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“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)



Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials



Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the 
state, but by performing measurements on the state, it can answer 
questions that (apparently) a classical computer cannot
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Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an initial state          , produce 
the final state          (to within some error tolerance ²)
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Local and sparse Hamiltonians

In any given row, the 
location of the jth nonzero 
entry and its value can be 
computed efficiently (or is 
given by a black box)

Note:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each      acts on k = O(1) qubitsH =
Pm

j=1 Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries 
per row, d = poly(log N) 
(where H is N £ N)

H =



Previous simulation methods

• Define an easy-to-implement unitary operation (a step of a quantum 
walk) whose spectrum is related to the Hamiltonian

• Use phase estimation to obtain information about the spectrum
• Introduce phases to give the desired evolution

Quantum walk

• Decompose Hamiltonian into a sum of terms that are easy to 
simulate

• Recombine the terms by alternating between them

Product formulas
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Complexity of both approaches: poly(t, log N, d, 1/²)



Linear combinations of unitaries

LCU Lemma:  Given the ability to perform unitaries Vj with unit 
complexity, one can perform the operation                       with 
complexity                  .  Furthermore, if U is (nearly) unitary then this 
implementation can be made (nearly) deterministic.

U =
P
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Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:
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Quantum walk simulation
Each eigenvalue ¸  of H  corresponds to two eigenvalues                   
of an easily-implemented quantum walk operator (with eigenvectors 
also simply related to those of H)

±e±i arcsin�

Strategy:  Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]
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Linear combination of quantum walk steps

By a generating series for Bessel functions,

e�i�t =
1X

k=�1
Jk(�t) eik arcsin�

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t

Another approach: find coefficients so that

and implement this using the LCU Lemma

e�iH ⇡
KX
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k (within an appropriate subspace)



Quantum algorithms for linear algebra
Basic computational problem:  Solve for x in

A x b=

[Harrow, Hassidim, Lloyd 09]:  Quantum algorithm running in time 
logarithmic in the size of A, provided

•A is given by a sparse Hamiltonian oracle and is well-conditioned
• b is available as a quantum state
• it suffices to give the output x as a quantum state

Core of this algorithm:  Quantum simulation

Question: Can we further improve algorithms for linear systems 
using recent advances in quantum simulation?



Applications of quantum linear algebra
Solving differential equations
• [Berry 10]: Ordinary linear differential equations
• [Clader, Jacobs, Sprouse 13]: Preconditioned finite element method 

for PDEs (electromagnetic scattering)

Data analysis/machine learning
• [Wiebe, Braun, Lloyd 12]: Data fitting
• [Lloyd, Mohseni, Rebentrost 13]: Clustering
• [Rebentrost, Mohseni, Lloyd 13]: Support vector machines
• [Lloyd, Garnerone, Zanardi 14]: Computing Betti numbers

Computing effective resistances
• [Wang 13]:  Approximating effective resistances in sparse electrical 

networks with good expansion

Recent survey by Aaronson:  scottaaronson.com/papers/qml.pdf

http://scottaaronson.com/papers/qml.pdf


Computational power of q. linear algebra

[HHL 09]:  The problem solved by the quantum linear systems 
algorithm (sparse, implicitly-specified, well-conditioned A; input 
quantum state b; output quantum state x) is BQP-complete

What can we say about the complexity of some of its applications?

Example:  Is the problem of approximately computing effective 
resistances in a sparse graph with good expansion
• BQP-complete?
• Efficiently solvable by a classical algorithm?

Does the quantum algorithm for linear systems give an exponential 
speedup over classical computation?



Outlook
Improved simulation algorithms

New quantum algorithms

Applications to simulating physics
• What is the cost in practice for simulating molecular systems?
• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation
• Faster algorithms for structured problems
• Simulating open quantum systems

• Improved algorithms for linear systems
• Computational power of applications of linear systems
• New applications of linear systems
• Other quantum algorithms from quantum simulation


