
Solving Practical Problems with Quantum 
Computing Hardware 

•  Roles of software in CMOS-based computing environment 
–  Provide the abstraction for users to expression their tasks 
–  Correct hardware faults 
–  … 
–  Software makes hardware useable! 

•  Expected roles of software in quantum computing: more of the 
same 

–  Can we do something useful with what we got so far? 
•  What can software guys do, while quantum computing 

hardware is emerging? 
–  In the future: models of computation, hardware virtualization, 

programing tools, software development environment 
–  What could be done now: (1) tools to make the hardware useful, 

(2) develop early applications 



Practical Problem 1: Minor Embedding 
•  The hardware graph for a quantum computing device is likely to have many 

physical and engineering limitations, e.g., the graph is likely to be linear, planar, 
or having limited number of connections per qubit 

•  Real-word problems to be solved are unlikely to be subject to the same limitation 
•  Challenge: how to translate real-world problems onto a quantum emulation 

hardware? The problem is known as the minor embedding problem in literature.  
It is known to be a NP hard problem, therefore, brute-force solution is not going 
to work beyond a few qubits. 

•  Approach: develop a set of efficient software heuristics to solve the minor 
embedding problems. 

User problem: 
an example 

Embedded 
into D-Wave 
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Practical Problem 2.1: Graph Partitioning 
–  Graph partitioning as a test 
problem of the clustering problem
–  Turn graph partition problem into 
a Ising model
–  Solved with D-Wave

–  Figure on the right shows a 
mapping of the 4x4 mesh to the 
Vesuvius chip
–  The colored circles illustrate an 
observed solution



Practical Problem 2.2: Gene co-expression in 
Potts Model 

Rare module type 
Ultra-conserved 
Enzymatic complexes 

Common module type 
Differing gene counts 
Regulatory sub-network 

•  Pairwise relationships between 
genes and species can be 
expressed as a Potts model 

•  The co-expressions are usually 
very complex and good solutions 
to the Potts models are hard to 
find 

•  New computing technology 
such as D-Wave or Quantum 
Emulation devices promise to 
solve Potts models quickly 

Gerstein, et al. 2014. Nature. 



Practical Problems 2.3: Potts Model for 
Large-Scale Structure in Complex Networks 
•  Samples of graph problems solved with Potts models (left to right) 

- Grassland food web 
- Co-expression of genes from different animal models for toxicity study 
- Relatedness of species in a microbial community 
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Figure 5 |Hierarchical divisions in a food web of grassland species.
Outlined sets of nodes represent groups of species at different levels in the
hierarchy. For clarity only two levels in the hierarchy are shown, although
five levels were found in some parts of the network. Reproduced from
ref. 71.

structures, communities within communities andmany others. The
field is only just beginning to explore the wide range of possibilities
that this approach offers, but Fig. 5 shows one example, drawn
from my own work71. In this study we examined the food web of
a grassland ecosystem—the network of predator–prey interactions
between species—and searched for a generalized form of hierar-
chical community structure in which groups divide into subgroups
and subsubgroups and so on. Using a model that employs a tree
structure reminiscent of the dendrogram of Fig. 3 to represent the
hierarchy of groups, and edge probabilities that depend on shortest
paths through the tree, we were able to discover an entire spectrum
of structure within the network, spanning the range from small
motifs of a few nodes to the size of the entire network. Of particular
note in this example is the way in which the method groups host
species (squares) with their parasites (yellow triangles), but at the
next level in the hierarchy also gathers the parasites separately
into their own groups. In some sense, the parasites have more in
common with each other than with their host, and hence can be
thought of as belonging to a separate group, even though they have
no direct interactions with one another through the food web. The
calculation realizes this and divides the network accordingly.

Conclusion
The study of network structure and its links with the function and
behaviour of complex systems is a large and active field of endeavor,
with new results appearing daily and an energetic community of
researchers working on both methods and applications. Some of
the ideas discussed here are now well established and widely used,
whereas others, such as the block-modelmethods, are being actively
researched and developed, and there are many others still that there
is not room to describe in this article. The pace of developments
is, if anything, accelerating, and the field offers substantial promise
for those in physics, biology, the social sciences and elsewhere, for
whom the ability to make sense of the structures, large and small,
found in networks can open a new window on the behaviour of
systems of many kinds.
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Figure 3 |Average-linkage clustering of a small social network. This tree or ‘dendrogram’ shows the results of the application of average-linkage
hierarchical clustering using cosine similarity to the well-known karate-club network of Zachary38, which represents friendship between members of a
university sports club. The calculation finds two principal communities in this case (the left and right subtrees of the dendrogram), which correspond
exactly to known factions within the club (represented by the colours).

value falls always between zero and one—zero if the nodes have
no common neighbours and one if they have all their neigh-
bours in common.

Once one has defined a measure of connection strength, one
can begin to group nodes together, which is done in hierarchical
fashion, first grouping single nodes into small groups, then
grouping those groups into larger groups and so forth. There are a
number of methods by which this grouping can be carried out, the
three common ones being the methods known as single-linkage,
complete-linkage and average-linkage clustering. Single-linkage
clustering is the most widely used by far, primarily because it is
simple to implement, but in fact average-linkage clustering gener-
ally gives superior results and is notmuch harder to implement.

Figure 3 shows the result of applying average-linkage hierarchical
clustering based on cosine similarity to a famous network from
the social networks literature, Zachary’s karate-club network38.
This network represents patterns of friendship between members
of a karate club at a US university, compiled from observations
and interviews of the club’s 34 members. The network is of
particular interest because during the study a dispute arose among
the club’s members over whether to raise club fees. Unable to
reconcile their differences, the members of the club split into
two factions, with one faction departing to start a separate club.
It has been claimed repeatedly that by examining the pattern
of friendships depicted in the network (which was compiled
before the split happened) one can predict the membership of the
two factions14,20,26,27,38–40.

Figure 3 shows the output of the hierarchical clustering proce-
dure in the form of a tree or ‘dendrogram’ representing the order in
which nodes are grouped together into communities. It should be
read from the bottom up: at the bottom we have individual nodes
that are grouped first into pairs, and then into larger groups as
we move up the tree, until we reach the top, where all nodes have
been gathered into one group. In a single image, this dendrogram
captures the entire hierarchical clustering process. Horizontal cuts
through the figure represent the groups at intermediate stages.

As we can see, the method in this case joins the nodes together
into two large groups, consisting of roughly half the network each,
before finally joining those two into one group at the top of the
dendrogram. It turns out that these two groups correspondprecisely
to the groups into which the club split in real life, which are
indicated by the colours in the figure. Thus, in this case the method
works well. It has effectively predicted a future social phenomenon,
the split of the club, fromquantitative datameasured before the split
occurred. It is the promise of outcomes such as this that drivesmuch
of the present interest in networks.

Hierarchical clustering is straightforward to understand and to
implement, but it does not always give satisfactory results. As it
exists in many variants (different strength measures and different
linkage rules) and different variants give different results, it is not
clear which results are the ‘correct’ ones. Moreover, the method
has a tendency to group together those nodes with the strongest
connections but leave out those with weaker connections, so that
the divisions it generates may not be clean divisions into groups,
but rather consist of a few dense cores surrounded by a periphery of
unattached nodes. Ideally, wewould like amore reliablemethod.

Optimization methods
Over the past decade or so, researchers in physics and applied
mathematics have taken an active interest in the community-
detection problem and introduced a number of fruitful approaches.
Among the first proposals were approaches based on a measure
known as betweenness14,21,41, in which one calculates one of
several measures of the flow of (imaginary) traffic across the
edges of a network and then removes from the network those
edges with the most traffic. Two other related approaches are
the use of fluid-flow19 and current-flow analogies42 to identify
edges for removal; the latter idea has been revived recently
to study structure in the very largest networks30. A different
class of methods are those based on information-theoretic ideas,
such as the minimum-description-length methods of Rosvall and
Bergstrom26,43 and related methods based on statistical inference,
such as the message-passing method of Hastings25. Another large
class exploits links between community structure and processes
taking place on networks, such as randomwalks44,45, Potts models46
or oscillator synchronization47. A contrasting set of approaches
focuses on the detection of ‘local communities’23,24 and seeks to
answer the question of whether we can, given a single node,
identify the community to which it belongs, without first finding
all communities in the network. In addition to being useful for
studying limited portions of larger networks, this approach can give
rise to overlapping communities, in which a node can belong to
more than one community. (The generalized community-detection
problem in which overlaps are allowed in this way has been an area
of increasing interest within the field in recent years22,31.)

However, the methods most heavily studied by physicists, per-
haps unsurprisingly, are those that view the community-detection
problem by analogy with equilibrium physical processes and treat
it as an optimization task. The basic idea is to define a quantity
that is high for ‘good’ divisions of a network and low for ‘bad’
ones, and then to search through possible divisions for the one
with the highest score. This approach is similar to the minimization
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Found a Killer App in Science? 

•  Potts models could express many NP-hard problems in large-scale 
graph structures from bioinformatics, chemoinformatics, among 
other applications 

•  We believe that the Potts model could be a practical demonstration 
of the usefulness of quantum annealing and quantum simulation 

•  Its application in determining the toxicology profile of new medicine 
could reduce the cost of pharmaceutical research and development 
and have imminent economic impact 


