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“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by

golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)



Why simulate quantum mechanics!?

Computational chemistry/physics
* chemical reactions
* properties of materials

Implementing quantum algorithms

e continuous-time quantum walk (e.g., for formula evaluation)
e adiabatic quantum computation (e.g., for optimization)

* linear/differential equations



Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.
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Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢, and an initial state |¢(0)), produce
the final state |¢/()) (to within some error tolerance ¢)

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot



Local and sparse Hamiltonians
Local Hamiltonians [Lloyd 96]

H =) "", H;j where each Hj acts on k= O(1) qubits

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N X N)

In any given row, the H =3 mEaEac 5 mEEEEEs
location of the jth nonzero mE
entry and its value can be o
computed efficiently (or is o

= =
given by a black box) - ;

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2F¥m



Previous simulation methods

Product formulas

* Decompose Hamiltonian into a sum of terms that are easy to
simulate
* Recombine the terms by alternating between them

(e—z‘At/re—iBt/r)r — o~ H(A+B)t O(tQ/T)

(e—iAt/Qre—iBt/re—iAt/Zr)T — o~ H(A+B)t | O(tS/TQ)

Quantum walk

* Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian

e Use phase estimation to obtain information about the spectrum

* Introduce phases to give the desired evolution

Complexity of both approaches: poly(t,log NV, d, 1/¢)



Linear combinations of unitaries

Given the ability to perform unitaries V; with unit
complexity, one can perform the operation U = Z B,V with

complexity O(» _, [5;]). Furthermore,if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

Main ideas:

* Using controlled-V; operations, implement U with some amplitude:
0)[2)) — sin B|0)YU |1p) + cos 0| P)

* Boost the amplitude for success by oblivious amplitude amplification



Quantum walk simulation

Each eigenvalue A\ of H corresponds to two eigenvalues | oEtarcsin A

of an easily-implemented quantum walk operator (with eigenvectors
also simply related to those of H)

Strategy: Use phase estimation to determine and correct the phase

Complexity: O(7/ve) 7 :=d||H||maxt

[Childs 10], [Berry, Childs 12]



Linear combination of quantum walk steps

Another approach: find coefficients so that
~ Z BrU" (within an appropriate subspace)

and implement this using the LCU Lemma

By a generating series for Bessel functions,

—fL)\t E : Jk zk: arcsin A\

k=—0o0

Coefficients drop off rapidly for large k, so we can truncate the series

log(7/€) >
log log(7/€)
7 = d||H || maxt

Query complexity of this approach: O (7’



Quantum algorithms for linear algebra

Basic computational problem: Solve for x in

A x|l =1b

[Harrow, Hassidim, Lloyd 09]: Quantum algorithm running in time
logarithmic in the size of A, provided

» A is given by a sparse Hamiltonian oracle and is well-conditioned
* b is available as a quantum state
* it suffices to give the output = as a quantum state

Core of this algorithm: Quantum simulation

Question: Can we further improve algorithms for linear systems
using recent advances in quantum simulation?



Applications of quantum linear algebra

Solving differential equations

* [Berry 10]: Ordinary linear differential equations
* [Clader, Jacobs, Sprouse | 3]: Preconditioned finite element method

for PDEs (electromagnetic scattering)

Computing effective resistances

* [Wang | 3]: Approximating effective resistances in sparse electrical

networks with good expansion

Data analysis/machine learning

‘Wiebe, Braun, Lloyd 12]: Data fitting
Lloyd, Mohseni, Rebentrost | 3]: Clustering
‘Rebentrost, Mohseni, Lloyd |3]: Support vector machines

Lloyd, Garnerone, Zanardi 14]: Computing Betti numbers

Recent survey by Aaronson: scottaaronson.com/papers/qml.pdf


http://scottaaronson.com/papers/qml.pdf

Computational power of q. linear algebra

Does the quantum algorithm for linear systems give an exponential

speedup over classical co

mputation!?

[HHL 09]: The problem solved by the quantum linear systems
algorithm (sparse, implicitly-specified, well-conditioned A; input
quantum state b; output quantum state x) is BQP-complete

What can we say about t

Example: Is the problem

ne complexity of some of its applications!?

of approximately computing effective

resistances in a sparse graph with good expansion

* BOQP-complete!?

* Efficiently solvable by a classical algorithm?



Outlook

* Optimal tradeoff for sparse Hamiltonian simulation
* Faster algorithms for structured problems
* Simulating open quantum systems

* What is the cost in practice for simulating molecular systems!?
* How do recent algorithms compare to naive methods?

* Improved algorithms for linear systems

* Computational power of applications of linear systems
* New applications of linear systems

* Other quantum algorithms from quantum simulation



