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OUTLINE 

Davide Venturelli, Alejandro Perdomo-Ortiz, Eleanor G. Rieffel, Bryan O’Gorman (NASA) 
JSP In collaboration with: Dominic Marchand, Galo Rojo (1QBit) 

Quantum Annealing Programming Techniques for 
Discrete Optimization Problems 

 Primer about quantum annealing and its challenges 
 General programming/compiling/running applications 
 The example of Job-Shop-Scheduling (JSP) 
 Programming (mapping) techniques 
 Compiling (embedding) techniques 
 Running (annealing) technques 
 Annealing for problems of ASCR interests 

http://www.nas.nasa.gov/quantum 
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PRIMER ABOUT QUANTUM ANNEALING 

PRIMER ABOUT QUANTUM ANNEALING DEVICES (e.g. D-Wave Two) 

States = bitstrings 

E({z}) 

target 

ψ ψ ψ ψ ψ ... 

quantum states quantum states 

E({z}) 

target 

QUANTUM ANNEALING UNDERSTANDING 101 

(Knysh et al. 2015) 

• Bottleneck is typically the minimum gap, but it is difficult to locate or compute, not necessarily at QPT. 
• No proof of exponential speedup for easy to conceive Hamiltonians, mapping to universality unpractical. 
• Research directly on this topic has only 15 years of history, with less than 300 theory papers published. 

• They do not support arbitrary problem Hamiltonians: D-Wave has an Ising model on a 
“chimera lattice” 

• They do not support arbitrary drivings: D-Wave has a stoquastic transverse field 
• They do not operate as a closed system at T=0, D-Wave qubit decoherence is ≈5ns and 

operating temperature ≈15mK 
• Hamiltonian parameters are specified within a given precision, and they fluctuates 

over the annealing time, D-Wave has ≈5% of precision 
• They do not support arbitrary schedules, D-Wave has a min 20µs annealing quench 

interlaced with the problem Hamiltonian energy 
• They cannot encode arbitrary energies: D-Wave machine maximum energy is 3.2 Ghz 

(Johnson et al. 2011) 
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Analysis of results 

Mapping the problem 
into a suitable classical 
binary form (QUBO) 

GENERAL SCHEME FOR RUNNING APPLICATION PROBLEMS 

Running with the optimal 
(potentially adaptive) run-
strategy 

Pre-processing with 
polynomial algorithms 

 Optimal compilation 
(graph-minor embedding) 

Expectations through 
Pre-characterization 
(classical and quantum) 

Machine tuning 

Post-processing 
Error corrections 

Error suppression Embedding libraries 

(Perdomo-Ortiz et al. 2015) 

(Venturelli et al. 2014) 

(Rieffel et al. 2014) 
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PROBLEM PRE-CHARACTERIZATION: THE EXAMPLE OF JOB-SHOP SCHEDULING 

ENSEMBLE PRE-CHARACTERIZATION: MAKESPAN DISTR 

1st  operation 2nd   operation 3rd    operation 

JOB 0 Machine 0 for 3t Machine 1 for 2t Machine 2 for 2t 

JOB 1 Machine 0 for 2t Machine 2 for 1t Machine 1 for 4t 

JOB 2 Machine 1 for 3t Machine 2 for 3t Machine 2 for 3t 

Feasible schedule with makespan 12 

Optimal schedule with makespan 11 

AERONAUTICS  APPLICATIONS 

Machines/jobs      3                    4                        5                       6                    7 
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Size Time Best method 

5x5 
τ=[1,20] 

0.015 
seconds 

Scip 

10x10 
τ=[1,20] 

2.75 
seconds 

Gurobi 

15x15 
τ=[1,20] 

2430 
seconds 

Cplex (40%) 

THE PROBLEM: A SIMPLE 3X3 EXAMPLE CLASSICAL INTRACTABILITY 

(Banavar et al. 2007) 

(Beck et al. 2014) (Rieffel et al. 2014) 
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MAPPING INTO QUBO: THE TIME-SLICE APPROACH 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 1 If the job n is executing on machine m at time t 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 0 otherwise 

� �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 1
𝑡𝑡

2

𝑛𝑛,𝑚𝑚

 � � 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑛𝑛�(𝑡𝑡+𝜏𝜏)
𝑛𝑛�≠𝑛𝑛,𝜏𝜏𝑚𝑚,𝑛𝑛

 � 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚�𝑛𝑛�𝑡̅𝑡
(𝑚𝑚,𝑛𝑛,𝑡𝑡),(𝑚𝑚� ,𝑛𝑛�,𝑡̅𝑡)∈𝑅𝑅𝑚𝑚

 

Note: scheduling problems naturally quadratic, this is not always the case. (Venturelli et al. in prep.) 

N M T bits required 

(Rieffel et al. 2014) 
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MAPPING INTO QUBO: POLYNOMIAL PRE-PROCESSING 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 1 If the job n is executing on machine m at time t 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 0 otherwise 

N M T bits required 
-  NM(M<τ> + 1) 

= 

Ad the end the reading of the corresponding non-
zero bits will immediately determine the schedule. 

Polynomial pre-processing: 
Trivial bounds on heads/tails of jobs. 

Note: ≈6000 logical qubits for intractable 
N=15 problems 
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COMPILING: GRAPH-MINOR EMBEDDING CHALLENGES 

PHYSICAL CHANGE IN THE PROBLEM 
SPECTRUM RESULTS IN CHANGE IN 
PERFORMANCE 

INCREASE IN PROBLEM MISPECIFICATION 
DUE TO CONTROL PRECISION ERRORS 

TOPOLOGICAL ASSIGNMENT OF 
CONNECTED COMPONENTS 

Fully-connected substructures appears 
frequently in mappings and scale with the 
problem size.  

Resolving multiple values of parameters 
(including embedding) will result into loss 
of precision and problem misspecification. 

Ground state Ψ of 
Ideal Hamiltonian 

Ground state Ψ of ensemble of 
spoiled Hamiltonian 

(Venturelli et al 2014) 

(King et al 2015) 
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COMPILING: OPTIMAL PARAMETER SETTING 

N=5 M=5 T=9 

ferromagnetic phase: 
           ∆E ≈ |A(t)/B(t)|N 

paramagnetic phase:  
    ∆E ≈ |B(t)-A(t)| 

Early math considerations on parameter settings: the stronger the better 

(Venturelli et al 2014) 

(Rieffel et al. 2014) 

Basic Method: search for the single optimal ferromagnetic embedding strength 
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RUN STRATEGIES: DECISION VS OPTIMIZATION, PERFORMANCE TUNING 

THE TIME-SLOT DISCRIMINATION METHOD FOR TIME-SLICED DECISION PROBLEMS (PRECISION LIMITED) 

OPTIMIZING ALL RUNNING PARAMETERS (NOTABLY 
ANNEALING TIME): NECESSARY FOR BENCHMARKING 
AND FOR EVALUATING SPEEDUP. 

TUNING HARDWARE IMPERFECTIONS CAN HAVE A STRONG IMPACT. 

1 

0 0 

Suboptimal solutions: zero energy 
Optimal solutions: <α energy 

Log2(T) calls 𝜀𝜀 ≈
𝛼𝛼
𝑁𝑁𝑘𝑘 

Resolving k-time slots, given 
a maximum precision of ε 
for a problem of N jobs, with 
minimum logical penalty α: 

Best out 
of 10 
gauges 

Gauges 

We can pre-select the best 
gauge by either Hamiltonian 
learning or with the use of 
“performance estimators” 

(Perdomo-Ortiz in prep.) 

(Ronnow 2014) 
(Venturelli et al 2014) 
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OTHER TECHNIQUES AND PROBLEMS OF ASCR INTEREST: MATERIALS DESIGN 

Toy example of binary alloy: 
Mg17Al12 

• Typical cluster expansion contains around ≈ 15-20 V 
parameters and 3-local or maximum 4-local terms. 

• Limit of solvability for DFT ≈50 atoms. But long range 
interactions generate large non-local hamiltonians non easily 
minimizable by MonteCarlo. Quantum Annealing can help?   

229 possible configurations! 
Experimental annealing can get stuck on metastable 

Objective: Finding new different stable structures 

(Babbush et al. 2012) 

Cluster expansion approach: approximate the Hamiltonian using information from subset of the unit 
cells that are solved with Density Functional Theory. Minimize the resulting classical energy 
functional with Monte Carlo methods. 

In general, we add 1 more qubit every 3-body term 

(Sanchez et al. 1984) 
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Analysis of results 

Mapping the problem 
into a suitable classical 
binary form (QUBO) 

GENERAL SCHEME FOR RUNNING APPLICATION PROBLEMS 

Running with the optimal 
(potentially adaptive) run-
strategy 

Pre-processing with 
polynomial algorithms 

 Optimal compilation 
(graph-minor embedding) 

Expectations through 
Pre-characterization 
(classical and quantum) 

Machine tuning 

Post-processing 
Error corrections 

Error suppression Embedding libraries 

(Perdomo-Ortiz et al. 2015) 

(Venturelli et al. 2014) 

(Rieffel et al. 2014) 



D. Venturelli – 17 February 2015 – ASCR Quantum for Science Workshop – Bethesda, MD 

SUMMARY 

 We need to identify problems that are: 
SMALL (Mapping+Embedding Bottleneck can allow programming in near-future machine) 
HARD (Ideally on the verge of a phase transition of solvability) 
RESILIENT TO MISSPECIFICATION (The Analog control errors are a precision bottleneck) 
Where classical algorithms have hard time finding even an approximate solution 

 To prepare a machine to solve a class of problems we want to: 
CALIBRATE it properly for the classes of instances 
PRE-CHARACTERIZE the classes of problems to gain expectations useful for the embedding 
and running 
Prepare EMBEDDING LIBRARIES that could fit the class with pre-determined parameters. 

 To design an annealing architecture supporting programming of discrete optimization 
problems we need to take advantage of the programming strategies that are appearing 
in the problems of interest, that will be naturally fitting some connectivity of the 
hardware graph and some precision requirements of the problem. 
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