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Glacial ice is a viscous fluid

» A non-typical incompressible viscous fluid

» “typical” incompressible viscous fluids (e.g. ocean) modeled with
Navier-Stokes equations:

V-u=0 incompressibility

p(us +u-Vu) = -Vp+vV2u+ pg stress balance

» these Navier-Stokes equations in 3D are hard ...
Millennial Prize Problem

Slide adapted from E. Bueler
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Ice is a weird viscous fluid

» not relevant in ice sheet flow:
o turbulence
o convection
o coriolis force

o density-driven flow (weather)

> ice sheet flow is:
o slow (inertia is negligible)
o non-newtonian (viscosity is not constant)
o highly anisotropic (yeah, let's ignore that)
o Power law relation (Glen's Law):

> (strain rate) = A E (stress)”

Slide adapted from E. Bueler



Ice is a slow, shear-thinning viscous fluid

» notation:

o Tj is deviatoric stress tensor
o Dujy is strain rate tensor

» the standard ice flow model is Glen-law Stokes:

V-u=0 incompressibility
0=-Vp+V 75+ pg slow stress balance
Du; = AE ]T;j\z Tij Glen flow law

Slide adapted from E. Bueler
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Glacier Anatomy

Figure : snow pit from Siple Dome, West Figure : ice core from GISP2, Greenland.
Antarctica. [NSIDC] 1837 m — 1838 m depth shown.
[NSIDC]



other complications (annoyances?):

» fracture (calving, crevassing) > erosion
» phase changes > tides
» mass balance > debris

figure from E. Bueler
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Uncertainty is everywhere and UQ is needed OAK

RIDGE

National Laboratory

Two examples

Climate modeling
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Field size: 1200 x 2200 x 170 (m)

% Pictures from R. C. Smith, SIAM, 2013
® Picture from Knutti and Sedlacek, Nature Climate Change, 2012 /
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Data uncertainty

True log k 36 Sample data

One Geology [

data
Limited Data I I Multiple possible parameter ﬁelds

Aa B
RGN ;&!.\3 B X

Possible modeIS/*\

Which model is correct?

Model uncertainty
Parameter uncertainty

Uncertainty in prediction

% Picture from people.clemson.edu/~smoysey
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Three classes of uncertainty quantification (UQ) problems RIDGE

National Laboratory
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Inverse
uncertainty | mmmmm e o
guantification

Uncertainty
reduction

Forward
uncertainty
propagation

Informed ?
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Challenge: a cost-effective
data collection design

Challenge:
Systematic UQ

Inverse
uncertainty
guantification

Uncertainty
reduction

rward No
uncertainty 1
ropagation:
|

Challenge: advanced
computational methods

Informed *
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Challenge:
Systematic UQ

Inverse

Solution:
Hierarchical
Bayesian framework

uncertainty
quantification,

o e o -

Challenge: advanced
computational methods

A

Solution:

surrogate-based methods,
Multilevel Monte Carlo

Challenge: a cost-effective
data collection design

Solution: Define an
uncertainty reduction
metric and evaluate it for
a set of potential data

Uncertainty
reduction
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% Multilevel Monte Carlo (MLMC) method OAK

RIDGE

%’ Application: an oil reservoir model N —

Current LDRD project:
hydraulic fracturing

logk Production well

-18 -16 -14 -12

-18.2

* 3-D reservoir model with 1.0e6 cells;

* The geological parameters are only
known at 3.0e3 cells;

* Large number of unknown parameters,
a high-dimensional problem;

* Purpose: to predict the flow rate of oil
and gas at the production well with
considering parameter uncertainty.

* Methods: classic Monte Carlo (MC) and
multilevel Monte Carlo (MLMC).
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Multilevel Monte Carlo (MLMC) method OAK

RIDGE

Application: an oil reservoir model N —
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RMSE: Root Mean Square Error

The MLMC method is effective and efficient for high-dimensional UQ problems.

¢ Lu, Zhang, Webster, and Barbier, A Multilevel Monte Carlo Method with Application
to Uncertainty Quantification in Oil Reservoir Simulation, Water Resour. Res., 2015.

¢ This work was selected as a “story tip” by DOE and was picked up by several media
outlets, one is “The BAKKEN” Magazine.
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Thank you tor your attention!
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Paper

e MeiR, Ashfag M, Rastogi D, Leung R, Dominguez F (2015).
Dominating Controls for Wetter South Asian Summer
Monsoon in the 21st Century, Journal of Climate, 28,

3400-3419.
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« Data and Methods

* Results and Summary
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Motivation

The South Asian summer monsoon exerts profound impact
through South Asia.

Two recent examples: Flooding events in Pakistan in July-
Aug 2010 and extreme precipitation in North India in June
2013.

Therefore, robust projection of summer monsoon
precipitation in response to elevated greenhouse gas
concentration is critical over this region.
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Literature review

Both in CMIP3 and CMIP5, most studies conclude an increase of
South Asian summer monsoon precipitation in response to the

increase in radiative forcing (e.g., review of Turner and Annmalai 2012).

The two competing effects: the thermodynamic effects (through

increase in atmospheric moisture content) dominates
overwhelms the dynamic effects (through weakening of
monsoon circulation) (e.. cherchi et al. 2011, Endo and Kitoh 2014).

However, lack of perspective on moisture sources for
precipitation: where the moisture comes from and how the
source affects the future precipitation change?

@ Climate Change *‘ OAK RIDGE NATIONAL LABORATORY

B’ Science Institute
. AT OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Objective

To investigate the impact of anthropogenic global
warming on South Asian summer precipitation
using CMIP5 data, examining not only the monsoon
circulation and “apparent” moisture supply, but
also the moisture sources for precipitation.

FL ) Climate Change & OAK RIDGE NATIONAL LABORATORY
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Data and methods

Datasets:
6-hourly precipitation, evaporation, 3-D horizontal wind, specific
humidity and temperature from (1) CMIP5 (18 models for

historical 1965-2005, 14 models for RCP8.5 2010-2099), (2)
NCEP I reanalysis (1965-2005), ERA and CFSR reanalysis

(1979-2009).

Methods:
(1) Monsoon circulation and “apparent” moisture supply

(2) Moisture sources attribution (a Lagarangian moisture
tracking method)

P4 Climate Change &O.\K RIDGE NATIONAL LABORATORY
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Circulation dynamic indicators

(1) MTG- Meridional Tropospheric temperature Gradient:

e difference of monthly mean temperature in the upper
tropospheric layers (200mb to 500mb) between 5N and 30N,
averaged over 65-85E.

(2) U-wind shear- local “Walker circulation index”

e Easterly vertical shear of zonal winds between 200mb and
850mb averaged over 0-15N,50-85E.

(3) V-wind shear- local “Hadley circulation index”

e Vertical meridional wind shear between 200mb and 850mb
averaged over 5-30N,70-110E.

P4 Climate Change &O.\K RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY
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A semi analytical moisture tracking

method

Gridcell recycling ratio p; is the amount of precipitation that falls in that cell i from MethOd derlves from the preC|p|tat|On

evapotranspiration within defined region B with the following formula:

Pmi
P,

pPi =

where P,,; is the precipitation from recycled origin B at grid cell i, P; is the total

precipitation at grid cell i.

Regional recycling ratio r within the region B consisting of n cells can then be

formulated with this:

Pn _ XiLipiPiAA;

y= m
P T PAA,

recycling ratio method in Dominguez et
al. 2006:

Eq1: atmospheric water vapor
conservation equation

Eq2: atmospheric column is well
mixed with local recycled and

For a given gridcell i within the region B, the water vapor conservation equationadve(:ted mOIStu re

can be separated into the advected (a) and recycled (m) components:

OWa)  OWar)  O(Wav) _
at dx oy

Equatign 1

A(Wm)  O(wnmu)  O(wnv)
ot ox _t oy

_Pa

E —

B

The assumption of a well-mixed atmosphere:

pi = Pmi _ Wmi
¢ Pi w;

Equatign 2

Combining the above equations, we can derive the fundamental equation for

recycling ratio:

Wwo2a-m» L 0aA=-p _ S 0A=p) _

ot Ox ady
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To solve local recycling ratio p, a Lagrangian coordinate system [X,§,t] is introduced
to obtain the semi-analytical expression for p:

X = x — ut
E =y — vt

T =1
With this new coordinate system, evaporation (E(x,y,t)), recycling ratio (p(x,y,t)),
and precipitable water (w(x,y,t)) are represented as g, R and w. Then, we can solve
local recycling ratio (the ratio of precipitation attributed from a pre-defined source

region to the precipitation over a specific single target grid cell) with this
PYP]"DQQiﬁh'

Equat|0n 3 R(x,é,t) =1 —exp[— : Mdr]

o w(x & )
where integration is performed from current time T for the target grid cell backward
until time O, when the back-trajectory of the advected moisture reaches beyond the
pre-defined evaporative source region.

That also means that for any specific precipitation target grid cell, the contributed
percentage during small time interval dt over [tl,71l —dt] (7 > 71 > 71l — dt = 0)
is from the cell m where back-trajectory of moisture falls into during that time
interval [t1, 71 — d¢t], and therefore make the following stand:

R, & 7, m)| (1 —dt) = R(x, &, 7, m)|(z1) — exp [_fr —ffééi)) d’]
Equation 4 e £ ) c1—ar @O &
+ exp [—f ;dr]

, w(x, &, T)
where R(x, <, T, m)|rtt 1s the contributed percentage from cell m at time moment ¢

With the above said, we can derive the contributed precipitation for any target
grid cell from any moisture source grid cell.
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Monsoon Precipitation response

Precipitation Ditterence mm/day
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e precipitation during RCP8.5

A gradual strengthening
of the positive
precipitation response
throughout the 21st
century

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Monsoon circulation and "apparent”
moisture supply response

(@)
MTG (K) U shear (m/s) V shear (m/s)
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Late 21st century future
period 2070-2099 e.qg.,

Weakening of monsoon
circulation accompanied
by an increase in the
atmospheric moisture

“apparent” moisture
supply indicates
moisture convergence
determines precipitation
response
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Moisture source attribution

(a)
NCEP . Multi-model Mean
£ The four defined moisture
g sources contribution to
summer monsoon precipitation

100 200 300 100 200 300

Calendar Day Calendar Day In NCEP R1 (GCMS)'
= total precipitation precipitation attributed to local precipitation attributed to Remote .

precipitation attributed to Arabian sea precipitation attributed to Bay of Bengal

(b)

o e * remote:46% (55%);
- P »« local recycling: 30.4% (23%);
155 Arabian Sea: 19.6% (15%);

90E

wees  Bay of Bengal: 4% (7%)

Remote

Multi-model mean generally
captures NCEP R1.
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Moisture source attribution

Amount (mm/day)
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Moisture source response
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Overall robust temporal and
spatial changes include:

an increase in the absolute
and percentage contribution
from the remote

and a decrease in the
percentage contribution from
all other relatively regional
sources (local, Bay of Bengal and
Arabian Sea).

*‘ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




Summary

Consistent with majority of previous studies:

A robust increase in summer monsoon precipitation in South Asia through 215t century in CMIP5

Weakening of the monsoon dynamics (through MTG, U-shear, and V-shear) is compensated by the
increase in atmospheric precipitable water due to atmospheric warming.

New insights gained:

Reveal the relative contribution of four exclusive but complementary moisture sources: remote, local
recycling, Arabian Sea, Bay of Bengal.

Unveil intrinsic characteristics of precipitation from different moisture sources such as their spatial
footprints over South Asia and temporal variability during the summer monsoon period.

Infer that summer monsoon precipitation increase is mostly sustained by the increase in moisture
supply from remote sources instead of regional sources (local, Arabian Sea and Bay of Bengal),
facilitated through increases in atmospheric moisture content and moisture convergence over South

Asian monsoon region.

@ Climate Change § OAK RIDGE NATIONAL LABORATORY
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Using Graphics
Processing Units
for Climate
Simulation

Matt Norman

Scientific Computing Group
National Center for Computational Sciences
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Why Bother with GPUs?

* Nov. 2011 Top 500 — Dense Linear Algebra Bench.
— OLCF’s Jaguar (#3): 1.8 Petaflops, 7 MegaWatts
— That’s 5,600 average U.S. households of power
— Tennessee costs 9.98 cents per KiloWattHour
— Power bill runs about $500,000 / month
— $300,000/month per Petaflop

* Nov. 2012 Top 500
— OLCF’s Titan (#1): 17.6 Petaflops, 8.2 Megawatts
— $34,000/month per Petaflop

* No other way to give advances in computational science

Only matters if real science can access this performance

CLIMATE CHANGE SCIENCE INSTITUTE
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Memory Controller Memory Controller Memory Controller
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Image Source: http://www.nvidia.com/content/PDF/kepler/NVIDIA-

Kepler-GK110-Architecture-Whitepaper.pdf




Memory Controller Men ory Controller Memory Controller
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Memory Controller Memory Controller Memory Controller
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15 “SMX” Multiprocessors

GPU hass

Image Source: http://www.nvidia.com/content/PDF/kepler/NVIDIA-

Kepler-GK110-Architecture-Whitepaper.pdf
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Memory Controller Memory Controller Memory Controller
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Challenges for Climate on GPUs

* MPIl Waiting: Cannot be accelerated
— Must minimize or overlap MPI Waiting

* PCl-express Bus: Going away soon!

* Software Engineering: CUDA, OpenACC
— CUDA requires too much code rewriting; unreadable code
— OpenACC requires significant code restructuring
* But we might have to do this restructuring anyway

— OpenMP for Intel MICs looks quite similar to OpenACC

* Compiler bugs common due to immature OpenACC
implementations

* Ensure code is portable & performant on other machines

CLIMATE CHANGE SCIENCE INSTITUTE
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Opportunities for Climate on GPUs

* Current atmospheric grid: 28km

* Grid refinement impossible: AZrefines with Ax

— Therefore, 2x smaller grid spacing = 2x less data per node!
— MPI dominates when there is too little data per node

* We must reduce cost per DOF for more DOFs / node
— GPUs & accelerators give us the ability to do this
— Future machines give multiple accelerators per node

* Ensembles become much cheaper to compute
— The more data per node, the faster the GPUs perform
— Incentive to run more ensembles to understand uncertainties

* Future computers remove biggest performance
bottlenecks

CLIMATE CHANGE SCIENCE INSTITUTE
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OLCF Center for Accelerated Application
Readiness (CAAR)

 ACME received a CAAR award for 2015-2018
* Porting to OLCF’s coming Summit computer in advance
* Order 10x more powerful than Titan

* ACME currently utilized Titans” GPUs poorly

— Thus, >> 10x improvement is successfully using Summit

* Two main scientific tracks

1. Port costliest portions of ACME to GPUs with OpenACC
2. Use “super-parametrizations” of clouds to keep GPUs busy

 Early science runs will be groundbreaking climate
simulations infeasible on current computers
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Challenge: Computational Time-
step Barrier

* Without development in time-stepping, climate simulation
will hit the time-step barrier

— Little benefit from higher scales of computing
— Must choose between higher resolution or tolerable throughput

* Dramatically improve accuracy of highly-coupled models
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will hit the time-step barrier

— Little benefit from higher scales of computing
— Must choose between higher resolution or tolerable throughput

* Dramatically improve accuracy of highly-coupled models
* Dramatically accelerate spin-up of new simulations
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Challenge: Computational Time-
step Barrier

Without development in time-stepping, climate simulation
will hit the time-step barrier

— Little benefit from higher scales of computing
— Must choose between higher resolution or tolerable throughput

* Dramatically improve accuracy of highly-coupled models
* Dramatically accelerate spin-up of new simulations

* Potentially revolutionize climate simulation and other
application areas with long time integration

* Crucial for climate simulation, promising for other fields
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Anatomy of a Time Step: 7/2° CAM-SE dycore

N

vertical
remapping
dtime
nsplit
450 s

vV

cloud physics
dtime
900s = 15 mins

7/
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s

tracer

advection

dtime
nsplit*rsplit

90 s

dynamics hyperviscosity
RK stages or dtime
NK iterations nsplit*rsplit*qsplit*h_sub
dtime 9s
nsplit*rsplit*qsplit
18s

The lack of weak scaling is
largely mitigated with many
layers of subcycling.
However: the ratio of the
largest to smallest time step
size covers 2 orders of
magnitude
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Climate Time-step solvers

= Fully implicit methods

= Require non-linear solvers and preconditioning.

= Exponential Operators
= Equations split into non-linear and linear pieces.

= Asynchronous Multirate
= Depended upon slow and fast time scale split.

= Arbitrary Derivative Riemann (ADER)

= Higher order time derivatives swap out for spatial derivatives.

Differed correction
= Uses integral equations to iteratively minimize residual.
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Implicit Solver within CAM-SE

Time step limitations grow with spatial resolution

Regionally refined configurations are subject to the same
limitations

Goal: efficiency with acceptable accuracy for production runs

Goal: use hybrid architectures (we are already being
charged for them!)

Use dynamics solver as a base for easier extension to
physics and coupling to other components

Challenge: scalable preconditioners require a lot of
development and interaction with algorithmic experts

Challenge: porting to GPUs is like jumping onto a moving
vehicle
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Galewsky TC: initial flow perturbation
within an unstable mid-latitude jet.

Challenges: Fast divergent gravity waves and
longer term flow instabilities over 6 days

Explicit 2nd
Order RK
5 stage
10s ts

BON

Implicit 2nd
Order BDF2
1200s ts

T T T T T T T T T T
180 150W 120W NW 60w 30w 0 J0E 60E WE 120E 150E 18(

4e-05 Be-05 0.00012 000016 0.0002
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2D Baroclinic Instability Test Case
~1/2 degree 12 days long

Method Time Step Sim Time N L/N
Size

Exp RK 10 4m 16s N/A N/A

Imp BDF2 1200 3m 42s ~7 30

Imp BDF2 1800 3m 30s ~8 30*

Higher order discretization within each element Good
candidate case for GPU (not preconditioned)
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Gains possible using GPU: merge the
data structure framework

Implicit Framework GPU Framework

do ie,q.k, ) o do ie,qg,k,j,i ) o

9 xstate( ) = elem(ie)%state%var(i,j.k,q) 9 gpu array(:) = elem(ie)%state%var(i,j.k,q)
end end
call nxsolve(xstate,..) call GPU Kernel(gpu array,..)
do ie,q.k, do ie,q.k,

. eLem(1e)%state%var(1 j,k,q)=xstate(:) . elem(1e)%state%var(1 i,k,a)=gpu array(:)
end end

\/

Implicit-GPU Framework

:3 = elem(ie)%state%var(i,j,.k,q)

lve(xstate,..) =2 call GPU Kernel(xstate,..)

i,
1e)%statebvar(i,j,k,q)=xstate(:)
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Framework to compute implicit time-stepping on TITAN

Enabled:
Common build system that links Trilinos to
CAM-SE and the GPU kernel development

Active:

Development of CAM-SE
kernels providing GPU
acceleration on green-
power effective next
generation architecture

GPUs show 2x

| | T speedup on TITAN
\ acceptance problem
Enabled: with 110 tracers

Build system that
incorporates latest
GPU development

OAK RIDGE NATIONAL LABORATORY
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Early results of speedup calculating
the residual on the GPU

e |llustrates the use of
hybrid architectures:

Titan

N

w
)

* Assigning more work to
the GPU produces more
speed-up relative to CPU
only

n
al W
T

GPU Acceleration
N

—_
6]
T

—
T

* Mountain test case: 4°
and 1°, # vertical
levels=26, ts=580s, 1 % 10 20 30 a0 =0 s 70
. . Elements per Node
simulation day

o
(3]
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The benefits of
ensemble
simulation for
testing: more
confidence and
efficiency

ESM Workshop

June 9, 2015

ORNL is managed by UT-Battelle CLIMATE CHANGE SCIENCE INSTITUTE
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Why Ensembles?

 Edward Lorenz and the
“butterfly effect”
— Physical equations governing

weather and climate are non-
linear

— Small changes in initial
conditions result in considerably
different states of the system

* Ensemble: set of simulations
with slightly perturbed initial
conditions (different sizes of
butterfly)

* We need ensembles to give us
an idea of the range of
possible system states
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Evaluating ACME Ensemble Scalability
Performance

* How does a 100-year global climate simulation,
or 5 20-year simulations, differ from 100 1-year
simulations run in parallel?

— Scientifically: How do model variables differ
statistically? How and where do these simulations
differ?

— Computationally: What performance improvements
do we get?

CLIMATE CHANGE SCIENCE INSTITUTE
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Computational Improvements

* 1-year 100 member ensemble:

— 5x more elements per node than the 20-year and 100-year
runs

— 60% of the core hours (1.1M versus 1.8M for 20 year 5
member)

— 4400 nodes total: 1/4 of Titan (classified as a "capability-scale"
job)
— Aggregate throughput: 280 SYPD. 100 year: ~2 SYPD

* We use the computer architecture and our own time
much more efficiently with parallel ensembles
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Are these sets of simulations the same?

* Analysis underway:

ors —— — RMS error and error
growth

— Probability distribution
function comparisons
and tests

— Statistical evaluation of
° 0 ;0 lIOO 1I50 2I00 2I50 3I00 3I50 400 eXtremes

Time (days)

0.015

T850 Relative Difference

0.005  §

Figure 1: L1 norm of relative difference in 850mb

temperature between each of the 100 ensemble

members over time. Members are distinct after
roughly 23 days.
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Further analysis

100 1-yr Run Ensemble: Precipitation Extremes

GEV Location Parameter (mm/day)
0 15 30 45 60 75 90 105 120 135 150

b. Ensemble - Serial run: Precipitation Extremes
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Difference in GEV Location Parameter (mm/day)

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Precipitation extremes for the 100 member
ensemble

(b) Statistically significant difference in
precipitation extremes between 100 year
simulation and 100 member ensemble

Frequency

Vertically-integrated total cloud (fraction)

10

8 -

6 —

4 —

2 —

0 —

0.600 0.620 0.640 0.660
Monthly Global Average Value
................. Kmmmmmmmmmm -~ 520-yr, average = 0.626094
,,,,,,,, —“¥— — — — — — — —- 100 1-yr, average = 0.625377
* 1 100-yr, average = 0.625886

Histogram of total cloud fraction vertically
integrated and globally averaged monthly values
for all three sets of simulations
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Ultra high-resolution
ensemble projections of the
near-term climate change
over the United States

Deeksha Rastogi
June 09, 2015

@. Climate Change
SCIence Institute
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Modeling Framework

Global Climate

Models (12) (RegCM4) VIC
Regional Climate L. Hydrological
Model (18km)  Statistical - ppoq01 (4km)
Correction

(Diffenbaugh and Ashfag, 2010)  (Ashfaq et al, 2010, 2013) (Oubeidillah et al, 2014)

Baseline period 1965-2005
Future (RCP8.5) 2010-2050
Number of ensemble members TWELVE
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Computational expense and data needs

Processor hours per GCM
Task Name 1965-2005 (baseline) Data 1/O
2010-2050 (future)
GCMs 6 hourly input i 40 TB
data

RegCM4 runs 0.7M (8.5M for 12 GCMs) ~8 1B pirzG(gcl\ﬁ/I(36 TB for
~4 TB per ensemble member

VIC runs 0.2M (2.4 M for 12 RCMs) (48 TB for 12 RCM

ensemble members)

Pre and Post-processing M 5TB
of data
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Baseline Comparisons (1966-2005)
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Added Value in RCM simulations

Northern'Rockies

GCMs Comparison with Obs Py ’4. i

® northern_rockies
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Precipitation Extremes (95" Percentile)

Observations (Daymet)

mm per day
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Wet Days (at least 1 mm precipitation)

Observations (Daymet)

o

Simulated Ensemble Mean (RegCM4)

20 60 100 140 180

Days in a calendar year
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Precipitation spells ( 5 days and shorter)

Observations (Daymet)

Simulated Ensemble Mean (RegCM4)

5 10 15 20 25 30 35 40 45 50 55 60 65 70

events per year
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Precipitation spells (longer than 5 days)

Observations (Daymet)

Simulated Ensemble Mean (RegCM4)

A B

“y B

1 2 3 4 5 6 7 8 9 10 11 12 138

events per year
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Extreme Hot Temperature (95t Percentile of
max daily Temperature)

Observations (Daymet)

-

mlated Ensemble Mean (RegCM4)

‘("i.-s
- W
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Degree C
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Extreme Cold Temperature (5" Percentile of
min daily Temperature)

Observations (Daymet)
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Future Changes (2011-2050)
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Temperature Change (2011-2050
minus 1966- 2005)

10 CMIP5 30 CMIP5
Global Climate Global Climate
Models Models
ensemble ensemble

10 Dynamically
Downscaled
Regional Climate
Model
Ensemble
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Red= PRISM Observations
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Precipitation Change (2011-2050 minus

1966-2005)

10 CMIP5
Global Climate
Models
ensemble

30 CMIP5
Global Climate
Models
ensemble

10 Dynamically
Downscaled
Regional Climate
Model
Ensemble

-15 -12
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Precipitation Change (2011-2050 minus
1966-2005)

Wet days

Spells greater than 5 days
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Summary

We generate a 12 member ensemble of ultra high-
resolution (4 km) simulations that are the most detailed (to
date) over the continental U.S.

High-resolution ensemble exhibits high degree of accuracy
in the simulation of mean and extreme historical climate.

Simulated future precipitation changes in means and
extremes exhibit a dipolar (north-south) response in
general.
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