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Adiabatic Quantum Computing

● Proposed in 2000:

 [quant-ph/0001106. Farhi, Gutman, Goldstone, Sipser]

● By adiabatic theorem [Elgart, Hagedorn, 2012]:

● Naturally suited to optimization problems

eigenvalue gap above ground energy



  

Adiabatic Optimization
● Let G be a graph. Let      be its Laplacian.

● Let W be a potential on the vertices.

● Adiabatic Algorithm to find minimum:
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These Hamiltonians are stoquastic: all
off-diagonal matrix elements are nonpositive.

Physics intuition: “no sign problem”.

Theorem: Stoquastic AQC is in postBPP.
[Bravyi, DiVincenzo, Oliveira, Terhal, 2006]



  

Can adiabatic optimization outperform 
classical optimization algorithms?

● For some problems adiabatic optimization beats simulated 
annealing.
[Farhi, Goldstone, Gutmann, 2002] & [Reichardt, 2004]

● Provable exponential speedup for a query problem by 
similar algorithms that are not adiabatic.
[Nagaj, Somma, Kieferova, 2012]

● For some problems adiabatic optimization is exponentially 
beaten by classical algorithms (even gradient descent).
[van Dam, Mosca, Vazirani, 2001] & [Jarret, Jordan, 2014]

● Can achieve quadratic, Grover-like speedups:
[Roland, Cerf, 2002] & [Somma, Boixo, 2013]



  

Analyzing the power of adiabatic 
optimization algorithms

Numerical

Strengths Limitations

● Small Instances
● General
● Exact

Experimental

● Bigger than numerical
● More general than

analytic

● Hard to distinguish
hardware limitations
from algorithmic ones.

Analytic
● Asymptotic
● Rigorous

● Hard, except for highly
symmetric instances.



  

Tools From Spectral Theory

● Graph Laplacians are closely related to

● We want:
● Traditional spectral theory gives us:
● Spectral graph theory gives us:



  

Local Minima

● Much discussion of adiabatic optimization 
focuses on tunneling out of local minima.
– If barrier is broad tunneling is exponentially slow.
– If barrier is tall, we may beat classical annealing.

● Underlying assumption: if there are no local 
minima, optimization runs fast.

● Is this true?



  

Counterexample

[Michael Jarret and S. Jordan, Adiabatic optimization without local minima.
Quant. Inf. Comp. 14(3/4):181, 2014. arXiv:1405.7552]



  

Counterexample

Q. Why is the gap exponentially small?

A. Because the ground state is “lobed”.

Theorem: If the ground state is single-peaked 
the gap satisfies                       .



  

Tools

● The counterexample is by “bare hands.”
● The theorem for single-peaked ground states is 

by conductance.
● Tighter bounds on path and hypercube by 

Poincare's inequality.
● Optimal bounds on path and hypercube by 

variational methods.
[Jarret, Jordan, J. Math. Phys. 55:052104, 2014]

● More general bounds from heat kernels.
[To appear]
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Conclusion

● Two directions for adiabatic optimization 
research:
– Applications
– Complexity Theoretic Foundations

● Foundations
– Local minima are important
– They are not the whole story
– Challenge: Construct an unambiguous example 

of superpolynomial speedup by adiabatic 
quantum optimization (even if contrived).


