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AREAS OF INTEREST 
Physical Simulation Applications: 
 Quantum computers are known to have advantages 

   for the simulation of physical systems. 
 Can we advance the state of the art in algorithms? 

   Can we find new applications of interest to DOE? 
 

Data Science applications: 
   Quantum computers have shown key algorithmic 
 advantages (e.g. solving linear systems) 
 Can quantum computers be used in data science? 
 Can we advance the state of the art in algorithms? 

   Can we find new applications of interest to DOE? 
 



Multilayer perceptron applied to 
energy: Organic Photovoltaics 

“Quantum 
manufacturing”


(De Felice)
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QC Background

What is quantum simulation?

One quantum system pretending to be another
Lab system can do initialization, evolution, measurement
Want to compute h |Â| i for state | i, observable Â
Initialize lab system in some state
Control laboratory system to produce state representing
| i
Measure some set of observables (e.g qubit states 0,1) to
obtain information about Â
Lab system = quantum computer: quantum simulation
algorithms
If lab system = target system: we call that experiment!

Peter J. Love Quantum Simulation

What is Quantum Simulation?



Chemistry on a quantum computer
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KEY STEPS REQUIRE TIME EVOLUTION
Mapping + Trotter

Simulated Quantum Computation of Molecular Energies'' Alan Aspuru-Guzik, Anthony Dutoi, Peter J. Love, Martin Head-
Gordon, Science,  309, 5741, (2005)

E=??



Electronic Structure

Molecular electronic Hamiltonian

H = hijai
†aj +

1
2i, j

∑ hijklai
†aj
†akal

i, j ,k ,l
∑

{aj ,ak} = 0 {a†j ,a
†
k} = 0 {aj ,a

†
k} = δ jk1

Fermionic anticommutation relations



 “The total number of 
contracted basis 
functions, or AOs, 
cannot exceed 
8192.......In practice, 
you will probably run 
out of CPU time or disk 
storage before you 
encounter any of these 
limitations.” 

Gamess Manual 

A Quantum Computer for


 Chemistry?

Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi, 
Peter J. Love, Martin Head-Gordon, Science, 309, 5741, (2005)


J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012)



Year Calculation Citation Qubits

1933 H2 H. M. James, A. S. Coolidge JCP 1, 825 1

1950 Be S. F. Boys Proc Roy Soc 201 125 3,4

1952 He G. R. Taylor, R. G. Parr PNAS 38 154 2

1955 He H Shull, P.-O. Lowdin JCP 23 1565 2,3

1956 BH, H2O S. F. Boys, G. B. Cook, C. M. Reeves, I. Shavitt, Nature 178 1207 5,7

1957 LiH, BeH+ J. Miller et al. JCP 27 1385 3-5

1960 Be R. E. Watson, Phys. Rev. 119 170 6

1960 CH2 J. M. Foster, S. F. Boys, RMP 32 305 19

1963 H2 S. Hagstrom, H. Shull, RMP 35 624 3-6

1966 HeH, Li2 C. F. Bender, E. R. Davidson, JPC 70 2675 3

1967 H2O R Mcweeny, K. A. Ohno, Proc. Roy. Soc A255, 367 10

1968 Be C. F. Bunge, Phys. Rev. 168, 92 11

1970 H2O R. P. Hosteny et al Chem. Phys. Lett. 7, 325 23

Electronic wave functions 

I. A general method of calculation for the stationary 

states of any molecular system 

BY S. I?. BOYS,Theoretical Chemistry Department, University of Cambridge* 

(Communicated by Sir Alfred Egerton, Rl2.S.-Received 31 August 1949) 

This communication deals with the general theory of obtaining numerical electronic wave 
funotions for the stationary states of atoms and molecules. I t  is shown that by taking 

Gaussian fi~nctions, and functions derived from these by differentiation with respect to the 
parameters, complete systems of functions can be constructed appropriate to any molecular 
problem, and that all the necessary integrals can be explicitly evaluated. These can be used 
in conllexion with the molecular orbital method, or localized bond method, or the general 
method of treating linear combinations of many Slater determinants by the variational 

procedure. This general method of obtaining a sequence of solutions converging to the 
accurate solution is examined. It is shown that the only obstacle to the evaluation of wave 
functions of any required degree of accuracy is the labour of computation. A modification 

of the general method applicable to atoms is discussed and considered to be extremely 

practicable. 

In this communication is described the first of a series of investigations undertaken 

with the general aim of developing better methods of evaluating electronic wave 

functions and of using these to obtain new and more accurate data on atomic and 

molecular structure. It is well known that if the electronic stationary state wave 

functions can be evaluated for the various configurations of a system of atomic 

nuclei, then most of the spectral, chemical and physical properties of the corre- 

sponding system of atoms can be calculated. This is true when the atoms form a 

stable molecule, or when the system consists of a single atom, or when the system 

corresponds to an unstable configuration of atoms such as occur in the intermediate 

stages of a chemical reaction. Hence this general problem includes in principle a 

large number of the problems of theoretical chemistry, and a converging method of 

solution would effectively solve these problems. 

The first purpose of this communication is to describe such a method of successive 

approximation by which this stationary state electronic wave function for any 

configuration of atoms can be calculated to any desired degree of accuracy by 

inclusion of sufficient terms. This method does not depend on any numerical in- 

tegration processes. Such a method has not been previously reported. The new 

mathematical analysis which has been carried out to make this possible consists 

essentially of the evaluation of the Schrijdinger integrals between Gaussian pro- 

bability functions. The most complicated integral which is required is that of the 

electronic interaction between one product of two Gaussians on different centres 

with another product of two other Gaussians. These integrals and the simpler ones 

required are all evaluated explicitly. These integrals also provide the bases for the 

* Formerly I.C.I. Research Fellow, Imperial College, London. 
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Can quantum chemistry be performed on a small quantum computer?
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As quantum computing technology improves and quantum computers with a small but non-trivial
number of N � 100 qubits appear feasible in the near future the question of possible applications
of small quantum computers gains importance. One frequently mentioned application is Feyn-
man’s original proposal of simulating quantum systems, and in particular the electronic structure of
molecules and materials. In this paper, we analyze the computational requirements for one of the
standard algorithms to perform quantum chemistry on a quantum computer. We focus on the quan-
tum resources required to find the ground state of a molecule twice as large as what current classical
computers can solve exactly. We find that while such a problem requires about a ten-fold increase
in the number of qubits over current technology, the required increase in the number of gates that
can be coherently executed is many orders of magnitude larger. This suggests that for quantum
computation to become useful for quantum chemistry problems, drastic algorithmic improvements
will be needed.

I. INTRODUCTION

The excitement over quantum computation stems from
the promise that quantum computers will be able to
solve problems for which classical computers don’t have
enough resources. The evidence for this comes from the
discovery of quantum algorithms [1–7] which, at least
asymptotically, are exponentially faster than classical al-
gorithms. This assures us that eventually, when su�-
ciently large quantum computers exist, they will fulfill
this promise. On the flip side, simple quantum algo-
rithms have already been performed: for example, the
number 15 has been factored [8] and the energy of an
extremely simple molecule has been calculated [9]. Al-
though an important first step, these quantum calcula-
tions are still deep in the regime accessible to classical
computers. It is interesting, then, to explore what mini-
mal resources are needed for quantum computers to solve
problems that classical computers are unable to solve.
In particular, this encourages us to explore problem in-
stances which are just big enough to be outside the range
of classical computers (say, for the next decade) and un-
derstand the quantum resources needed to solve these
problems. We call these classically-intractable problems.
In this work, we take up this task for the area of quantum
chemistry.

Feynman’s original proposal for a quantum com-
puter [10] was motivated by the exponential complexity
of simulating many classes of quantum systems on a clas-
sical computer. The wave function of N 2-level systems,
(e.g. N spin-1/2 variables pointing up or down in a quan-
tum magnet or N spin-orbitals in a molecule each being
occupied with either 0 or 1 electrons) lives in the Hilbert

space C2N and thus needs an exponentially large number
of 2N classical variables to store. In contrast, on a quan-
tum computer storing the same wave function requires
only N qubits. This reduces the memory requirement
from exponential to linear and the runtime cost for many

computations on the quantum system from exponential
to polynomial.

The current state of the art in exact classical algo-
rithms can reach approximatelyN = 50 spin orbitals [11–
13]. Approximate methods for fermionic computation are
starting to reach chemical accuracy for up to N = 70 spin
orbitals [14]. Hence, an interesting application of a quan-
tum computer needs to reach at least N = 50 spin or-
bitals to o↵er any advantages over classical machines and
realistically needs approximately N = 100 spin orbitals
to be significantly more useful than current classical al-
gorithms. To store a wave-function of this size requires
full coherent control over at least 100 qubits. Experimen-
tally, such systems seem feasible in the near-term future:
Ion trap experiments have already demonstrated coher-
ence and entanglement between fourteen qubits [15] and
many more ions have been trapped, but not yet entan-
gled. Using superconducting qubit technology, around 10
qubits can be controlled and a few hundred gates can be
executed coherently.

While there has been great progress towards non-
trivial quantum computers with a small number of
qubits, the development of quantum algorithms and ex-
ploration of applications for such devices has lagged be-
hind. Factoring large integers using Shor’s algorithm [1]
is the canonical application for quantum computers, but
it requires many thousands of qubits to factor a number
that cannot be factored by classical algorithms [16, 17].
The electronic structure problem for molecules, on the
other hand, seems a more natural place where non-trivial
applications may exist for machines with a limited num-
ber of qubits and a significant amount of literature has
been devoted to this topic [5, 18–23]; for recent reviews,
see Refs. [24, 25]. Like Shor’s algorithm, solving the
electronic structure problem may also admit an expo-
nential speedup but a↵ords interesting possibilities with
fewer necessary qubits. In addition, the technological
benefits of quantum chemistry simulations are rich: For
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Phase estimation gives long skinny algorithms



Qubit requirements grounds for optimism



Gate requirements grounds for pessimism
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1Département de Physique, Université de Sherbrooke, Québec, Canada
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The simulation of molecules is a widely anticipated application of quantum computers. However,
recent studies [1, 2] have cast a shadow on this hope by revealing that the complexity in gate count
of such simulations increases with the number of spin orbitals N as N8, which becomes prohibitive
even for molecules of modest size N ⇠ 100. This study was partly based on a scaling analysis of the
Trotter step required for an ensemble of random artificial molecules. Here, we revisit this analysis and
find instead that the scaling is closer to N6 in worst case for real model molecules we have studied,
indicating that the random ensemble fails to accurately capture the statistical properties of real-
world molecules. Actual scaling may be significantly better than this due to averaging e↵ects. We
then present an alternative simulation scheme and show that it can sometimes outperform existing
schemes, but that this possibility depends crucially on the details of the simulated molecule. We
obtain further improvements using a version of the coalescing scheme of [1]; this scheme is based
on using di↵erent Trotter steps for di↵erent terms. The method we use to bound the complexity
of simulating a given molecule is e�cient, in contrast to the approach of [1, 2] which relied on
exponentially costly classical exact simulation.

I. INTRODUCTION

It has been 30 years since Feynman suggested that a
quantum information processor could in principle sim-
ulate the dynamics of quantum systems e�ciently [3],
and this idea has since been formalized and studied in
great detail [4–10]. Based on this knowledge, it has been
advocated that one of the first practical applications of
quantum information processors will be the simulation
of molecules [11–13, & references therein]. This is mo-
tivated by the fact that state-of-the-art, high-precision
numerical simulations are limited to molecules with at
most 50-70 spin orbitals, where a spin orbital denotes a
choice of both orbital and spin quantum numbers[14–18].
Thus, a quantum computer using as little as 100 logical
qubits has enough storage capacity to e�ciently perform
a simulation which is otherwise intractable classically.

However, closer scrutiny of the problem has recently
revealed that, while the memory requirements are in-
deed relatively modest, the duration of such quantum
simulations using the proposed techniques are far too de-
manding [1]. Significant improvements were obtained by
optimizing the quantum simulation circuitry [2], but the
required time-resources remain prohibitive.

To understand the origin of this problem, recall that
the time-evolution operator associated to a Hamiltonian
H is UH(t) = e�iHt. For a Hamiltonian expressed
as the sum of m terms H =

Pm
↵=1

H↵, we can use
the Trotter-Suzuki (TS) decomposition to approximate
the “infinitesimal” time-evolution operator UH(�t) by
a product of m infinitesimal time-evolution operators
U↵(�t) = e�iH↵�t , each generated by a single term H↵

from the Hamiltonian. Repeating 1/�t times yields the
time-evolution operator for a unit time. We can deduce
two immediate consequences of this approach. On the
one hand, the number of gates Ng required to implement
a single infinitesimal time step will scale at least propor-
tionally to the number of terms m in the Hamiltonian.
On the other hand, the error in the TS approximation
also increases as some power of m, forcing us to adopt
a smaller time step �t, and hence a slower simulation
[1, 8, 10].

In the case of a molecule, the Coulomb force generates
quartic terms c†

pc
†
qcrcs in fermion creation and annihi-

lation operators. For small molecules, there can be as
many as ⇠ N4 such distinct terms, where N is the num-
ber of relevant spin orbitals of the molecule. The stan-
dard approach to the problem [1, 2, 11–13] applies the
TS decomposition directly to these m = O(N4) terms,
each of which can be implemented using (at best) a con-
stant number of gates[2] on average given a gate set con-
taining one- and two-qubit Cli↵ord operations as well
as arbitrary single-qubit controlled rotations. Thus, this
technique unavoidably entails at least a ⇠ N4 cost per
infinitesimal time-step.

Furthermore, to achieve a constant accuracy, the time
evolution operator needs to be broken into a number of
steps which increases as some power of N . In [1], a rigor-
ous upper bound on the TS error was derived which in-
dicates that 1/�t = O(N5) infinitesimal time-steps are
su�cient to achieve a constant accuracy. This scaling
was confronted with exact numerical simulations which
revealed that 1/�t = O(N4�5) infinitesimal time-steps
were indeed su�cient, resulting in a total complexity of
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Improving Quantum Algorithms for Quantum Chemistry

M. B. Hastings,1, 2 Dave Wecker,2 Bela Bauer,1 and Matthias Troyer3
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We present several improvements to the standard Trotter-Suzuki based algorithms used in the
simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner
transformations are implemented to reduce their cost from linear or logarithmic in the number
of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we
demonstrate how many operations can be parallelized, leading to a further linear decrease in the
parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits
required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly
reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian
to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are
validated using numerical simulation and detailed gate counts are given for realistic molecules.

One of the most natural applications of a quantum computer is to simulate quantum mechanics, as suggested by
Feynman1. There has been much work on constructing quantum algorithms to simulate various problems in quantum
mechanics, ranging from problems in condensed matter physics such as the Hubbard model to quantum field theory2

and quantum chemistry3–16.
A recent large-scale study of quantum chemistry on a quantum computer17 gave accurate gate counts for some of

the standard circuits in the literature when applied to problems in quantum chemistry. Unfortunately, this study
found that even modest molecules require enormously long simulation time. The reason for this is simple: in quantum
chemistry, we consider a basis with N spin orbitals. The Hamiltonian considered takes the form

H =
X

pq

t
pq

c†
p

c
q

+
1

2

X

pqrs

V
pqrs

c†
p

c†
q

c
r

c
s

(1)

for a system of interacting electrons. Many of the two-body interaction terms V
pqrs

are non-zero and so there are
roughly N4 separate, non-commuting terms in the Hamiltonian. The time requirements become large even for roughly
100 spin orbitals; since roughly 50-70 spin orbitals can already be simulated on a classical computer using exact or
approximate techniques18–22, clearly improvements are needed in the quantum algorithms to make them potentially
useful.

Typical quantum algorithms to simulate this system need to implement unitary time evolution under the Hamilto-
nian (1). E�cient ways to implement this evolution have thus been the object of intense research e↵orts23–30. Other
approaches that do not rely on time evolution have been proposed31,32. For the time evolution, a Trotter-Suzuki
approach33,34 is most common, where the evolution exp(iH�

t

) for a small time step �
t

(controlled by an additional
ancilla qubit used to perform the phase estimation) is implemented through a sequence of O(N4) unitary transforma-
tions exp(iA�

t

) where A is some term in Eq. (1). Standard implementations10 have an additional factor of N overhead
in gate count to implement the Jordan-Wigner transformation, which encodes the anticommutation relations of the
fermionic degrees of freedom, giving a time complexity O(N5). Further, as N increases, the Trotter time step must
become smaller to obtain a fixed, given accuracy, further worsening the performance of the algorithm. All these e↵ects
combine to give poor scaling with N .

In this paper, we significantly alleviate these problems. One technique is a modified circuit which reduces the gate
count overhead for Jordan-Wigner strings to a constant without requiring additional qubits. This improves both on
the linear overhead of Ref. 10 and on the Bravyi-Kitaev scheme which has only a logarithmic overhead35. Further, we
show that with this modified circuit, many of the operations can be parallelized, leaving the total gate count unchanged
but reducing the parallel circuit depth. All these improvements significantly reduce the gate count and parallel circuit
depth both asymptotically and for small molecules. Further, we modify the Trotter-Suzuki decomposition in two
ways. First, we modify the term order to take into account special properties of a Hartree-Fock basis in quantum
chemistry. Second, we modify the Hamiltonian that we study in a way that corrects for having a nonzero Trotter step.
These improvements allow us to obtain accurate results at much larger Trotter step than one might obtain otherwise.

These improvements then take two forms. One type of improvement involves modifying the circuits to perform
the same simulation in a more e↵ective way. The other type involves modifying the simulation done to obtain more
accurate answers at larger Trotter step. Below, we detail all these improvements. We explicitly check gate counts
for various real molecules, using LIQUi|i, a quantum simulator developed at Microsoft Research36, so that we could
obtain precise numbers for the improvements over the original circuits, rather than just asymptotic estimates.
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Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush,1 Jarrod McClean,2 Dave Wecker,1 Alán Aspuru-Guzik,2 and Nathan Wiebe1

1Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052
2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

(Dated: February 6, 2015)

Although the simulation of quantum chemistry is one of the most anticipated applications of
quantum computing, the scaling of known upper bounds on the complexity of these algorithms is
daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the error
operator and analyzed scaling with respect to the number of spin orbitals. However, we find that
these error bounds can be loose by up to sixteen orders of magnitude for some molecules. Further-
more, numerical results for small systems fail to reveal any clear correlation between ground state
error and number of spin orbitals. We instead argue that chemical properties, such as the maximum
nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the
cost of a quantum simulation. Our analysis motivates several strategies to use classical processing
to further reduce the required Trotter step size and to estimate the necessary number of steps, with-
out requiring additional quantum resources. Finally, we demonstrate improved methods for state
preparation techniques which are asymptotically superior to proposals in the simulation literature.

I. INTRODUCTION

The idea that the simulation of quantum systems
would be e�cient on a quantum computer dates back to
Feynman’s original work on quantum mechanical com-
puters [1]. Almost a decade after Abrams and Lloyd [2]
demonstrated a scalable scheme for the quantum sim-
ulation of fermions, Aspuru-Guzik et al. [3] proposed
that these techniques could be used to e�ciently deter-
mine the ground state energy of molecular Hamiltonians,
solving what chemists refer to as the electronic structure
problem. Since then, a great deal of work has focused on
specific strategies for the quantum simulation of quantum
chemistry. While most of these approaches are based on
a second quantized representation of the problem making
use of both phase estimation and Trotterization [3–13],
recently some have proposed alternative schemes such
as the quantum variational eigensolver [14], an adiabi-
atic algorithm [15] and an oracular approach based on
a 1-sparse decomposition of the configuration interaction
Hamiltonian [16]. In fact, quantum chemistry is such a
popular application that toy problems in chemistry have
been solved on a variety of experimental quantum in-
formation processors which include quantum optical sys-
tems [14, 17], nuclear magnetic resonance [18, 19] and
solid-state Nitrogen-vacancy center systems [20].

Recently, a series of papers [10–13] has provided im-
proved analytical and empirical bounds on the resources
required to simulate classically intractable benchmarks
using a quantum computer. While the initial findings in
[10] were pessimistic, improvements in both bounds and
algorithms introduced in [11] and [12] have reduced these
estimates by more than thirteen orders of magnitude for
simulations of Ferredoxin. The primary contribution of
[13] was to point out that in the limit of large molecules,
the use of a local basis can substantially reduce asymp-
totic complexity of these algorithms. In this paper we
build on the findings of [10–13] to o↵er new perspectives
regarding the scaling of the second quantized, Trotter-

ized, phase estimation algorithm for quantum chemistry.
In particular, we question a basic assumption implicit in
all of these works: that the Trotter error explicitly de-
pends on the number of spin orbitals being simulated.

Instead, we argue that chemical properties such as the
filling fraction of electrons in a given basis, the partic-
ular choice of orbital basis and the nuclear potential
play a more significant role in determining the Trotter
error than does the number of spin orbitals for small
molecules. We support these arguments with numerical
analysis based on the explicit computation of the Trot-
ter error operator derived in [12]. Additionally, we show
that classically tractable approximations to the ground
state wavefunction can be used to e�ciently estimate the
Trotter error expected in a particular ground state sim-
ulation. This result is of significant practical importance
because without a procedure for estimating the Trotter
error, one must rely on analytical error bounds which (as
we show) tend to overestimate the ground state error by
many orders of magnitude. Finally, we show asymptot-
ically improved circuits for state preparation based on
these classical ansatz states.

A. The electronic structure problem

The electronic structure problem is to estimate the en-
ergy of electrons interacting in a fixed nuclear potential
to within an additive error of ✏. This Hamiltonian may
be written as,

H = �
X

i

r2
ri

2
�

X

i,j

Zi

|Ri � rj | +
X

i,j>i

1

|ri � rj | (1)

where we have used atomic units, {Ri} denotes nuclear
coordinates, {ri} electronic coordinates, and {Zi} nu-
clear charge. Often times, the utility of these energies
is to provide Born-Oppenheimer surfaces for molecular
modeling at finite temperatures. Usually, chemists are
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for a trivial translation of electronic occupation number basis states into basis states of

a quantum computer, and so we simply refer to this way of encoding fermionic states as

the occupation number basis for qubits. The next step is to map fermionic creation and

annihilation operators onto operators on qubits.

As a näıve first step, we can form one-qubit creation and annihilation operators, Q̂+ and

Q̂�, that act on qubits of our quantum computer in the expected ways:

Q̂+|0i = |1i

Q̂+|1i = 0

Q̂�|1i = |0i (2.11)

Q̂�|0i = 0

This implies the following matrix representations:

Q̂+ = |1ih0| = ( 0 0
1 0 ) Q̂� = |0ih1| = ( 0 1

0 0 ) (2.12)

We could proceed by following the standard recipe for turning p-qubit quantum gates into

operators acting on an n-qubit quantum computer (n � p) by taking the tensor product of

the gate acting on the target qubits with the identity acting on the other (n� p) qubits [23].

However, it is easy to show that the qubit creation and annihilation operators formed in this

way do not obey the fermionic anti-commutation relations.

Two facts suggest a way forward. First, since the Pauli matrices are taken as elementary

gates in circuit model quantum computing, it is advantageous to express the qubit creation

and annihilation operators in terms of Pauli matrices:

Q̂+ = |1ih0| = 1

2
(�x � i�y) Q̂� = |0ih1| = 1

2
(�x + i�y) (2.13)

Second, the mutual anti-commutation of the three Pauli matrices allows us to recognize

that Q̂± anti-commutes with the Pauli-Z (�z) matrix. Thus if we represent the action of

a†j or aj by acting with Q̂±
j and with �z on all qubits with index less than j, our qubit

operators will obey the fermionic anti-commutation relations. Put di↵erently, the states of

our quantum computer will acquire the same phases under the action of our qubit operator as

do the electronic basis states under the action of the corresponding creation or annihilation

operator. The e↵ect of the string of �z gates is to introduce the required phase change of �1

10

if the parity of the set of qubits with index less than j is 1 (odd), and to do nothing if the

parity is 0 (even). (The parity of a set of qubits is just the mod 2 sum of the numbers that

represent the states they are in, e.g. the parity of the set of qubits {|1i, |0i, |1i} is 1� 0� 1

= 0.)

We can then completely represent the fermionic creation and annihilation operators in

terms of basic qubit gates as follows:

a†j ⌘ 1⌦n�j�1 ⌦ Q̂+ ⌦ �z⌦j (2.14)

aj ⌘ 1⌦n�j�1 ⌦ Q̂� ⌦ �z⌦j

A more compact notation, of which we will make extensive use throughout this paper, is

a†j ⌘ Q̂+
j ⌦ Ẑ!

j�1 aj ⌘ Q̂�
j ⌦ Ẑ!

j�1 (2.15)

where

Ẑ!
i ⌘ �z

i ⌦ �z
i�1 ⌦ · · · �z

1 ⌦ �z
0 (2.16)

and where it is assumed that any qubit not explicitly operated on is acted on by the identity.

The operator Ẑ!
i is a “parity operator” with eigenvalues +1 and �1, corresponding to

eigenstates for which the subset of bits with index less than or equal to i has even or odd

parity, respectively.

The above correspondence, a mapping of interacting fermions to spins, is the Jordan-

Wigner transformation [13]. Jordan and Wigner introduced this transformation in 1928 in

the context of 1D lattice models, but it has since been applied to the quantum simulation of

fermions [12, 14]. The problem with this method is that, as a consequence of the non-locality

of the parity operator Ẑ!
i , the number of extra qubit operations required to simulate a single

fermionic operator scales as O(n). In the next section we consider two alternatives to the

occupation number basis that were first suggested by Bravyi and Kitaev [20].

11
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i is a “parity operator” with eigenvalues +1 and �1, corresponding to

eigenstates for which the subset of bits with index less than or equal to i has even or odd

parity, respectively.

The above correspondence, a mapping of interacting fermions to spins, is the Jordan-

Wigner transformation [13]. Jordan and Wigner introduced this transformation in 1928 in

the context of 1D lattice models, but it has since been applied to the quantum simulation of

fermions [12, 14]. The problem with this method is that, as a consequence of the non-locality

of the parity operator Ẑ!
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Strings and ladders
Exponentiating products of Pauli-Z matrices: 

Figure 6: A demonstration of how to exponentiate tensor products of Pauli matrices. First,
the three qubits are entangled with CNOT gates, and then a single-qubit phase rotation Rz

is applied. Then, we uncompute with two further CNOT gates.

In general, an n-fold tensor product of Pauli-Z matrices will require 2(n�1) CNOT gates

and one single-qubit gate (SQG). If there are Pauli-X or -Y matrices in the tensor product,

we must apply the single-qubit Hadamard or Y gate before we entangle with CNOT’s, and

also apply these gates’ Hermitian conjugates as part of the uncomputing stage. These gates

are given by:

H =
1p
2

"
1 1

1 �1

#
Y =

1p
2

"
1 i

i 1

#
(8.4)

Thus, each non-�z term in a tensor product of Pauli matrices adds 2 single-qubit gates to the

cost of exponentiation. Using these resource counting methods for the expressions given in

equations 8.2 and 8.3, we obtain the following comparison of the computational complexity

of the Jordan-Wigner method versus the Bravyi-Kitaev method:

Method # of SQG’s # of CNOT’s

Jordan-Wigner 82 60

Bravyi-Kitaev 51 56

Experimentally, two-qubit gates such as CNOT are much harder to implement than

single-qubit gates such as the Hadamard. One must therefore compare the number of

CNOT’s and the number of single-qubit gates separately. The Bravyi-Kitaev Hamiltonian

requires marginally fewer CNOT gates, and many fewer single-qubit gates, than the Jordan-

Wigner Hamiltonian. We conclude that the Bravyi-Kitaev method is more e�cient for the

case of molecular hydrogen in a minimal basis. Thus, there is very little algorithmic overhead

for the Bravyi-Kitaev method. Given the O(log n) scaling of the Bravyi-Kitaev transforma-

tion as compared to the O(n) scaling of the Jordan-Wigner transformation, the fact that the

36

c1 = �(
h11

2
+

h0110 + h1221 + h1331 � h1313

4
)

c2 = �(
h22

2
+

h2332 + h1221 + h0220 � h0202

4
)

c3 = �(
h33

2
+

h2332 + h0330 + h1331 � h1313

4
)

Likewise, we can write the Bravyi-Kitaev Hamiltonian as follows:

ĤBK = k1+ k0�
z
0 +

h0110

4
�z
1 + k2�

z
2 + k10�

z
1�

z
0 +

1

4
[h2332�

z
3�

z
1 + (h0220 � h0202)�

z
2�

z
0

+ h0132(�
x
2�

x
0 + �y

2�
y
0) + h1221�

z
2�

z
1�

z
0 + k321�

z
3�

z
2�

z
1 � (h1331 + h1313)�

z
3�

z
2�

z
0

+ h0132(�
z
3�

x
2�

x
0 + �z

3�
y
2�

y
0 + �y

2�
z
1�

y
0 + �x

2�
z
1�

x
0 ) + h0330�

z
3�

z
2�

z
1�

z
0

+ h0132(�
z
3�

y
2�

z
1�

y
0 + �z

3�
x
2�

z
1�

x
0 )] (8.3)

where now the coe�cients are given by

k = c

k0 = �(
h00

2
+

h0330 + h0220 � h0202 + h0110

4
)

k2 = c2

k10 = c1

k321 = �(h33 + h2332 + h0330 + h1331 � h1313)

Writing the Jordan-Wigner and Bravyi-Kitaev Hamiltonians in this form allows for a

comparison of the computational resources required to simulate them on a quantum com-

puter. Disregarding the shift c1, which appears identically for both encodings, the terms

in the Hamiltonians can be classified into one-local, two-local, three-local, and four-local

products of Pauli operators. The Jordan-Wigner Hamiltonian contains four one-local prod-

ucts, six two-local products, and eight four-local products; the Bravyi-Kitaev Hamiltonian

contains three one-local products, five two-local products, seven three-local products, and

three four-local products. To understand what computational resources are required for ex-

ponentiating operators of this kind, consider the example of the exponentiation of a threefold

product of �z matrices, ei(�
z ⌦ �z ⌦ �z), which is depicted in a circuit diagram below.
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implement and are O(n)
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The parity basis
Make parity local - store parity in the qubits



Parity is local! But occupancy is non-local
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3 Alternatives to the occupation number basis

3.1 The parity basis

The extra qubit operations required to simulate one fermionic operator when using the

Jordan-Wigner method result from operating with �z on all qubits with index less than j.

This phase computation task could be accomplished by a single application of �z if instead

of using qubit j to store lj, we used qubit j to store the parity of all occupied orbitals up

to orbital j [20]. That is, we could let qubit j store pj =
Pj

s=0 ls. (Throughout this paper,

all sums of binary variables are taken mod 2). We will call this way of encoding fermionic

states with qubits the parity basis.

What is the equivalent of the Jordan-Wigner transformation (which corresponds to the

occupation number basis) that corresponds to the parity basis? Since the parity of the set of

orbitals with index less than j is what determines whether the action of a†j or aj introduces

a phase of �1, operating with �z on qubit (j � 1) alone will introduce the necessary phase

to the corresponding qubit state in the parity basis.

However, unlike the Jordan-Wigner transformation, we cannot represent the creation or

annihilation of a particle in orbital j by simply operating with Q̂± on qubit j, because in the

parity basis qubit j does not store the occupation of orbital j, but the parity of all orbitals

with index less than or equal to j. Thus whether we need to act with Q̂+ or Q̂� on qubit

j depends on qubit (j � 1). If qubit (j � 1) is in the state |0i, then qubit j will accurately

reflect the occupation of orbital j, and simulating a†j will require acting on qubit j with Q̂+,

as before. But if qubit (j� 1) is in the state |1i, then qubit j will be “flipped”2 compared to

the occupation of orbital j, and we will instead need to act with Q̂� on qubit j to simulate

a†j (and vice versa for the annihilation operator).

The equivalent of Q̂± in the parity basis is therefore a two-qubit operator acting on qubits

j and j � 1:

P̂±
j ⌘ Q̂±

j ⌦ |0ih0|j�1 � Q̂⌥
j ⌦ |1ih1|j�1 (3.1)

Additionally, creating or annihilating a particle in orbital j changes the parity data that must

be stored by all qubits with index greater than j. Thus we must update the cumulative sums

pk for k > j by applying �x to all qubits |pki, k > j. The representations of the creation

and annihilation operators in the parity basis are then:

2I.e. if orbital j is occupied, qubit j will be in the state |0i.
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a†j ⌘ X̂ j+1 ⌦ P̂+
j aj ⌘ X̂ j+1 ⌦ P̂�j (3.2)

where

X̂ i ⌘ �x
n�1 ⌦ �x

n�2 ⌦ · · · �x
i+1 ⌦ �x

i (3.3)

This is the equivalent of the Jordan-Wigner transformation for the parity basis. The operator

X̂ i is the “update operator”, which updates all qubits that store a partial sum including

orbital (i � 1) when the occupation number of that orbital changes. It is straightforward

to verify that these mappings satisfy the fermionic anti-commutation relations. But to

simulate fermionic operators in the parity basis, we have traded the trailing string of �z

gates required by the Jordan-Wigner transformation for a leading string of �x gates whose

length also scales as O(n), and we have not improved on the e�ciency of the Jordan-Wigner

simulation procedure. In the next section, we explore a third possibility.

3.2 The Bravyi-Kitaev basis

The previous two approaches are dual: with the occupation number basis and its associated

Jordan-Wigner transformation, the occupation information is stored locally but the parity

information is non-local, whereas in the parity basis method and its corresponding operator

transformation, the parity information is stored locally but the occupation information is

non-local.

The Bravyi-Kitaev construction is an optimal middle ground. That is, it constructs a

third basis that balances the locality of occupation and parity information for improved

simulation e�ciency. The general form of such a scheme must be to use qubits |bji to

store partial sums
Pb

s=a ls of occupation numbers according to some algorithm. For ease

of explanation, in the exposition that follows, when we write that a qubit “stores a set of

orbitals”, what is meant is that the qubit stores the parity of the set of occupation numbers

corresponding to that set of orbitals.

Bravyi and Kitaev’s encoding has an elegant binary grouping structure [20]. In this

scheme, qubits store the parity of a set of 2x adjacent orbitals, where x � 0. A qubit of

index j always stores orbital j, but for odd values of j, it also stores a set of adjacent orbitals

with index less than j. The rule for determining the group of orbitals that is stored by a

qubit of index j is this:

1. If j = 0 (mod 2), the qubit only stores orbital j.
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The Bravyi-Kitaev basis 

Strike a happy medium between local occupancy and 
local parity

Old basis New basis
S. Bravyi and A. Yu. Kitaev, “Fermionic quantum computation”,  Annals of Physics, 298 
210-226 (2002), J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012)



An example: H2 in a minimal basis

B. P Lanyon, J. D Whitfield, G. G Gillett, M. E Goggin, M. P Almeida, I Kassal, J. D Biamonte, M Mohseni, B. J Powell, M 
Barbieri, A Aspuru-Guzik, A. G White, Towards Quantum Chemistry on a Quantum Computer, Nature Chemistry, 2, 106, 
2010

Ĥ =
X

i,j

hija
†
iaj +

1

2

X

i,j,k,l

hijkla
†
ia

†
jakal (2.8)

The coe�cients hij and hijkl are one- and two-electron overlap integrals, which can be pre-

computed classically and input to the quantum simulation as parameters [14, 21].

In our application (section 7), we treat molecular hydrogen in a minimal basis. Thus,

we construct two spatial molecular orbitals by taking linear combinations of the localized

atomic spatial wavefunctions:  g =  H1 +  H2 and  u =  H1 �  H2. Here the subscripts

g and u stand for the German words gerade and ungerade — even and odd. In general one

must take a Slater determinant to determine the correctly anti-symmetrized wavefunctions

of the fermionic system, but in this case we can guess them by inspection. The form of the

spatial wavefunctions is determined by the choice of basis set. STO-3G is commonly used

— for a review of these details of quantum chemistry, see [22].

Molecular spin orbitals are formed by taking the product of these two molecular spatial

orbitals with one of two orthogonal spin functions, |↵i and |�i. Thus, the four molecular

spin orbitals in our description (the local fermionic modes corresponding to the operators

a(†)j ) are:

|�0i = | gi|↵i |�1i = | gi|�i |�2i = | ui|↵i |�3i = | ui|�i (2.9)

In the next section we define what it means to successfully map a fermionic system such

as the minimal basis hydrogen molecule to a quantum computer.

2.3 Mapping fermionic systems to qubits

The non-locality of the fermionic creation and annihilation operators is the predominant

obstacle for simulating fermions with qubits, which are strictly local and must be distin-

guishable to be experimentally addressable. Thus, a fermionic simulation scheme can be

broken into two pieces: first, to map occupation number basis vectors to states of qubits;

second, to represent the fermionic creation and annihilation operators in terms of operations

on qubits in a way that preserves the fermionic anti-commutation relations. For each en-

coding of fermionic states in qubit states, there is an associated transformation of fermionic

operators into qubit operators. Precisely what it means for an encoding and transformation

to simulate a fermionic system, or for a qubit operator to represent a fermionic operator, is

illustrated in Figure 1.

In the next section, we will review the Jordan-Wigner transformation, which corresponds

8

For this example n = 4



A Tale of Two Transformations
The Jordan-Wigner spin Hamiltonian for H2



The Bravyi-Kitaev spin Hamiltonian for H2 



These two Hamiltonians are isospectral.



Let’s compare the computational cost of simulating them
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FIG. 6: The approximation to the ground state eigenvalue, for both the Bravyi-Kitaev Hamiltonian

(squares) and Jordan-Wigner Hamiltonian (circles), as a function of the number of gates required.

The solid curve is the näıve first order Suzuki-Trotter approximation, while the dashed curve is

the result from alternating the noncommuting terms. The dotted horizontal line represents the

true eigenvalue, while the solid lines above and below represent the bounds for chemical precision.

The ground state eigenvalue of the Bravyi-Kitaev Hamiltonian can be approximated to chemical

precision with 222 gates, while it takes 328 gates to do the same for the Jordan-Wigner Hamiltonian.

902 gates. With the noncommuting terms intermixed, it takes only 3 Trotter steps to

obtain the same precision for the Bravyi-Kitaev Hamiltonian, and 4 Trotter steps for the

Jordan-Wigner Hamiltonian. Thus, if we intermix the noncommuting terms, the Bravyi-

Kitaev transformation allows one to utilize 222 gates instead of the 328 gates required by

the Jordan-Wigner transformation to obtain an equally precise estimate of the hydrogen

molecule’s ground state eigenvalue when using a first order Suzuki-Trotter approximation.

When using higher-order Suzuki-Trotter approximations to obtain better than chemical

precision, the gate savings increases (Fig. 7).
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Strings and ladders
Exponentiating products of Pauli-Z matrices: 

Figure 6: A demonstration of how to exponentiate tensor products of Pauli matrices. First,
the three qubits are entangled with CNOT gates, and then a single-qubit phase rotation Rz

is applied. Then, we uncompute with two further CNOT gates.

In general, an n-fold tensor product of Pauli-Z matrices will require 2(n�1) CNOT gates

and one single-qubit gate (SQG). If there are Pauli-X or -Y matrices in the tensor product,

we must apply the single-qubit Hadamard or Y gate before we entangle with CNOT’s, and

also apply these gates’ Hermitian conjugates as part of the uncomputing stage. These gates

are given by:

H =
1p
2

"
1 1

1 �1

#
Y =

1p
2

"
1 i

i 1

#
(8.4)

Thus, each non-�z term in a tensor product of Pauli matrices adds 2 single-qubit gates to the

cost of exponentiation. Using these resource counting methods for the expressions given in

equations 8.2 and 8.3, we obtain the following comparison of the computational complexity

of the Jordan-Wigner method versus the Bravyi-Kitaev method:

Method # of SQG’s # of CNOT’s

Jordan-Wigner 82 60

Bravyi-Kitaev 51 56

Experimentally, two-qubit gates such as CNOT are much harder to implement than

single-qubit gates such as the Hadamard. One must therefore compare the number of

CNOT’s and the number of single-qubit gates separately. The Bravyi-Kitaev Hamiltonian

requires marginally fewer CNOT gates, and many fewer single-qubit gates, than the Jordan-

Wigner Hamiltonian. We conclude that the Bravyi-Kitaev method is more e�cient for the

case of molecular hydrogen in a minimal basis. Thus, there is very little algorithmic overhead

for the Bravyi-Kitaev method. Given the O(log n) scaling of the Bravyi-Kitaev transforma-

tion as compared to the O(n) scaling of the Jordan-Wigner transformation, the fact that the
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Likewise, we can write the Bravyi-Kitaev Hamiltonian as follows:
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where now the coe�cients are given by

k = c

k0 = �(
h00

2
+

h0330 + h0220 � h0202 + h0110

4
)

k2 = c2

k10 = c1

k321 = �(h33 + h2332 + h0330 + h1331 � h1313)

Writing the Jordan-Wigner and Bravyi-Kitaev Hamiltonians in this form allows for a

comparison of the computational resources required to simulate them on a quantum com-

puter. Disregarding the shift c1, which appears identically for both encodings, the terms

in the Hamiltonians can be classified into one-local, two-local, three-local, and four-local

products of Pauli operators. The Jordan-Wigner Hamiltonian contains four one-local prod-

ucts, six two-local products, and eight four-local products; the Bravyi-Kitaev Hamiltonian

contains three one-local products, five two-local products, seven three-local products, and

three four-local products. To understand what computational resources are required for ex-

ponentiating operators of this kind, consider the example of the exponentiation of a threefold

product of �z matrices, ei(�
z ⌦ �z ⌦ �z), which is depicted in a circuit diagram below.
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Electrodes generate trapping field

From transistor to trapped-ion computers for quantum chemistry
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Solano,   arXiv:1307.4326
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Fabricating Surface Traps

Movie credit: Georgia Tech Research Institute (GTRI)



Gen III linear trap

Micromirror

Gen II linear trap

S. C. Doret et al. New J. Phys. 14, 073012 (2012),  


J. T. Merrill et al, New J. Phys. 13, 103005 (2011)

Components for scalable ion traps
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The Pac Man Quantum Computer

Research Problem - what is the best Pac Man Maze for Chemical calculations?



Answer implied by : J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012)



Bravyi-Kitaev makes Molmer-Sorensen simulation of interacting fermions 
SCALABLE
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The Adiabatic Model

Hi = g Xi → (1− s)Hi + sH f → H f = JijZiZ j + hiZi
i
∑

i, j
∑

i
∑

Quantum Computation by Adiabatic Evolution, Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser, quant-
ph/0001106v1
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Quantum computers are not
known to be able to solve
NP-complete problems in
polynomial time.
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Performance determined by minimum spectral gap during adiabatic
evolution
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Scalable Control and Readout Architecture
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Complete 128-qubit chip with PMM circuitry.
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“Comparing the performance of the device on random spin glass instances with limited 
precision to simulated classical and quantum annealers, we find no evidence of 
quantum speedup when the entire data set is considered, and obtain inconclusive 
results when comparing subsets of instances on an instance-by-instance basis.” 

Defining and detecting quantum speedup

Troels F. Rønnow,1 Zhihui Wang,2 Joshua Job,3 Sergio Boixo,4 Sergei V. Isakov,5
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The development of small-scale digital and analog quantum devices raises the question of how
to fairly assess and compare the computational power of classical and quantum devices, and of
how to detect quantum speedup. Here we show how to define and measure quantum speedup in
various scenarios, and how to avoid pitfalls that might mask or fake quantum speedup. We illustrate
our discussion with data from a randomized benchmark test on a D-Wave Two device with up to
503 qubits. Comparing the performance of the device on random spin glass instances with limited
precision to simulated classical and quantum annealers, we find no evidence of quantum speedup
when the entire data set is considered, and obtain inconclusive results when comparing subsets of
instances on an instance-by-instance basis. Our results for one particular benchmark do not rule out
the possibility of speedup for other classes of problems and illustrate that quantum speedup is elusive
and can depend on the question posed.

I. INTRODUCTION

The interest in quantum computing originates in the
potential of a quantum computer to solve certain com-
putational problems much faster than is possible classi-
cally. Examples are the factoring of integers [1] or the
simulation of quantum systems [2]. Shor’s algorithm can
find the prime factors of an integer in a time that scales
polynomially in the number of digits of the integer to be
factored, while all known classical algorithms scale ex-
ponentially. The simulation of the time evolution of a
quantum system on a classical computer also takes ex-
ponential resources, because the Hilbert space of an N
particle system is exponentially large in N , while quan-
tum hardware can simulate the same time evolution with
polynomial complexity [3, 4].

In these examples the quantum algorithm is exponen-
tially faster than the best available classical algorithm.
This type of exponential quantum speedup substantially
simplifies the discussion, since it renders the details of the
classical or quantum hardware unimportant. According
to the extended Church-Turing thesis all classical com-
puters are equivalent up to polynomial factors [5]. Sim-
ilarly, all proposed models of quantum computation are
polynomially equivalent, so that a finding of exponential
quantum speedup will be model-independent. In other
cases, in particular on small devices, or when the quan-

tum speedup is polynomial, defining and detecting quan-
tum speedup becomes more subtle. One such subtlety is
how to properly define the hardness of a problem given
prior knowledge about the answer [6].

Here we discuss how to define “quantum speedup”
and show that this term may refer to di↵erent quanti-
ties depending on the goal of the study. In particular,
we define what we call “limited quantum speedup”—
essentially a speedup relative to a given, corresponding
classical algorithm—and explain how such a speedup can
be reliably detected. To illustrate these issues we com-
pare the performance of a 503-qubit D-Wave Two (DW2)
device to classical algorithms running on a standard CPU
and analyze the evidence for quantum speedup on ran-
dom spin glass problems. This example is particularly
relevant since it is an open question whether quantum
annealing [7] or the quantum adiabatic algorithm [8] can
exhibit a quantum speedup for such problems. Random
spin glass problems are an interesting benchmark prob-
lem, though not necessarily the most relevant for practi-
cal applications, such as machine learning. We also dis-
cuss issues that might mask or fake a quantum speedup
when not considered carefully, such as comparing subop-
timal algorithms or improperly accounting for the scaling
of hardware resources.
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our discussion with data from a randomized benchmark test on a D-Wave Two device with up to
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when the entire data set is considered, and obtain inconclusive results when comparing subsets of
instances on an instance-by-instance basis. Our results for one particular benchmark do not rule out
the possibility of speedup for other classes of problems and illustrate that quantum speedup is elusive
and can depend on the question posed.

I. INTRODUCTION

The interest in quantum computing originates in the
potential of a quantum computer to solve certain com-
putational problems much faster than is possible classi-
cally. Examples are the factoring of integers [1] or the
simulation of quantum systems [2]. Shor’s algorithm can
find the prime factors of an integer in a time that scales
polynomially in the number of digits of the integer to be
factored, while all known classical algorithms scale ex-
ponentially. The simulation of the time evolution of a
quantum system on a classical computer also takes ex-
ponential resources, because the Hilbert space of an N
particle system is exponentially large in N , while quan-
tum hardware can simulate the same time evolution with
polynomial complexity [3, 4].

In these examples the quantum algorithm is exponen-
tially faster than the best available classical algorithm.
This type of exponential quantum speedup substantially
simplifies the discussion, since it renders the details of the
classical or quantum hardware unimportant. According
to the extended Church-Turing thesis all classical com-
puters are equivalent up to polynomial factors [5]. Sim-
ilarly, all proposed models of quantum computation are
polynomially equivalent, so that a finding of exponential
quantum speedup will be model-independent. In other
cases, in particular on small devices, or when the quan-

tum speedup is polynomial, defining and detecting quan-
tum speedup becomes more subtle. One such subtlety is
how to properly define the hardness of a problem given
prior knowledge about the answer [6].

Here we discuss how to define “quantum speedup”
and show that this term may refer to di↵erent quanti-
ties depending on the goal of the study. In particular,
we define what we call “limited quantum speedup”—
essentially a speedup relative to a given, corresponding
classical algorithm—and explain how such a speedup can
be reliably detected. To illustrate these issues we com-
pare the performance of a 503-qubit D-Wave Two (DW2)
device to classical algorithms running on a standard CPU
and analyze the evidence for quantum speedup on ran-
dom spin glass problems. This example is particularly
relevant since it is an open question whether quantum
annealing [7] or the quantum adiabatic algorithm [8] can
exhibit a quantum speedup for such problems. Random
spin glass problems are an interesting benchmark prob-
lem, though not necessarily the most relevant for practi-
cal applications, such as machine learning. We also dis-
cuss issues that might mask or fake a quantum speedup
when not considered carefully, such as comparing subop-
timal algorithms or improperly accounting for the scaling
of hardware resources.
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FIG. 4. Speedup for ratio of quantiles for the DW2
compared to SA. A) For instances with range r = 1. B)
For instances with range r = 7. Shown are curves from the
median (50th quantile) to the 99th quantile. 16 gauges were
used. In these plots we multiplied Eq. (6) by 512 so that
the speedup value at N = 512 directly compares one DW2
processor against one classical CPU.

the DW2 does not exhibit a speedup over SA for this
particular benchmark.

3. Wall-clock time

While not as interesting from a complexity theory
point of view, it is instructive to also compare wall-clock
times for the above benchmarks, as we do in Figure 5. We
observe that the DW2 performs similarly to SA run on a
single classical CPU, for su�ciently large problem sizes
and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.

FIG. 5. Comparing wall-clock times A comparison of the
wall-clock time to find the solution with probability p = 0.99
for SA running on a single CPU (dashed lines) compared to
the DW2 (solid lines) using 16 gauges. A) for range r = 1,
B) for range r = 7. Shown are curves from the median (50th
quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
tary Material.

D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10⇥ faster in pure annealing
time, there are many cases where it is � 100⇥ slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to
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Babbush, R., Love, P. J. & Aspuru-Guzik, A. Adiabatic Quantum Simulation of Quantum Chemistry. 1311.3967v2 (2013).



What couplings are needed?

Gadgets reduce locality - they can also reduce the types of 
interaction to XX, ZZ and XZ



This quantum simulator has the same couplings as a 
Universal AQC, but not the clock



Intermediate between quantum annealing and Universal AQC

Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys Rev A 78, 012352 
(2008). 
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Quantum Variational/RDM methods

A variational eigenvalue solver on a quantum processor

Alberto Peruzzo,1, ⇤ Jarrod McClean,2, ⇤ Peter Shadbolt,1 Man-Hong Yung,2, 3
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Tsinghua University, Beijing, 100084, P. R. China
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Quantum computers promise to e�ciently solve important problems that are intractable on a con-
ventional computer. For quantum systems, where the dimension of the problem space grows expo-
nentially, finding the eigenvalues of certain operators is one such intractable problem and remains a
fundamental challenge. The quantum phase estimation algorithm can e�ciently find the eigenvalue
of a given eigenvector but requires fully coherent evolution. We present an alternative approach
that greatly reduces the requirements for coherent evolution and we combine this method with a
new approach to state preparation based on ansätze and classical optimization. We have imple-
mented the algorithm by combining a small-scale photonic quantum processor with a conventional
computer. We experimentally demonstrate the feasibility of this approach with an example from
quantum chemistry—calculating the ground state molecular energy for He–H+, to within chem-
ical accuracy. The proposed approach, by drastically reducing the coherence time requirements,
enhances the potential of the quantum resources available today and in the near future.

In chemistry, the properties of atoms and molecules can
be determined by solving the Schrödinger equation. How-
ever, because the dimension of the problem grows expo-
nentially with the size of the physical system under con-
sideration, exact treatment of these problems remains
classically infeasible for compounds with more than 2–3
atoms [1]. Many approximate methods [1] have been de-
veloped to treat these systems, but e�cient exact meth-
ods for large chemical problems remain out of reach for
classical computers. Beyond chemistry, the solution of
large eigenvalue problems [3] would have applications
ranging from determining the results of internet search
engines [4] to designing new materials and drugs [5].

Recent developments in the field of quantum compu-
tation o↵er a way forward for e�cient solutions of many
instances of large eigenvalue problems which are classi-
cally intractable [6–12]. Quantum approaches to finding
eigenvalues have previously relied on the quantum phase
estimation (QPE) algorithm. The QPE algorithm o↵ers
an exponential speedup over classical methods and re-
quires a number of quantum operations O(1/p) to obtain
an estimate with precision p [13–18]. In the standard
formulation of QPE, one assumes the eigenvector | i of
a Hermitian operator H is given as input and the prob-
lem is to determine the corresponding eigenvalue �. The
time the quantum computer must remain coherent is de-
termined by the necessity of O(1/p) successive applica-
tions of e�iHt, each of which can require on the order of
millions or billions of quantum gates for practical appli-
cations [17, 19], as compared to the tens to hundreds of
gates achievable in the short term.

Here we introduce and experimentally demonstrate an
alternative to QPE that significantly reduces the require-

ments for coherent evolution. We have developed a re-
configurable quantum processing unit (QPU), which e�-
ciently calculates the expectation value of a Hamiltonian
(H), providing an exponential speedup over conventional
methods. The QPU is combined with an optimization al-
gorithm run on a classical processing unit (CPU), which
variationally computes the eigenvalues and eigenvectors
of H. By using a variational algorithm, this approach
reduces the requirement for coherent evolution of the
quantum state, making more e�cient use of quantum
resources, and may o↵er an alternative route to practical
quantum-enhanced computation.
Algorithm 1: Quantum expectation estimation
This algorithm computes the expectation value of a given
Hamiltonian H for an input state | i. Any Hamiltonian
may be written as

H =
X

i↵

hi

↵

�i

↵

+
X

ij↵�

hij

↵�

�i

↵

�j

�

+ ... (1)

for real h where Roman indices identify the subspace on
which the operator acts, and Greek indices identify the
Pauli operator, e.g. ↵ = x. By exploiting the linearity of
quantum observables, it follows that

hHi =
X

i↵

hi

↵

h�i
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i+
X

ij↵�

hij
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h�i

↵

�j
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i+ ... (2)

We consider Hamiltonians that can be written as a num-
ber of terms which is polynomial in the size of the sys-
tem. This class of Hamiltonians encompasses a wide
range of physical systems, including the electronic struc-
ture Hamiltonian of quantum chemistry, the quantum
Ising Model, the Heisenberg Model [20, 21], matrices that
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We want to find the smallest eigenvalue of:

Variationally minimize: 

Classically separate minimization of each term fails - 
rdms do not correspond to global state



Quantumly one can variationally minimize a global 
quantum state, evaluate terms separately

A variational eigenvalue solver on a quantum processor Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong 
Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O'Brien http://arxiv.org/abs/1304.3061v1
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The Unitary Coupled Cluster ansatz

7

APPENDIX

SUPPLEMETARY THEORY
Quantum eigenvector preparation algorithm

Below we detail the steps involved in implementing
Algorithm 2.

1. Design a quantum circuit, controlled by a set of
experimental parameters {✓

i

}, which can prepare
a class of states. Using this device, prepare the
initial state | 0i and define the objective function
f({✓n

i

}) = h ({✓n
i

})|H | ({✓n
i

})i, which e�ciently
maps the set of experimental parameters to the ex-
pectation value of the Hamiltonian and is computed
in this work by Algorithm 1. n denotes the current
iteration of the algorithm.

2. Let n = 0

3. Repeat until optimization is completed

(a) Call Algorithm 1 with {✓
i

} as input:

i. Using the QPU, compute h�i

↵

i, h�i

↵

�j

�

i,
h�i

↵

�j

�

�k

�

i, ..., on | ni for all terms of H.
ii. Classically sum on CPU the values from

the QPU with their appropriate weights,
h, to obtain f({✓n

i

})
(b) Feed f({✓n

i

}) to the classical minimization
algorithm (e.g. gradient descent or Nelder-
Mead Simplex method), and allow it to deter-
mine {✓n+1

i

}.

Second Quantized Hamiltonian
When taken with the Born-Oppenheimer approximation,
the Hamiltonian of an electronic system can be generally
written [1] as

H(R) =
X

pq

h
pq

(R)â†
p

â
q

+
X

pqrs

h
pqrs

(R)â†
p

â†
q

â
r

â
s

(6)

where â†
i

and â
j

are the fermionic creation and annihila-
tion operators that act on the single particle basis func-
tions chosen to represent the electronic system and obey
the canonical anti-commutation relations {â†

i

, â
j

} = �
ij

and {â
i

, â
j

} = {â†
i

, â†
j

} = 0. R is a vector representing
the positions of the Nuclei in the system, and is fixed for
any given geometry. The constants h

pq

(R) and h
pqrs

(R)
are evaluated using an initial Hartree-Fock calculation
and relate the second quantized Hamiltonian to the first
quantized Hamiltonian. They are calculated as

h
pq

=

Z
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|r1 � r2| (8)

where �
p

(r) are single particle spin orbitals, Z
↵

is the
nuclear charge, and r

↵

is the nuclear position. From the
definition of the Hamiltonian, it is clear that the number
of terms in the Hamiltonian is O(N4) in general, whereN
is the number of single particle basis functions used. The
map from the Fermionic algebra of the second quantized
Hamiltonian to the distinguishable spin algebra of qubits
is given by the Jordan-Wigner transformation [2], which
for our purposes can be concisely written as

â
j

! I⌦j�1 ⌦ �+ ⌦ �⌦N�j

z

(9)

â†
j

! I⌦j�1 ⌦ �� ⌦ �⌦N�j

z

(10)

where �+ and �� are the Pauli spin raising and lowering
operators respectively. It is clear that this transforma-
tion does not increase the number of terms present in the
Hamiltonian, it merely changes their form and the spaces
on which they act. Thus the requirement that the Hamil-
tonian is a sum of polynomially many products of Pauli
operators is satisfied. As a result, the expectation value
of any second quantized chemistry Hamiltonian can be
e�ciently measured with our scheme.
For the specific case of He-H+ in a minimal, STO-

3G basis, it turns out that full configuration interaction
(FCI) Hamiltonian has dimension four, thus a more com-
pact representation is possible than in the general case.
In this case, the FCI Hamiltonian can be written down
for each geometry expanded in terms of the tensor prod-
ucts of two Pauli operators. Thus the Hamiltonian is
given explicitly by an FCI calculation in the PSI3 com-
putational package [3] and can be written as

H(R) =
X
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↵

+
X

ij↵�
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(11)

Unitary Coupled Cluster Theory
One example of a state which is e�ciently preparable
on a quantum computer, but not so on a classical com-
puter is the unitary coupled cluster expansion [4]. The
unitary coupled cluster theory method is a variational
ansatz which takes the form

| i = eT�T

† |�i
ref

(12)

where |�i
ref

is some reference state, usually the Hartree
Fock ground state, and T is the cluster operator for an
N electron system defined by

T = T1 + T2 + T3 + ...+ T
N

(13)

with
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p

â†
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j

} = {â†
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given explicitly by an FCI calculation in the PSI3 com-
putational package [3] and can be written as
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Unitary Coupled Cluster Theory
One example of a state which is e�ciently preparable
on a quantum computer, but not so on a classical com-
puter is the unitary coupled cluster expansion [4]. The
unitary coupled cluster theory method is a variational
ansatz which takes the form

| i = eT�T

† |�i
ref

(12)

where |�i
ref

is some reference state, usually the Hartree
Fock ground state, and T is the cluster operator for an
N electron system defined by
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APPENDIX

SUPPLEMETARY THEORY
Quantum eigenvector preparation algorithm

Below we detail the steps involved in implementing
Algorithm 2.

1. Design a quantum circuit, controlled by a set of
experimental parameters {✓

i

}, which can prepare
a class of states. Using this device, prepare the
initial state | 0i and define the objective function
f({✓n

i

}) = h ({✓n
i

})|H | ({✓n
i

})i, which e�ciently
maps the set of experimental parameters to the ex-
pectation value of the Hamiltonian and is computed
in this work by Algorithm 1. n denotes the current
iteration of the algorithm.

2. Let n = 0

3. Repeat until optimization is completed

(a) Call Algorithm 1 with {✓
i

} as input:

i. Using the QPU, compute h�i

↵

i, h�i

↵

�j

�

i,
h�i

↵

�j

�

�k

�

i, ..., on | ni for all terms of H.
ii. Classically sum on CPU the values from

the QPU with their appropriate weights,
h, to obtain f({✓n

i

})
(b) Feed f({✓n

i

}) to the classical minimization
algorithm (e.g. gradient descent or Nelder-
Mead Simplex method), and allow it to deter-
mine {✓n+1

i

}.

Second Quantized Hamiltonian
When taken with the Born-Oppenheimer approximation,
the Hamiltonian of an electronic system can be generally
written [1] as
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pq
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pqrs

(R)â†
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â†
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r

â
s

(6)

where â†
i

and â
j

are the fermionic creation and annihila-
tion operators that act on the single particle basis func-
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i

, â
j

} = �
ij

and {â
i

, â
j

} = {â†
i

, â†
j

} = 0. R is a vector representing
the positions of the Nuclei in the system, and is fixed for
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(R) and h
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pq
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↵
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!
�
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(r) (7)

h
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Z
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�
p
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(r2)⇤�r

(r1)�s

(r2)

|r1 � r2| (8)
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p

(r) are single particle spin orbitals, Z
↵

is the
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↵
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definition of the Hamiltonian, it is clear that the number
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â
j

! I⌦j�1 ⌦ �+ ⌦ �⌦N�j
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(9)
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! I⌦j�1 ⌦ �� ⌦ �⌦N�j

z

(10)

where �+ and �� are the Pauli spin raising and lowering
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where |�i
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â†
p

â†
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where repeated indices imply summation as in the main
text, and higher order terms follow logically. It is clear
that by construction the operator (T � T †) is anti-
hermitian, and exponentiation maps it to a unitary op-
erator U = e(T�T

†). For any fixed excitation level k, the
reduced cluster operator is written as

T (k) =
kX

i=1

T
i

(16)

Unfortunately, in general no e�cient implementation of
this ansatz has yet been developed for a classical com-
puter, even for low order cluster operators due to the
non-truncation of the BCH series [4]. The reduced anti-
hermitian cluster operator (T (k) � T (k)†) is the sum of
a polynomial number of terms in the number of one
electron basis functions, namely it contains a number of
terms O(Nk(M � N)k) where M is the number of sin-
gle particle orbitals. By defining an e↵ective Hermitian
Hamiltonian H = i(T (k) � T (k)†) and performing the
Jordan-Wigner transformation to reach a Hamiltonian
that acts on the space of qubits, H̃, we are left with a
Hamiltonian which is a sum of polynomially many prod-
ucts of Pauli operators. The problem then reduces to
the quantum simulation of this e↵ective Hamiltonian, H̃,
which can be done in polynomial time using the proce-
dure outlined by Ortiz et al. [5]. This represents one
example of a state which can be e�ciently prepared on a
quantum device, which cannot be e�ciently prepared by
any known means on a classical computer.

Finding excited states
Frequently, one may be interested in eigenvectors and
eigenvalues related to excited states (interior eigenval-
ues). Fortunately our scheme can be used with only mi-
nor modification to find these excited states by repeating
the procedure on H

�

= (H � �)2. The folded spectrum
method [6, 7] allows a variational method to converge
to the eigenvector closest to the shift parameter �. By
scanning through a range of � values, one can recover
the eigenvectors and eigenvalues of interest. Although
this operation incurs a small polynomial overhead —the
number of terms in the Hamiltonian is quadratic with
respect to the original Hamiltonian— this extra cost is
marginal compared to the cost of solving the problem
classically.

Application to k�sparse Hamiltonians
The method described in the main body of this work
may be applied to general k�sparse Hamiltonian ma-
trices which are row-computable even when no e�cient
tensor decomposition is evident with only minor modi-
fication. A Hamiltonian H is referred to as k�sparse if
there are at most k non-zero elements in each row and
column of the matrix and row computable if there is an

e�cient algorthim for finding the locations and values of
the non-zero matrix elements in each row of H.

Let H be a 2n ⇥ 2n k�sparse row-computable Hamil-
tonian. A result by Berry et al. [8] shows that H may be
decomposed as H =

P
m

j=1 Hj

with m = 6k2, H
j

being
a 1�sparse matrix and each H

j

may be e�ciently simu-
lated (e�iHjt may be acted on the qubits) by making only
O(log⇤ n) queries to the Hamiltonian H. Alternatively, a
more recent result by Childs et al. [9] has found that it
possible to use a star decomposition of the Hamiltonian
such that m = 6k and each H

j

is now a galaxy which can
be e�ciently simulated using O(k+log⇤ N) queries to the
Hamiltonian. Either of these schemes may be used to im-
plement our algorithm e�ciently for a general k�sparse
matrix, and the choice may be allowed to depend on the
particular setup available. Following a prescription by
Knill et al. [10], the ability to simulate H

j

is su�cient
for e�cient measurement of the expectation value hH

j

i.
After determining these values, one may proceed as be-
fore in the algorithm as outlined in the main text and
use them to determine new parameters for the classical
minimization.

Classical optimization algorithm
For the classical optimization step of our integrated
processor we implemented the Nelder-Mead (NM) algo-
rithm [11], a simplex-based direct search (DS) method
for unconstrained minimization of objective functions.
Although in general NM can fail because of the dete-
rioration of the simplex geometry or lack of su�cient
decrease, the convergence of this method can be greatly
improved by adopting a restarting strategy. Although
other DS methods, such as the gradient descent, can per-
form better for smooth functions, these are not robust to
the noise which makes the objective function non-smooth
under experimental conditions. NM has the ability to
explore neighboring valleys with better local optima and
likewise this exploring feature usually allows NM to over-
come non-smoothnesses. We verified that the gradient
descent minimization algorithm is not able to converge
to the ground state of our Hamiltonian under the experi-
mental conditions, mainly due to the poissonian nature of
our photon source and the accidental counts of the detec-
tion system, while NM converged to the global minimum
in most optimization runs.

Computational Scaling
In this section, we demonstrate the polynomial scaling
of each iteration of our algorithm with respect to system
size, and contrast that with the exponential scaling of
the current best-known classical algorithm for the same
task. Suppose that the algorithm has progressed to an
iteration j in which we have prepared a state vector | ji
which is stored in n qubits and parameterized by the set
of parameters {✓j

i

}.
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The CI Matrix elements

1 INTRODUCTION 6

⟨ij|kl⟩ A simple two-electron integral, in physicists’ notation, where i, j, k, and l
are spin-orbitals. This is

⟨ij|kl⟩ =
∫

φ∗
i (x1)φ

∗
j(x2)

1

r12
φk(x1)φl(x2)dx1dx2 (1.3)

[ ij|kl ] A simple two-electron integral in chemists’ notation, where i, j, k, and
l are spin-orbitals. This is

[ij|kl] =
∫

φ∗
i (x1)φj(x1)

1

r12
φ∗

k(x2)φl(x2)dx1dx2 (1.4)

(ij|kl) A simple two-electron in chemists’ notation where i, j, k, and l are spatial
orbitals. This is

(ij|kl) =
∫

φ∗
i (r1)φj(r1)

1

r12
φ∗

k(r2)φl(r2)dr1dr2 (1.5)

a†i Second-quantized creation operator for orbital i.

ai Second-quantized annihilation operator for orbital i.

1) Diagonal element: configurations do not differ



2) Configurations differ by one



3) Configurations differ by two

{φi} H {φi} = φi h1 φi + ij kl − ij lk( )
i< j
∑

i=1

ne

∑

{φi ,φq} H {φi ,φp} = φp h1 φq + pl ql − pl lq( )
l

ne

∑

{φi ,φp ,φq} H {φi ,φr ,φs} = φpφq h1 φrφs + pq rs − pq sr( )



The CI Matrix is Sparse

d = 1
4
ne(ne −1)(no − ne )(no − ne −1)+ ne(no − ne )+1

D. W. Berry and A. M. Childs, “Black-box Hamiltonian simulation and 
unitary implementation,” Quantum Information and Computation, vol. 12, no. 
1-2, pp. 29–62, 2012. 

Can apply sparse matrix techniques to this which 


require a number of calls polynomial in d, e.g. 

4

dimension of the CI matrix is
�no

ne

�
, and so if the number of nonzero entries is polynomial in no and ne then the matrix

is sparse. The total number of the non-zero entries in each row is given by 2:

d =

✓
ne

2

◆✓
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2

◆
+

✓
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1

◆✓
no � ne

1

◆
+ 1 (9)

=
1

4
ne(ne � 1)(no � ne)(no � ne � 1) + ne(no � ne) + 1, (10)

which is quadratic in no and quartic in ne. The same is naturally true for each column as the Hamiltonian operator
is Hermitian and hence the CI matrix is sparse.

III. SPARSE SIMULATION ALGORITHM

The first systematic classification of Hamiltonians by their simulatability on quantum computers was given in [52].
Diagonal Hamiltonians, sparse Hamiltonians and Hamiltonians that can be e�ciently put into diagonal or sparse form
are considered there and in related works (see Table I). For a recent summary of progress in Hamiltonian simulation
algorithms see [22]. The first work on e�cient simulation of sparse Hamiltonians whose non-zero matrix elements
are available through function evaluations was in [53]. Subsequently, a range of scalings of the number of qubits and
gates required has been obtained by various authors. These are summarized in Table I.
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Hence simulation of the CI matrix using these methods is 
efficient, and qubit optimal.



Graph coloring for the CI matrix
A scheme using at most d2 colors:

y ey-y=f(y)

a<x
b<xc<x

x     =   # of nodes  
to which y is connected. 
It is the number of nodes 
connected to y that come 
before x

x ' ≤ xey→x

ey→x

This gives a pair of 


labels for each 


undirected edge

Can prove for CI matrix this gives a 1-sparse decomposition
Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix, Borzu Toloui, Peter J. Love, arXiv:1312.2579

http://arxiv.org/find/quant-ph/1/au:+Toloui_B/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Love_P/0/1/0/all/0/1


Using the definition of the CI matrix.

1) Diagonal element: configurations do not differ



          Label 0



2) Configurations differ by one



                           Label (p,q) 



3) Configurations differ by two



                                  Label (p,q,r,s)

{φi} H {φi}

{φi ,φq} H {φi ,φp}

{φi ,φp ,φq} H {φi ,φr ,φs}

This gives exactly d colors



Conclusions

Variational Methods

Many algorithmic improvements



None exploit structure of problem beyond 
the definition of the electronic structure 
problem



Further simulation studies and 
experiments needed to assess new 
methods



Connection to CI matrix may enable 
theoretical progress in bounding cost of  
state preparation



Recent dramatic progress in sparse 
methods yet to be considered

Exponential improvement in precision for simulating sparse Hamiltonians, Dominic W. Berry, Andrew M. Childs, Richard 
Cleve, Robin Kothari, Rolando D. Somma arxiv:1312.1414
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