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The problem

Reduce L, the number of gates in quantum circuits

What to do with a small-to-mid size quantum computer?
Quantum simulations?
Solving linear systems of equations?
Solving differential equations?
what else?

Observation 1: If we do not have a way to synthesize circuits, L
can be ridiculously large 1

1D. Wecker, et.al., Gate count estimates for performing quantum chemistry
on small quantum computers, Phys. Rev. A 90, 022305 (2014).
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The problem

In many quantum algorithms, L has a poor scaling with
precision (ε� 1)

L ∼ poly(1/ε)

Simulating Hamiltonian dynamics using Trotte-Suzuki
decompositions
Algorithms that use phase estimation as a subroutine

Examples: computation of physical properties, applying inverse
of matrices, and more
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Our goal

Develop new quantum circuits where L→ polylog(1/ε):
“high-precision" quantum algorithms

Simulating physical systems: real and imaginary time
evolutions
Linear algebra problems: solving linear systems of
equations, solving differential equations, etc.

Related work
Simulating Hamiltonian dynamics [Berry, Childs, Cleve,
Kothari, RS]
Solovey-Kitaev to approximate simple unitary operations
with gates from a universal set
More efficient synthesis of quantum circuits [groups at
Microsoft, Harvard, IQC,...] (Krysta’s talk)
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Useful tools: Linear combinations of unitaries

Goal: prepare A |ψ〉, ‖A‖ ≤ 1.

Theorem (1)

Let A =
∑m−1

j=0 βjVj , where the Vj ’s are unitary, βj > 0,∑m−1
j=0 βj ≤ 1. Assume we have access to a unitary

V̄ =
∑m−1

j=0 Vj ⊗ |j〉 〈j |. Then, we can simulate A on a quantum
computer with one use of V̄ .

Proof.
|ψ〉 |0〉
|ψ〉

∑m
j=0

√
βj |j〉, with βm = 1−

∑m−1
j=0 βj∑m

j=0
√
βjVj |ψ〉 |j〉∑m−1

j=0 βjVj |ψ〉 |0〉+ |φ⊥〉 = A |ψ〉 |0〉+ |φ⊥〉
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Observations

Observation 2: In applications, we will need to consider the
implementation cost of V̄ in terms of two-qubit gates.

Observation 3: In applications, the exact decomposition of
A in terms of unitaries may require too many terms. We
can then approximate A, within some ε, using a different
decomposition with fewer terms. Various approximation
methods will be relevant here.
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Innovation

Use the above primitive + other methods to build quantum
algorithms for various problems, including physics simulation
and linear algebra problems, of complexity polylog(1/ε).

Preliminary studies
Recently2 we showed a way to simulate the evolution
operator, A ∝ eiH , using O(log(1/ε)/ log log(1/ε)) queries.
Using the Fourier transform, we can decompose e−H in
terms of unitaries. This may lead to an algorithm of
complexity polylog(1/ε) for physics simulation.
There are many decompositions of A = 1/H in terms of
unitaries. Can we exploit them to have an algorithm of
complexity polylog(1/ε) for applying inverses?
Other linear algebra problems?

2D. Berry, A.M. Childs, R. Cleve, R. Kothari, and RS., arXiv:1312.1414
(STOC) and arXiv:1412.4687 (PRL).
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Opportunities and challenges

Surely, applying operations such as 1/H efficiently is important.
But...

In practice, linear systems of equations are not solved by
multiplying a vector by 1/H. A lot of computations can be
reused to solve following instances (H = LU).
Conditioning numbers can be very large
Reading the full answer or encoding the initial vector can
still be time consuming

Challenge: Do we have killer apps? (Stephen’s talk)

We need more progress
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Future directions

Keep reducing the complexity of the algorithms
Generalize known tools, and introduce new ones, for other
applied math problems (e.g., solving differential equations)
Find important applications (physics simulation, heat
equations, ...)

Somma, Rolando D. “High-Precision" Quantum Algorithms



Future directions

Keep reducing the complexity of the algorithms
Generalize known tools, and introduce new ones, for other
applied math problems (e.g., solving differential equations)
Find important applications (physics simulation, heat
equations, ...)

Somma, Rolando D. “High-Precision" Quantum Algorithms



Future directions

Keep reducing the complexity of the algorithms
Generalize known tools, and introduce new ones, for other
applied math problems (e.g., solving differential equations)
Find important applications (physics simulation, heat
equations, ...)

Somma, Rolando D. “High-Precision" Quantum Algorithms



DOE support

“The mission of the Advanced Scientific Computing Research
(ASCR) program is to discover, develop, and deploy
computational and networking capabilities to analyze, model,
simulate, and predict complex phenomena important to the
Department of Energy (DOE). A particular challenge of this
program is fulfilling the science potential of emerging computing
systems and other novel computing architectures, which will
require numerous significant modifications to today’s tools and
techniques to deliver on the promise of exascale science."

Materials science
Physics
Chemistry
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Thank you.
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