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Near-­‐term	
  promise	
  of	
  quantum	
  
§  Long-­‐term	
  promise	
  of	
  quantum	
  is	
  well-­‐

known	
  
§  FT-­‐QEC	
  enabling	
  large	
  circuits	
  simula.ng	
  

factoring,	
  unstructured	
  search,	
  etc.	
  
§  DOE-­‐relevant	
  problems:	
  op.miza.on,	
  graph	
  

proper.es,	
  quantum	
  simula.on	
  

§  What	
  can	
  we	
  do	
  in	
  the	
  near	
  term	
  (10	
  
years)?	
  
§  It	
  is	
  likely	
  we	
  will	
  have	
  some	
  special	
  purpose	
  

quantum	
  hardware	
  that	
  can	
  establish	
  and	
  
manipulate	
  quantum	
  states	
  in	
  this	
  .me	
  frame.	
  

§  Probably	
  not	
  enough	
  qubits	
  to	
  perform	
  QEC	
  and	
  
an	
  algorithm	
  

§  What	
  algorithms	
  can	
  we	
  iden.fy?	
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Simula.on	
  is	
  Central	
  to	
  ASCR	
  &	
  DOE	
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Robust	
  quantum	
  simula.ons	
  

§  Robustness	
  
§  Since	
  we	
  can’t	
  afford	
  FT-­‐QEC,	
  we	
  need	
  algorithms	
  that	
  are	
  somehow	
  

robust	
  to	
  noise,	
  disorder,	
  decoherence.	
  

§  Poten.al	
  robust	
  algorithms	
  
§  Analogue	
  simula.on	
  of	
  quantum	
  systems	
  

§  Device	
  noise	
  mimics	
  simula.on	
  noise	
  

§  Shallow	
  quantum	
  oracles	
  
§  Varia.onal	
  eigensolver	
  by	
  Peruzzo	
  et	
  al	
  from	
  quantum	
  chemistry	
  
§  Minimize	
  the	
  build-­‐up	
  of	
  noise	
  with	
  shallow	
  circuits	
  

§  Dissipa.ve	
  quantum	
  processes	
  
§  Perform	
  opera.ons	
  with	
  stable	
  fixed	
  points	
  that	
  are	
  insensi.ve	
  to	
  noise	
  in	
  
the	
  distant	
  past	
  

4	
  



Analogue	
  simula.on	
  of	
  quantum	
  systems	
  

§  Arrange	
  qubits	
  so	
  that	
  their	
  
Hamiltonian	
  closely	
  approximates	
  that	
  
of	
  the	
  quantum	
  system	
  of	
  interest.	
  

§  Useful	
  for	
  labce	
  proper.es	
  of	
  
materials	
  
§  e.g.	
  Does	
  Fermi-­‐Hubbard	
  model	
  with	
  X	
  

parameters	
  superconduct?	
  

§  Robust	
  because	
  of	
  assumed	
  similarity	
  
between	
  device	
  noise	
  and	
  system	
  
noise	
  
§  Need	
  to	
  understand	
  how	
  well	
  noise	
  models	
  

map	
  between	
  analogues	
  

I. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation”, Rev. Mod. Phys. 86, 153 (2014).  

Georgescu et al. RMP (2014) 
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Varia.onal	
  quantum	
  eigensolver	
  
§  Example	
  of	
  shallow	
  oracle	
  
§  Prepare	
  and	
  measure	
  quantum	
  

states	
  based	
  on	
  few	
  classical	
  
parameters	
  that	
  are	
  varied	
  and	
  
op.mized	
  using	
  classical	
  means	
  

§  Need	
  to	
  iden.fy	
  wave	
  func.ons	
  
where	
  polynomial	
  op.miza.on	
  
results	
  in	
  something	
  
computa.onally	
  useful	
  

§  UCC	
  very	
  promising	
  
§  Size	
  consistency	
  and	
  varia.onal	
  are	
  

not	
  exclusive,	
  and	
  may	
  both	
  be	
  
required	
  for	
  materials	
  design	
  

§  Is	
  UCC	
  unique?	
  
	
  

A. Peruzzo et al, "A variational eigenvalue solver on a quantum processor", Nat. Comm. 5, 4213 (2014)  

Chan et al., JCP (2004) 
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Dissipa.ve	
  quantum	
  processes	
  
§  Overwhelm	
  uninten.onal	
  loss	
  
	
  	
  	
  	
  	
  with	
  engineered	
  loss	
  
§  Noise	
  perturbs	
  the	
  steady	
  state	
  
	
  	
  	
  	
  	
  from	
  the	
  ideal	
  instead	
  of	
  accumula.ng	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  dri+	
  over	
  .me	
  of	
  a	
  state	
  from	
  the	
  ideal	
  
§  Natural	
  plaform	
  for	
  open	
  system	
  dynamics	
  
§  “Easy”	
  to	
  engineer	
  quantum	
  correla.ons,	
  

hard	
  to	
  protect	
  quantum	
  informa.on:	
  

F. Verstraete et al, "Quantum computation and quantum-state engineering driven by dissipation", Nat. Phys. 5, 633 (2009)  

Control of both coherent and dissipative dynamics is then achieved
by finding corresponding sequences of maps (1) specified by sets of
operation elements {Ek} and engineering these sequences in the labor-
atory. In particular, for the example of dissipative quantum-state pre-
paration, pumping to an entangled state jyæ reduces to implementing
appropriate sequences of dissipative maps. These maps are chosen to
drive the system to the desired target state irrespective of its initial state.
The resulting dynamics have then the pure state jyæ as the unique
attractor, rS. yj i yh j. In quantum optics and atomic physics, the tech-
niques of optical pumping and laser cooling are successfully used for
the dissipative preparation of quantum states, although on a single-
particle level. The engineering of dissipative maps for the preparation of
entangled states can be seen as a generalization of this concept of
pumping and cooling in driven dissipative systems to a many-particle
context. To be concrete, we focus on dissipative preparation of stabilizer
states, which represent a large family of entangled states, including
graph states and error-correcting codes32.

We start by outlining the concept of Kraus map engineering for the
simplest non-trivial example of ‘pumping’ a system of two qubits into a
Bell state. The Hilbert space of two qubits is spanned by the four Bell states
defined as W+

!! "
~ 1ffiffi

2
p 00j i+ 11j ið Þ and Y+

!! "
~ 1ffiffi

2
p 01j i+ 10j ið Þ. Here,

j0æ and j1æ denote the computational basis of each qubit, and we use the
short-hand notation j00æ 5 j0æ1j0æ2, for example. These maximally
entangled states are stabilizer states: the Bell state jW1æ, for instance, is
said to be stabilized by the two stabilizer operators Z1Z2 and X1X2, where
X and Z denote the usual Pauli matrices, as it is the only two-qubit state
that is an eigenstate of eigenvalue 11 of these two commuting obser-
vables, that is, Z1Z2jW1æ 5 jW1æ and X1X2jW1æ 5 jW1æ. In fact, each of
the four Bell states is uniquely determined as an eigenstate with eigen-
values 61 with respect to Z1Z2 and X1X2. The key idea of pumping is
that we can achieve dissipative dynamics which pump the system into a
particular Bell state, for example rS. Y{j i Y{h j, by constructing two
dissipative maps, under which the two qubits are irreversibly transferred
from the 11 into the 21 eigenspaces of Z1Z2 and X1X2.

The dissipative maps are engineered with the aid of an ancilla
‘environment’ qubit25,33 and a quantum circuit of coherent and dissip-
ative operations. The form and decomposition of these maps into basic
operations are discussed in Box 1. The pumping dynamics are deter-
mined by the probability of pumping from the 11 into the 21 stabilizer
eigenspaces, which can be directly controlled by varying the parameters
in the employed gate operations. For pumping with unit probability
(p 5 1), the two qubits reach the target Bell state—regardless of their
initial state—after only one pumping cycle, that is, by a single application

of each of the two maps. In contrast, when the pumping probability is
small (p = 1), the process can be regarded as the infinitesimal limit of
the general map (1). In this case, the system dynamics under a
repeated application of the pumping cycle are described by a master
equation34:
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Here HS is a system Hamiltonian, and ck are Lindblad operators reflect-
ing the system–environment coupling. For the purely dissipative maps
discussed here, HS 5 0. Quantum jumps from the 11 into the 21
eigenspace of Z1Z2 and X1X2 are mediated by a set of two-qubit
Lindblad operators (see Box 1 for details); here the system reaches
the target Bell state asymptotically after many pumping cycles.

Experimental Bell-state pumping
The dissipative preparation of n-particle entangled states is realized in a
system of n 1 1 40Ca1 ions confined to a string by a linear Paul trap and
cooled to the ground state of the axial centre-of-mass mode35. For each
ion, the internal electronic Zeeman levels D5/2(m 5 21/2) and
S1/2(m 5 21/2) encode the logical states j0æ and j1æ of a qubit. For
coherent operations, a laser at a wavelength of 729 nm excites the
quadrupole transition connecting the qubit states (S1/2 « D5/2). A broad
beam of this laser couples to all ions (Fig. 1a) and realizes the collective
single-qubit gate UX hð Þ~exp {i h

2

P
i Xi

& '
as well as a Mølmer-

Sørensen36 (MS) entangling operation UX2 hð Þ~exp {i h
4

P
i Xi

& '2
( )

when using a bichromatic light field (h is controlled by the intensity
and length of the laser pulses). Shifting the optical phase of the drive
field by p/2 exchanges Xi by Yi in these operations. As a figure of merit
of our entangling operation, we can prepare 3 (5) qubits in a GHZ state
with 98% (95%) fidelity37. These collective operations form a universal
set of gates when used in conjunction with single-qubit rotations
UZi hð Þ~exp {i h

2 Zi
& '

, which are realized by an off-resonant laser
beam that can be adjusted to focus on any ion.

For engineering dissipation, the key element of the mapping steps,
shown as (i) and (iii) in Box 1, is a single MS operation. The two-qubit
gate, step (ii), is realized by a combination of collective and single-qubit
operations. The dissipative mechanism, step (iv), is here carried out on
the ancilla qubit by a reinitialization into j1æ, as shown in Fig. 1b.
Another dissipative process (P.S. et al., manuscript in preparation)
can be used to prepare the system qubits in a completely mixed state
by the transfer 0j i? 0j iz S’j ið Þ

* ffiffiffi
2
p

followed by optical pumping of
jS9æ into j1æ, where jS9æ is the electronic level S1/2(m 5 1/2).

Qubit read-out is accomplished by fluorescence detection on the
S1/2 « P1/2 transition. The ancilla qubit can be measured without affect-
ing the system qubits by applying hiding pulses that shelve the system
qubits in the D5/2 state manifold during fluorescence detection38.

We use these tools to implement up to three Bell-state pumping
cycles on a string of 211 ions. Starting with the two system qubits in a
completely mixed state, we pump towards the Bell state jY2æ. Each
pumping cycle is accomplished with a sequence of eight entangling
operations, four collective unitaries and six single-qubit operations
(see Supplementary Information). The pumping dynamics are probed
by quantum state tomography of the system qubits after every half
cycle. The reconstructed states are then used to map the evolution of
the Bell-state populations.

In a first experiment, we set the pumping probability at p 5 1 to
observe deterministic pumping, and we obtain the Bell-state popula-
tions shown in Fig. 2a. As expected, the system reaches the target state
after the first pumping cycle. Regardless of experimental imperfec-
tions, the target state population is preserved under the repeated
application of further pumping cycles and reaches up to 91(1)% (all
numbers in parentheses denote 1s confidence intervals) after 1.5
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Figure 1 | Experimental tools for the simulation of open quantum systems
with ions. a, The coherent component is realized by collective (UX, UY, UX2 ,
UY2 ) and single-qubit operations (UZi ) on a string of 40Ca1 ions which consists
of the environment qubit (ion 0) and the system qubits (ions 1 to n). Coherent
operations on S and E, combined with a controllable dissipative mechanism
involving spontaneous emission of a photon from the environment ion, allow
one to tailor the coupling of the system qubits to an artificial environment. This
should be contrasted to the residual, detrimental coupling of the system (and
environment) ions to their physical environment. b, The dissipative mechanism
on the ancilla qubit is realized in the two steps shown on the Zeeman-split 40Ca1

levels by (1) a coherent transfer of the population from | 0æ to | S9æ (brown
arrow) and (2) an optical pumping to | 1æ after a transfer to the 42P1/2 state by a
circularly-polarized laser at 397 nm (represented by a blue straight arrow).
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which in turn have evolved according to US. This compact sequence
makes the simulation of n-body interactions experimentally efficient.
Here, the use of global MS gates conveniently bundles the effect of
several operations (M.M., K. Hammerer, Y. Zhou, C.F.R. and P.Z.,
manuscript in preparation) which arise in alternative circuit decom-
positions based on two-qubit gates31.

In an experiment carried out with 411 ions, we apply US for dif-
ferent values of t to the system ions initially prepared in j1111æ. We
observe coherent oscillations in the subspace spanned by j0000æ and
j1111æ, as shown in Fig. 4b. We characterize our implementation of US

by comparing the expected and measured states, determined by
quantum state tomography, for each value of t. The fidelity between
the expected and measured states is on average 85(2)%.

QND measurement of a four-qubit stabilizer
Our toolbox for quantum simulation of open systems is extended by
the possibility of reading out n-body observables in a non-destructive

way, which is also an essential ingredient in quantum error correction
protocols. Here, we illustrate this for a four-qubit stabilizer operator
X1X2X3X4. As above, we first coherently map the information about
whether the system spins are in the 11(21) eigenspace of the stabilizer
operator onto the logical states j0æ and j1æ of the ancilla qubit. In
contrast to the engineering of coherent and dissipative maps above,
where this step was followed by single-and two-qubit gate operations,
here we proceed instead by measuring the ancilla qubit.

Thus, depending on the measurement outcome for the ancilla, the
system qubits are projected onto the corresponding eigenspace of the
stabilizer: rS.PzrSPz=Nz P{rSP{=N{ð Þ for finding the ancilla in
j0æ (j1æ) with the normalization factor N6 5 Tr(P6rSP6). Here,
P+~ 1

2 1+X1X2X3X4ð Þ denote the projectors onto the 61 eigenspaces
of the stabilizer operator. Note that our measurement is QND in the
sense that (superposition) states within one of the two eigenspaces are
not affected by the measurement.

In the experiment with 411 ions, we prepare different four-qubit
system input states (tomographically characterized in additional
experiments), carry out the QND measurement and tomographically
determine the resulting system output states.

To characterize how well the measurement device prepares a
definite state, we use as input j1111æ, which is a non-eigenstate of
the stabilizer. In this case, when the ancilla qubit is found in j0æ or
j1æ the system qubits are prepared in the state 0000j i+ 1111j ið Þ

! ffiffiffi
2
p

by the QND measurement. Experimentally we observe this behaviour
with a quantum state preparation (QSP) fidelity46 of FQSP 5 73(1)%.
On the other hand, for a stabilizer eigenstate, the QND measurement
preserves the stabilizer expectation value. Experimentally, for the
input state 0011j i{ 1100j ið Þ

! ffiffiffi
2
p

, we observe a QND fidelity46 of
FQND 5 96.9(6)%. For more details, see Supplementary Information.

Conclusions and outlook
In the present work, we have demonstrated engineering of dissipative
Kraus maps for Bell-state and four-qubit stabilizer pumping. These
particular examples exploited the available quantum resources by
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Figure 4 | Coherent simulation of four-body spin interactions. a, The
elementary building block for the simulation of coherent evolution
US 5 exp(2itHS) corresponding to the four-body Hamiltonian
HS 5 2gX1X2X3X4 (b 5 2gt). b, Experimentally measured populations in state
| 0000æ (up triangles) and | 1111æ (circles) as a function of b for a single
application of US to the initial state | 1111æ of the four system qubits (error bars,
61s). The solid lines show the ideal behaviour. For comparison, the dashed
lines indicate these populations for simultaneous single-qubit (one-body)
oscillations, each driven by the rotation exp {i b
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Figure 3 | Experimental signatures of four-qubit stabilizer pumping.
a, Diagram of the four system qubits to be pumped into the GHZ state

0000j iz 1111j ið Þ
! ffiffiffi

2
p

, which is uniquely characterized as the simultaneous
eigenstate with eigenvalue 11 of the shown stabilizers. b, Reconstructed density
matrices (real part) of the initial mixed state rmixed and subsequent states r1,2,3,4

after sequentially pumping the stabilizers Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4.
Populations in the initial mixed state with qubits i and j antiparallel, or in the
21 eigenspace of the ZiZj stabilizer, disappear after pumping this stabilizer into
the 11 eigenspace. For example, populations in dark blue disappear after Z1Z2-
stabilizer pumping. A final pumping of the stabilizer X1X2X3X4 builds up the

coherence between | 0000æ and | 1111æ, shown as red bars in the density matrix
of r4. c, Measured expectation values of the relevant stabilizers; ideally, non-
zero expectation values have a value of 11. d, Evolution of the measured
expectation values of the relevant stabilizers for repetitively pumping an initial
state | 1111æ with probability p 5 0.5 into the 21 eigenspace of the stabilizer
X1X2X3X4. The incremental pumping is evident by the red line fitted to the
pumped stabilizer expectation value. The evolution of the expectation value
ÆX1X2X3X4æ for deterministic pumping (p 5 1) is also shown. The observed
decay of ÆZiZjæ is due to imperfections and is detrimental to the pumping
process (see Supplementary Information). Error bars (c and d), 61s.
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unitary control 
dissipative control 
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Path	
  forward	
  
§  Office	
  of	
  Science	
  mission	
  to	
  a	
  large	
  degree	
  involves	
  materials	
  

simula.on	
  
§  Robust	
  simula.on	
  promises	
  

§  Quantum	
  speedup	
  without	
  overhead	
  of	
  QEC	
  
§  Clearest	
  applica.on	
  to	
  DOE-­‐relevant	
  problems	
  

§  Some	
  of	
  this	
  problem	
  space	
  may	
  be	
  explored	
  in	
  the	
  very	
  near	
  
term	
  via	
  quantum	
  emula.on	
  
§  Direct	
  simula.on	
  of	
  quantum	
  vector	
  states	
  possible	
  for	
  small	
  numbers	
  

of	
  qubits	
  
§  Use	
  noise	
  models	
  extracted	
  from	
  GST	
  studies	
  of	
  exis.ng	
  systems	
  (e.g.	
  

arXiv	
  1310.4492)	
  
§  Establish	
  how	
  device	
  space	
  and	
  simula.on	
  space	
  noise	
  models	
  map	
  

for	
  different	
  types	
  of	
  simula.on.	
  

§  In-­‐depth	
  partnership	
  with	
  experiment	
  is	
  necessary	
  for	
  
valida.on	
  and	
  con.nued	
  progress.	
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