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Linear Algebra

● Classical complexity:
– General Matrix:

● Naive algorithm:
● Best asymptotic complexity:                      (not practical) 

– Sparse Matrix:
● Quantum speedup:

– Can partially characterize x in               time.

[Harrow, Hassidim, Lloyd 2009]

Problem 1: given NxN matrix A and vector b,
solve Ax=b.



  

Input Format

Q. If M is an NxN matrix, how can we compute 
anything about it in O(log N) time?
– We need       time just to read the entries.
– For nonsingular sparse M we need at least N time.

A. If the entries of M are computable on the fly, 
then we can call this subroutine as needed.



  

HHL Quantum Algorithm

● Physics:

● Quantum algorithms for simulation [Alán's talk]
– For physical     on n qubits,                       can usually 

be implemented with poly(n,t) quantum gates.
– Matrix computation by quantum computation...

Hamiltonians       arising in nature are structured and sparse.



  

HHL Quantum Algorithm

Harrow Hasidim & Lloyd showed this primitive:

can be used to construct a state:

Problem 1: given NxN matrix A and vector b,
solve Ax=b.

make



  

Applications of HHL Algorithm

● Find instances of problem 1 such that:
– A corresponds to efficiently simulatable 

Hamiltonian (e.g. sparse)
– b corresponds to efficiently constructable quantum 

state vector
– We only want to learn            for some M that is 

also an efficiently simulatable Hamiltonian.

Problem 1: given NxN matrix A and vector b,
solve Ax=b.



  

Applications of HHL Algorithm

Several applications have been proposed for the 
HHL algorithm and its variants*:

● Solving linear differential equations 
[Berry, 2010]

● Least-squares curvefitting
[Wiebe, Braun, Lloyd, 2012]

● Machine learning
[Lloyd, Mohseni, Rebentrost, 2013]
[Lloyd, Garnerone, Zanardi, 2014]

● Matrix inversion in logarithmic space
[Ta-Shma, 2013]

*dependence on condition number of M has been
 improved from     to             in [Ambainis, 2010]
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[Berry, 2010]

● Least-squares curvefitting
[Wiebe, Braun, Lloyd, 2012]

● Machine learning
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● Matrix inversion in logarithmic space
[Ta-Shma, 2013]

*dependence on condition number of M has been
 improved from     to             in [Ambainis, 2010]

Can you find more?



  

Integrals & Sums

● Classical randomized sampling:
 

● Quantum amplitude amplification:
[Brassard, Hoyer, Tapp, 1998] [Mosca, 1998]

– This is optimal. [Nayak, Wu, 1999]

– Generalizes to integrals. [Novach, 2000]

Problem 2: given black-box access to

                            approximate              within    .



  

Optimization

Problem 3: given some objective function
               find          minimizing f(x).

● Practical Examples are Everywhere:
– Discrete: Given a list of N cities, find the 

shortest route visiting all of them.
– Continuous: Given a parametrized family of 

nosecone shapes, find the one with the lowest 
coefficient of drag.

● I will focus on simplified examples, because 
analysis of quantum optimization is hard!



  

Optimization

Problem 3: given some objective function
               find          minimizing f(x).

Discrete example: Max E2LIN2

Given a list of linear constraints mod 2 on n 
variables find the assigment of variables 
violating as few as possible.

1
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Optimization

Problem 3: given some objective function
               find          minimizing f(x).

Discrete example: Max E2LIN2

Given a list of linear constraints mod 2 on n 
variables find the assignment of variables 
violating as few as possible.

● Search space is exponentially large:
● Can simplify analysis by only counting queries.



  

Complexity of Optimization

Theorem: If f is completely unstructured 

(e.g. random ranking                                      )

then the optimal strategy is:

Classical: Brute search

Quantum: Grover's algorithm 

[Nayak, Wu, 1998]



  

Complexity of Optimization

In practice, the search space usually has 
some topology relative to which the objective 
function is smooth or structured.

Example: 

Easy Challenging Unstructured
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Complexity of Optimization

In practice, the search space usually has 
some topology relative to which the objective 
function is smooth or structured.

Example: Max E2LIN2

If                    differ by flipping one bit, we can 
change f by only the number of constraints in 
which that bit appears.  



  

Gradient Descent

● Flipping one bit is the natural local move.
● We can think of E3LIN2 as searching a space 

that has the topology of the hypercube graph.

● No local minima: we can use gradient descent.
● Otherwise we need some procedure to escape 

local minima.



  

Simulated Annealing

● We can modify gradient descent by accepting 
“uphill” moves with some nonzero probability so 
that we don't get stuck in local minima.

● Simulated annealing:

Lower T slowly

(Metropolis Rule)

Quasi-static probability distribution is 

uniform

probability 1 on minimum.



  

Adiabatic Quantum Computation

● In quantum mechanics, the energy of a system is 
determined by the Hamiltonian.

● The dynamics is also determined by the 
Hamiltonian:

● Adiabatic Theorem: if we start with the ground 
state and vary the Hamiltonian sufficiently slowly, 
the system tracks the ground state.

state     has energy E



  

Adiabatic Quantum Computation

Idea [Farhi, Goldstone, Gutman, 1999]:

● Choose H(s) such that:

– H(0) has ground state that is easy to prepare

– H(1) has ground state that encodes solution to problem
● Slowly vary s from 0 to 1

● By adiabatic theorem, we obtain the solution if we go slowly 
enough.

● Quantitatively runtime is*                , where     is minimum gap 
between lowest and second-lowest eigenvalues of H(s). 

*See: [Elgart & Hagedorn, 2012] 



  

Adiabatic Optimization

● Suppose

 
then ground state of H(1) minimizes f.
 

● Suppose H(0) is graph Laplacian.
–  Applications of H(0) hop to neighboring sites.
– Ground state is uniform.



  

Adiabatic vs. Thermal

Thermal Adiabatic

Probability distribution Quantum Superposition

Quasi-static:
stay in Gibbs distribution 

Quasi-static:
Stay in ground state

Decrease Temperature Decrease Hopping Term 



  

Adiabatic vs. Thermal

● Consider a one-dimensional double well:

● Thermal annealing: Boltzman factor
● Adiabatic optimization: tunneling matrix element
● These are different, so adiabatic can outperform 

thermal annealing.
● Better examples (on hypercube):

[Farhi, Goldstone, Gutmann, 2002] [Reichardt, 2004]



  

Adiabatic Optimization

● Evaluating the eigenvalue gap is hard.
– Numerics break down at n ~ 20-100
– Analytic techniques mainly for high symmetry
– Gap can be exponentially small even for easy problems 

with no local minima [Jarret, Jordan, 2014]

● What to do?
– More math [cf. Altschuler, Krovi, Roland, 2007]

– Try more general setting: go faster adiabatic theorem 
recommends and/or allow interaction with environment
[cf. Nagaj, Somma, Kieferova, 2012]

– Try experiments [cf. Boixo et al, 2013]



  

Hogg's Algorithm

● Classical: n queries

● Quantum: 1 query

[Hogg, 1998]

Problem 4: Given black box for
with promise                     , find    using as
few queries as possible.



  

Gradients and Quadratic Basins

Problem 5: Given black box for
find           using as few queries as possible.

● Classical: n+1 queries
● Quantum: 1 query

Problem 6: Given black box for
and promise                                    with M
positive definite, find minimum.

● Classical:         queries
● Quantum:        queries

[Jordan, 2005]

[Bulger, 2005]
[Jordan, 2008]



  

Very Recent Breakthrough

Problem 6 (“E3LIN2”): Given a list of N linear
equations mod 2, satisfy as many as possible.
Each equation involves exactly 3 variables.
Each variable is in at most D equations.

● Classical: satisfy

● Quantum: satisfy

● NP-hard: satisfy

[Farhi, Goldstone, Gutmann, 2014]



  

Summary
● Linear Algebra:

– Can solve N linear equations in log N time
– Needs special structure (e.g. sparsity)

● Sums and Integrals:
– Can obtain precision    in       time.
– Quadratic speedup by generalizing Grover's algorithm.

● Optimization:
– Adiabatic optimization: promising but mysterious.
– Factor of d speedups for symmetric d-dimensional 

optimization problems.
– Recent breakthrough achieves better approximation factor 

for E3LIN2 than any classical polynomial-time algorithm.


