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DOE FUSION ENERGY MISSION: Demonstration of the Scientific and
Technological Feasibility of Fusion Power

e ITER: ~$25B facility under construction in France
-- 7 governments representing over half of world
—> dramatic next-step for Magnetic Fusion Energy
(MFE) producing a sustained burning plasma
-- Today: 10 MW(th) for 1 second with gain ~1 [JET]
-- ITER: 500 MW(th) for >400 seconds with gain >10

e Ongoing R&D programs worldwide [experiments,

theory, HPC, and technology] essential to provide
growing knowledge base for ITER operation targeted for
~ 2025

=» Reliable HPC-enabled predictive capabilities
required to cost-effectively plan, “steer,” & harvest
key information from expensive (~$1M/long-pulse)
shots




US/EU Statistical Disruption Studies on JET [Joint European Torus]

Situation Analysis:
— Most critical problem for MFE: avoid/mitigate large-scale major disruptions

-- Conventional *hypothesis-driven” MHD codes currently far away from achieving
predictive capability needed for disruption avoidance in JET —> only experiment that
achieved near “break-even” fusion energy production.

« Approach: Use of of large- data-driven statistical/machine-learning predictions for
the occurrence of disruptions in JET

« Current Status: ~ 6 years of R&D results using SVM-based ML on zero-D time

trace data executed on modern clusters yielding ~ 80% success rate, BUT > 95%
actually needed !

« Goal: improve (i) physics fidelity via new ML multi-D, time-dependent software and
(i) execution speed via deployment of improved ML software on LCF’s or possibly
on innovative Quantum Computing systems appropriate for needed large-scale
“data-mining” analysis of JET data

NOTE: —-> JET has recently aqgreed to provide unique access to its huge
disruption-relevant multi-dimensional data base that has yet to be analyzed.




Supervised Classifiers: SVM

* Binary classifier
* Finds the optimal separating hyper-plane between classes
* Samples: (x, y,), X, €R", k=1, ..., N, y&E{C,,,, C,}}
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e Find optimal hyper-plane by determining vector w that maximizes the margint
e To avoid infinite solutions due to presence of a scale factor: z||w]|]| =1
*To maximize margin is equivalent to minimizing | | w| |

i.e., Optimization problem:min J(W) = ||w
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Supervised Classifiers: SVM
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The rest of training samples are
irrelevant to classify new samples

The constant b is obtained from any
condition (Karush-Kuhn-Tucker)

a [y, ((w-x)+b)-1]=0, i=1K ,N

D(x) = W X +b’ is the distance (with sign) from X to the separating hyper-plane
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Fusion Data Mining Diagram
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NOTE: DA (Deterministic Annealing) Method

e “Generative Topographic Mapping by Deterministic Annealing,” J. Y. Choi, et al.
Science Direct, Proc. Computer Science 00, 1-10 (2010);

Geoffrey Fox, et al., Parallel Processing Letters, May 17, 2013.



Machine Learning with Quantum Computers

Examples:

Based on:
* Quantum Support Vector Machine [SVM] » Fast quantum evaluation of inner products
Ref.: P. Rebentrost, M. Mohseni, & S. * Fast quantum matrix inversion
Lloyd Phys. Rev. Lett. 113, 130503 (2014) —> Designed for the quantum circuit
model

» Training Strong Classifiers through Quantum Annealing
Reference: H. Neven, et al., arXiv:0912.0779 [quant-ph]; http.//

en.wikipedia.org/wiki/Quantum_machine _learning
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Label Weak classifier example

This is a quadratic unconstrained binary optimization (QUBOQO) that can be
implemented on a quantum annealer
—> This has been run on the D-Wave device




Summary

* DOE Mission Relevance;

-- Magnetic Fusion Enerqy with it’s goal of demonstrating the scientific & technical
feasiblity of delivering Fusion Power is an important DOE mission.

-- Most critical problem is to avoid/mitiqate larqe-scale major disruptions
* Impact on Computing:

-- Development of large-data-driven “machine-learning” statistical methods as
alternative/complement for conventional “hypothesis-driven/first principles” methods

* Challenges:

-- Needs significant improvements (from 80% to >95%) over zero-D SVM-based
machine-learninqg capabilities with respect to physics fidelity (capturing multi-D) and
execution time (moving beyond clusters to LCF’s or viable quantum computers).

- Associated QC development challenge to produce ML software interface
needed to connect to QC hardware (such as D-Wave)

* Implications for Accelerating Scientific Knowledge Discovery:
—> Possible Quantum Computing impact via connection to Machine Learning Software

* Promising Approaches: (i) Quantum SVM designed for quantum circuit model; & (ii)
Quantum Annealing for training strong classifiers

- Exciting promise for stimulating progress in predicting complex behavior in DOE
mission domains including example areas such as Fusion Enerqy,




