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Linear Algebra

Problem 1: given NxN matrix A and vector b,
solve Ax=Db.

 Classical complexity:

- General Matrix:
» Naive algorithm: O(N?)
» Best asymptotic complexity: O(IN%73) (not practical)
- Sparse Matrix: O(N)
« Quantum speedup:

- Can partially characterize x inO(log N) time.
[Harrow, Hassidim, Lloyd 2009]



Input Format

Q. If M is an NxN matrix, how can we compute
anything about it in O(log N) time?

- We need N“time just to read the entries.
- For nonsingular sparse M we need at least N time.

A. If the entries of M are computable on the fly,
then we can call this subroutine as needed.
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* Physics:
U(t) = U(t)4(0)
U(t) = e !

Hamiltonians H arising in nature are structured and sparse.

» Quantum algorithms for simulation [Alan's talk]

- For physical 4 on n qubits, {7 (¢) = ¢~ can usually
be implemented with poly(n,t) quantum gates.

- Matrix computation by quantum computation...
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Harrow Hasidim & Lloyd showed this primitive:
J . e—thJ

can be used to construct a state:
V' o H '

Problem 1: given NxN matrix A and vector b,

solve Ax=D.
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Applications of HHL Algorithm

Problem 1: given NxN matrix A and vector b,
solve Ax=D.

* Find instances of problem 1 such that:

- A corresponds to efficiently simulatable
Hamiltonian (e.g. sparse)

- b corresponds to efficiently constructable quantum
state vector

- We only want to learn ' Mz for some M that is
also an efficiently simulatable Hamiltonian.



Applications of HHL Algorithm

Several applications have been proposed for the
HHL algorithm and its variants™:

« Solving linear differential equations
Berry, 2010]

 Least-squares curvefitting
Wiebe, Braun, Lloyd, 2012]

» Machine learning
[LIoyd, Mohseni, Rebentrost, 2013]
[Lloyd, Garnerone, Zanardi, 2014]

« Matrix inversion in logarithmic space
[Ta-Shma, 2013]

*dependence on condition number of M has been
improved from k2 to k log® k in [Ambainis, 2010]



Applications of HHL Algorithm

Several applications have been proposed for the
HHL algorithm and its variants™:

Can you find more?

*dependence on condition number of M has been
improved from k2 to k log® k in [Ambainis, 2010]



Integrals & Sums

Problem 2: given black-box access to

N
f:{1,...,N} - Z approximate » f(z) within -

r=1

_ €.

" u u 1
» Classical randomized sampling: =

€

. e g 1

» Quantum amplitude amplification: -
[Brassard, Hoyer, Tapp, 1998] [Mosca, 1998]

- This Is optimal. [Nayak, Wu, 1999
- Generalizes to integrals. [Novach, 2000]




Optimization

Problem 3: given some objective function
f:S—R find z € S minimizing f(x).

» Practical Examples are Everywhere:

- Discrete: Given a list of N cities, find the
shortest route visiting all of them.

- Continuous: Given a parametrized family of
nosecone shapes, find the one with the lowest
coefficient of drag.

* | will focus on simplified examples, because
analysis of quantum optimization is hard!



Optimization

Problem 3: given some objective function
f:S—R find z € S minimizing f(x).

Discrete example: Max E2LIN2

Given a list of linear constraints mod 2 on n
variables find the assigment of variables
violating as few as possible.
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Optimization

Problem 3: given some objective function
f:S—R find z € S minimizing f(x).

Discrete example: Max E2LIN2

Given a list of linear constraints mod 2 on n
variables find the assignment of variables
violating as few as possible.

« Search space is exponentially large: |S| = 2"
 Can simplify analysis by only counting queries.



Complexity of Optimization

Theorem: If f is completely unstructured

(e.g. random ra
then the optima

nking f:40,1}" — {1,2,.. .,2”})

strateqgy Is:

Classical: Brute search O(2")

Quantum: Grover's algorithm O(v/27)

[Nayak, Wu, 1998]



Complexity of Optimization

In practice, the search space usually has
some topology relative to which the objective
function is smooth or structured.

Example: S=1[0,1] c R

Easy Challenging Unstructured
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Complexity of Optimization

In practice, the search space usually has
some topology relative to which the objective

function is smooth or structured.

1 Pxo =1

Example: Max E2LIN2 S = {0,1}" Ty @ s = 1

T3 Dxr1 =1

If =,y €{0,1}"differ by flipping one bit, we can
change f by only the number of constraints in
which that bit appears.



Gradient Descent

 Flipping one bit is the natural local move.

« We can think of E3LINZ2 as searching a space
that has the topology of the hypercube graph.

* No local minima: we can use gradient descent.

« Otherwise we need some procedure to escape
local minima.



Simulated Annealing

» We can modify gradient descent by accepting
“uphill” moves with some nonzero probability so
that we don't get stuck in local minima.

» Simulated annealing:

Paccept — e AT (Metropolis Rule)

Lower T slowly
Quasi-static probability distribution is p(z) ~ e~ f(@)/T

T = oo uniform

T = (0 probability 1 on minimum.



Adiabatic Quantum Computation

 In quantum mechanics, the energy of a system is
determined by the Hamiltonian.

H 1; = Eﬁ (=) state 15 has energy E

« The dynamics is also determined by the
Hamiltonian:

d - . -
Ew = —tH(t)y

- Adiabatic Theorem: if we start with the ground
state and vary the Hamiltonian sufficiently slowly,
the system tracks the ground state.



Adiabatic Quantum Computation

ldea [Farhi, Goldstone, Gutman, 1999]:

Choose H(s) such that:

- H(0) has ground state that is easy to prepare
- H(1) has ground state that encodes solution to problem
Slowly vary s from 0 to 1

By adiabatic theorem, we obtain the solution if we go slowly
enough.

Quantitatively runtime is* 5(1/72) , where? is minimum gap
between lowest and second-lowest eigenvalues of H(s).

*See: [Elgart & Hagedorn, 2012]



Adiabatic Optimization
" £(0) ‘
* SUPPOSE H(1) =

then ground state of H(1) minimizes f.

« Suppose H(0) is graph Laplacian.
- Applications of H(0) hop to neighboring sites.
- Ground state is uniform.

110 010




Adiabatic vs. Thermal

Thermal Adiabatic
Probability distribution Quantum Superposition
Decrease Temperature Decrease Hopping Term

Quasi-static: Quasi-static:
stay in Gibbs distribution Stay in ground state

A A A

NS = \/"’N\ - \/\/\




Adiabatic vs. Thermal

 Consider a one-dimensional double well:
A

a

- Thermal annealing: Boltzman factor

 Adiabatic optimization: tunneling matrix element

« These are different, so adiabatic can outperform
thermal annealing.

 Better examples (on hypercube):
[Farhi, Goldstone, Gutmann, 2002] [Reichardt, 2004]



Adiabatic Optimization

- Evaluating the eigenvalue gap is hard.

- Numerics break down at n ~ 20-100
- Analytic techniques mainly for high symmetry

- Gap can be exponentially small even for easy problems
with no local minima [Jarret, Jordan, 2014]

 What to do?

- More math [cf. Altschuler, Krovi, Roland, 2007]

- Try more general setting: go faster adiabatic theorem
recommends and/or allow interaction with environment

[cf. Nagaj, Somma, Kieferova, 2012]
- Try experiments [cf. Boixo et al, 2013]



Hogg's Algorithm

Problem 4: Given black box for f:{0,1}" — Z
with promise /f(z) = [z —y/, find ¥ using as
few queries as possible.

 Classical: n queries

* Quantum: 1 query

[Hogg, 1998]



Gradients and Quadratic Basins

Problem 5: Given black box for f:R" - R
find V£(0) using as few queries as possible.

 Classical: n+1 queries I
* Quantum: 1 query [Jordan, 2005;
Problem 6: Given black box for f:R" =R

and promise f(z) =2'Mz+b-2+c¢ with M
positive definite, find minimum.

» Classical: ©(n*)queries
» Quantum: 9(n) queries

[Bulger, 20035]
[Jordan, 2008]




Very Recent Breakthrough

Problem 6 (“E3LIN2”’): Given a list of N linear
equations mod 2, satisfy as many as possible.
Each equation involves exactly 3 variables.
Each variable is in at most D equations.

. . 1 tant
 Classical: satisfy (5 | Conzan )

1 1
» Quantum: satisfy ( | )N

2 ' 22D3/4
_ 1 constant
» NP-hard: satisfy (5 -1 )N

[Farhi, Goldstone, Gutmann, 2014]



Summary

* Linear Algebra:

- Can solve N linear equations in log N time
- Needs special structure (e.g. sparsity)

« Sums and Integrals:

- Can obtain precision €in 1 /etime.

- Quadratic speedup by generalizing Grover's algorithm.
« Optimization:

- Adiabatic optimization: promising but mysterious.

- Factor of d speedups for symmetric d-dimensional
optimization problems.

- Recent breakthrough achieves better approximation factor
for E3LIN2 than any classical polynomial-time algorithm.



