Solving Practical Problems with Quantum
Computing Hardware

* Roles of software in CMOS-based computing environment
— Provide the abstraction for users to expression their tasks
— Correct hardware faults

— Software makes hardware useable!

« Expected roles of software in quantum computing: more of the
same
— Can we do something useful with what we got so far?

 What can software guys do, while quantum computing
hardware is emerging?
— In the future: models of computation, hardware virtualization,
programing tools, software development environment
— What could be done now: (1) tools to make the hardware useful,
(2) develop early applications .
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Practical Problem 1: Minor Embedding

« The hardware graph for a quantum computing device is likely to have many
physical and engineering limitations, e.g., the graph is likely to be linear, planar,
or having limited number of connections per qubit

» Real-word problems to be solved are unlikely to be subject to the same limitation

« Challenge: how to translate real-world problems onto a quantum emulation
hardware? The problem is known as the minor embedding problem in literature.

It is known to be a NP hard problem, therefore, brute-force solution is not going
to work beyond a few qubits.

« Approach: develop a set of efficient software heuristics to solve the minor
embedding problems.
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Practical Problem 2.1: Graph Partitioning
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Practical Problem 2.2: Gene co-expression in
Potts Model
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- Pairwise relationships between o I
genes and species can be
expressed as a Potts model
* The co-expressions are usually
very complex and good solutions
to the Potts models are hard to
find T
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Practical Problems 2.3: Potts Model for
Large-Scale Structure in Complex Networks

« Samples of graph problems solved with Potts models (left to right)
- Grassland food web
- Co-expression of genes from different animal models for toxicity study
- Relatedness of species in a microbial community




Found a Killer App in Science?

* Potts models could express many NP-hard problems in large-scale
graph structures from bioinformatics, chemoinformatics, among
other applications

* We believe that the Potts model could be a practical demonstration
of the usefulness of quantum annealing and quantum simulation

* Its application in determining the toxicology profile of new medicine
could reduce the cost of pharmaceutical research and development

and have imminent economic impact
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