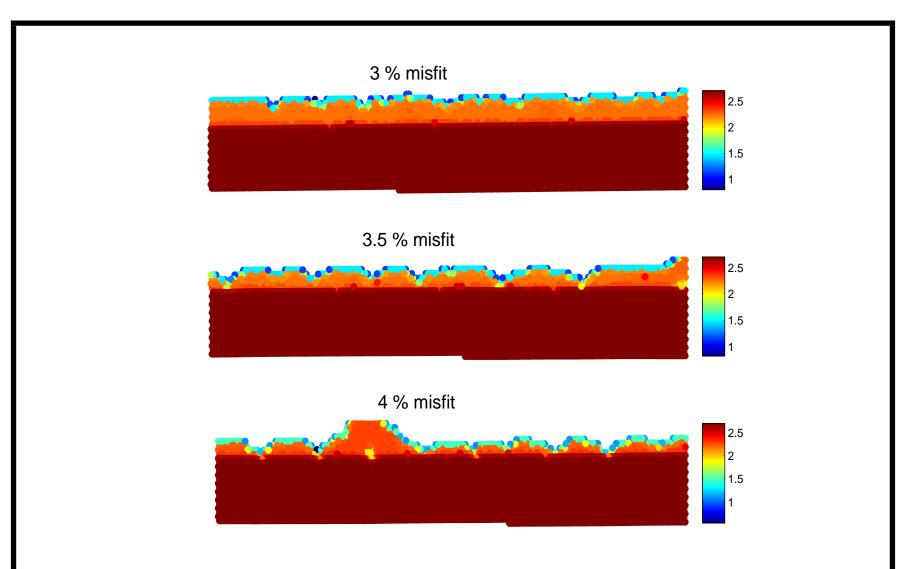
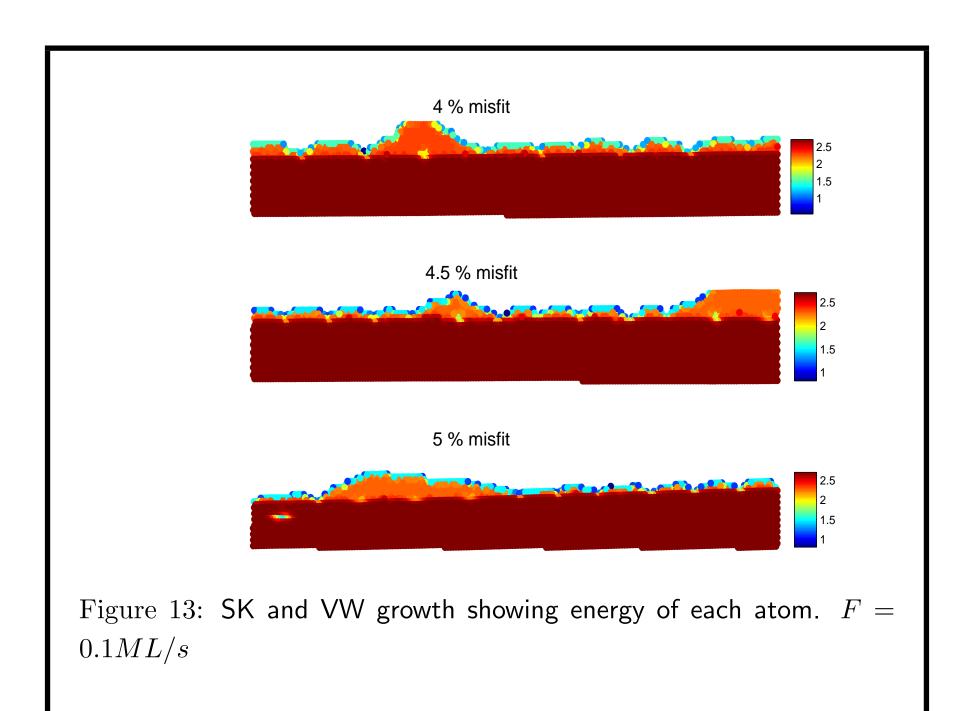


Figure 12: FM, SK and VW growth showing energy of each atom. F = 0.1 ML/s



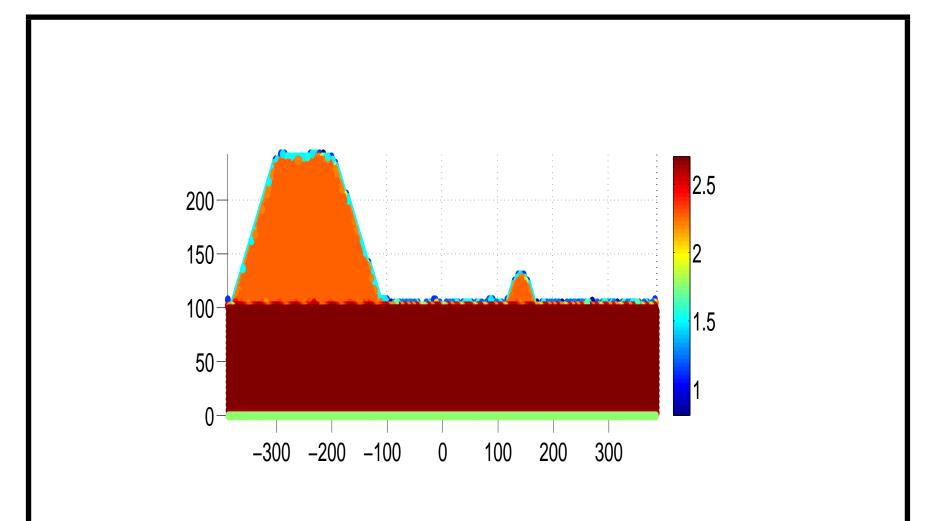
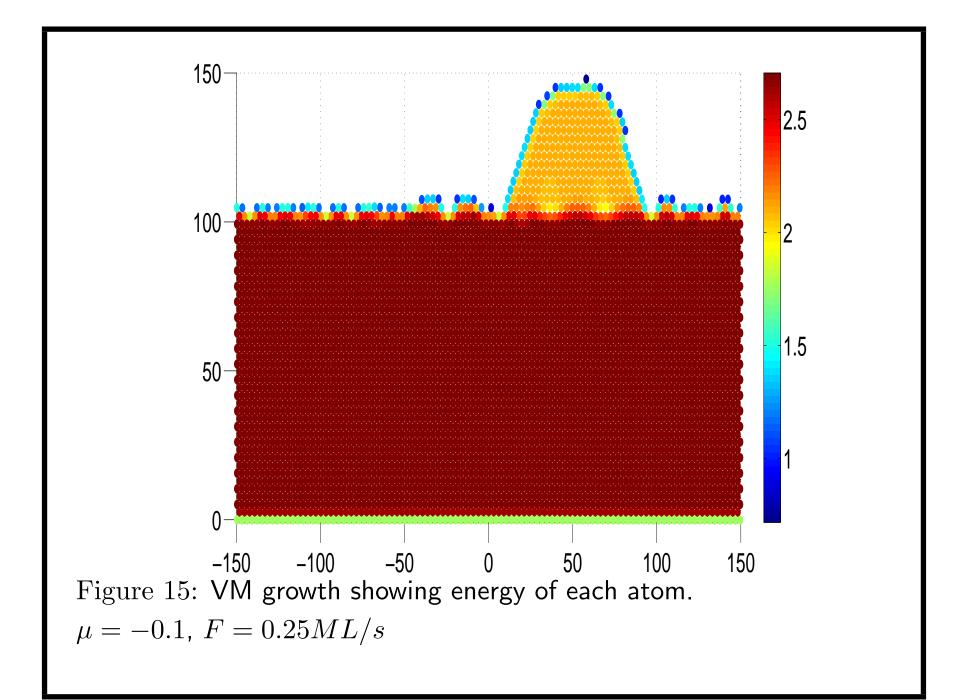


Figure 14: Volmer Weber growth showing energy of each atom. $\mu = -0.1, F = 1.0 ML/s$



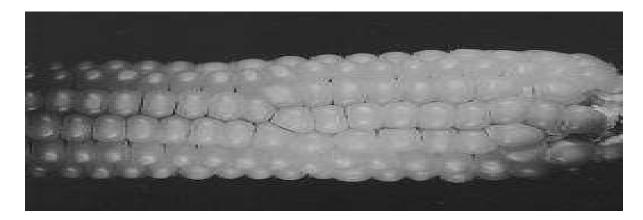
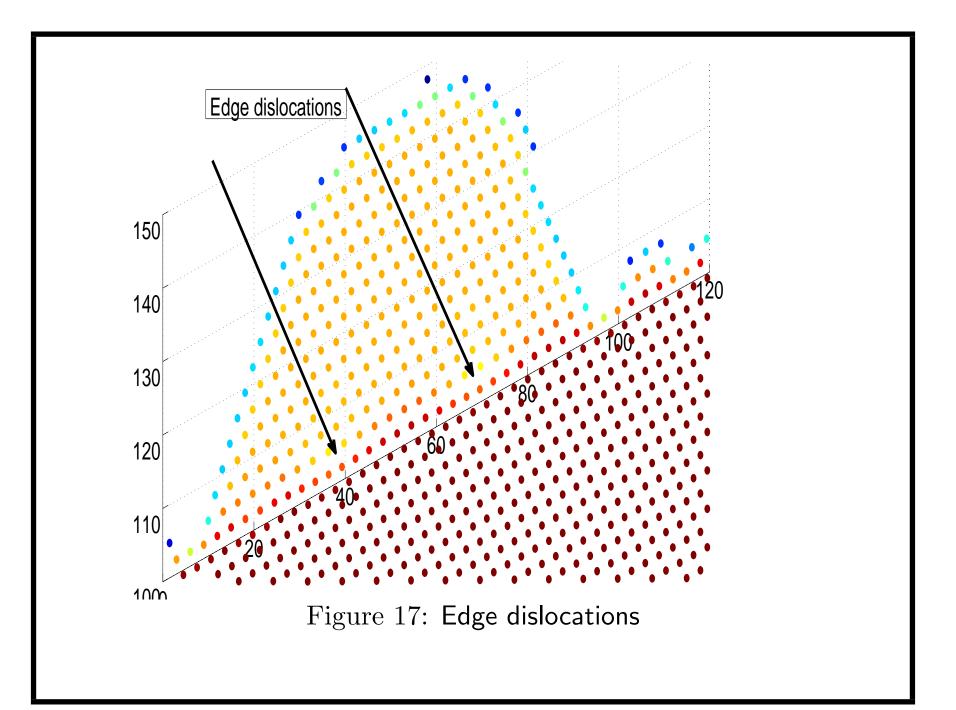


Figure 16: Edge dislocations in nature.By Peter J. Goodhew, Dept. of Engineering, University of Liverpool released under CC BY 2.0 license



Summary

Our model

- Predicts the right curvature due to Stoney's formula
- Clearly captures the effect of misfit strength on the growth modes (FM, SK, VM)
- Captures dislocations and its physical effects
- Easily incorporates intermixing

Connection Between

Continuum Mechanics

and Kinetic Monte Carlo

Statistical Mechanics

- Consider Film in Thermodynamic Equilibrium
- Free Energy $F = -kT \log Z$ where $Z = \sum_{\text{states}} e^{-U(\text{state})/kT}$
- Ensemble Average $\langle g \rangle \equiv \frac{1}{Z} \sum_{\text{states}} g e^{-U(\text{state})/\text{kT}}$

•
$$\mu = F - F_0 = kT \log \langle \exp\left[(U - U_0)/kT\right] \rangle$$

•
$$\Rightarrow \langle R \rangle = \omega e^{\mu/kT}$$

Local Thermodynamic Equilibrium

•
$$\Rightarrow \langle R \rangle(x) = \omega e^{\mu(x)/kT}$$

• Fick's Law
$$\Rightarrow \mathbf{j} = -M \nabla_s \langle R \rangle$$

• M depends on the details of the hopping rules

•
$$\mathbf{j} = -\frac{M\langle R \rangle}{kT} \nabla_s \mu$$

•
$$D = M \langle R \rangle / \nu$$

•
$$\Rightarrow$$
 j = $-\frac{\nu D}{kT} \nabla_s \mu$ (same as continuum)

Summary

- The KMC formulation contains the same physics as this class of continuum models
- But KMC also captures other physical effects, stochastic in nature, such as:
 - Nucleation of Islands or Pits
 - Atomistic scale features that occur during intermixing
 - Promotion of intermixing due to surface roughness
- Main drawback of KMC is that it can be computationally slow