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AREAS OF INTEREST

Physical Simulation Applications:
Quantum computers are known to have advantages
for the simulation of physical systems.

Can we advance the state of the art in algorithms?
Can we find new applications of interest to DOE?

Quantum computers have shown key algorithmic
advantages (e.g. solving linear systems)
Can quantum computers be used in data science?

Can we advance the state of the art in algorithms?
Can we find new applications of interest to DOE?




Multilayer perceptron applied to
- energy: Organic Photovoltaics

Expensive quantum chemistry
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Research questions / excellent
summary

So in summary, how excited should we be about the new quantum machine learning algorithms? To
whatever extent we care about quantum computing at all, I'd say we should be excited indeed: HHL and
its offshoots represent real advances in the theory of quantum algorithms, and in a world with quantum
computers, they’d probably find practical uses. But along with the excitement, we ought to maintain a
sober understanding of what these algorithms would and wouldn’t do: an understanding that the original
papers typically convey, but that often gets lost in secondhand accounts.

The new algorithms provide a general template, showing how quantum computers might be used to
provide exponential speedups for central problems like clustering, pattern-matching, and principal component
analysis. But for each intended application of the template, one still needs to invest a lot of work to see
whether (a) the application satisfies all of the algorithm’s “fine print,” and (b) once we include the fine
print, there’s also a fast classical algorithm that provides the same information. This makes the quantum
machine learning algorithms quite different from (say) Shor’s factoring algorithm. Having spent half my
life in quantum computing research, I still find it miraculous that the laws of quantum physics let us solve
any classical problems exponentially faster than today’s computers seem able to solve them. So maybe it
shouldn’t surprise us that, in machine learning like anywhere else, Nature will still make us work for those
speedups.

http://www.scottaaronson.com/papers/gml.pdf



What is Quantum Simulation?

One quantum system pretending to be another
@ Lab system can do initialization, evolution, measurement
@ Want to compute (1)|A|¢)) for state |, observable A
@ [nitialize lab system in some state
@ Control laboratory system to produce state representing

¥)

® Measure some set of observables (e.g qubit states 0,1) to
obtain information about A

@ Lab system = quantum computer: quantum simulation
algorithms

@ If lab system = target system: we call that experiment!




Chemistry on a quantum computer
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Simulated Quantum Computation of Molecular Energies” Alan Aspuru-Guzik, Anthony Dutoi, Peter J. Love, Martin Head-
Gordon, Science, 309, 5741, (2005)



Electronic Structure

Fermionic anticommutation relations
= (o i R A e
{ajaak}_o {ajaak}_o {ajaaz}_gjkl

Molecular electronic Hamiltonian

H = Ehy a. J+ Zhlﬂda akal
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A Quantum Computer for
Chemistry?

- =compact, 6-31G* (approximate)
= = =compact, cc-pVTZ (approximate)
direct
<& compact, 6-31G* (examples)

O compact, cc-pVTZ (examples)

Electronic wave functions

II. A calculation for the ground state of ’ ’ y Y
the beryllium atom 900 1050 1200 1350

By S. F. Bovs, Theoretical Chemistry Department, University of Cambridge* Spatial Basis Functions

(Communicated by Sir Alfred Egerton, F.R.S.— Received 31 August 1949)

An approximate wave function expressed in terms of exponential functions, spherical
harmonics, etc., with numerical coefficients has been calculated for the ground state of the
beryllium atom. Judged by the energy criterion this gives a more accurate result than the
Hartree result which was the best previously known. This has been calculated as a trial
of a fresh method of calculating atomic wave functions. A linear combination of Slater
determinants is treated by the variational method. The results suggest that this will provide
a more powerful and convenient method than has previously been available for atoms with =
a benzene b caffeine c cholesterol

more than two electrons.

Simulated Quantum Computation of Molecular Energies, Alan Aspuru-Guzik, Anthony Dutoi,
Peter J. Love, Martin Head-Gordon, Science, 309, 5741, (2005)

J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012)




Electronic wave functions

I. A general method of calculation for the stationary

states of any molecular system

By S. F. Bovys, Theoretical Chemistry Department, University of Cambridge*

(Communicated by Sir Alfred Egerton, F.R.S.— Received 31 August 1949)

Year Calculation Citation Qubits
1933 H> H. M. James, A. S. Coolidge JCP 1, 825 1
1°3510) Be S. F. Boys Proc Roy Soc 201 125 3,4
1952 He G. R. Taylor, R. G. Parr PNAS 38 154 2
1955 He H Shull, P.-O. Lowdin JCP 23 1565 2,3
1956 BH, H,O S. F. Boys, G. B. Cook, C. M. Reeves, I. Shavitt, Nature 178 1207 5,7
1957 LiH, BeH* J. Miller et al. JCP 27 1385 3-5
1960 Be R. E. Watson, Phys. Rev. 119 170 6
1960 CH: J. M. Foster, S. F. Boys, RMP 32 305 19
1963 H2 S. Hagstrom, H. Shull, RMP 35 624 3-6
1966 HeH, Li> C. F. Bender, E. R. Davidson, JPC 70 2675 3
1967 2710 R Mcweeny, K. A. Ohno, Proc. Roy. Soc A255, 367 10
1968 Be C. F Bunge, Phys. Rev. 168, 92 11
1970 H20 R. P. Hosteny et al Chem. Phys. Lett. 7, 325 23




Can quantum chemistry be performed on a small quantum computer?

Dave Wecker,! Bela Bauer,? Bryan K. Clark,>3 Matthew B. Hastings,>! and Matthias Troyer*

L Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
2Station ), Microsoft Research, Santa Barbara, CA 93106-6105, USA
3 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
* Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

As quantum computing technology improves and quantum computers with a small but non-trivial
number of N > 100 qubits appear feasible in the near future the question of possible applications
of small quantum computers gains importance. One frequently mentioned application is Feyn-
man’s original proposal of simulating quantum systems, and in particular the electronic structure of
molecules and materials. In this paper, we analyze the computational requirements for one of the
standard algorithms to perform quantum chemistry on a quantum computer. We focus on the quan-
tum resources required to find the ground state of a molecule twice as large as what current classical
computers can solve exactly. We find that while such a problem requires about a ten-fold increase
in the number of qubits over current technology, the required increase in the number of gates that
can be coherently executed is many orders of magnitude larger. This suggests that for quantum
computation to become useful for quantum chemistry problems, drastic algorithmic improvements
will be needed.

1312.1695v1

arX1v

Phase estimation gives long skinny algorithms
Qubit requirements grounds for optimism

Gate requirements grounds for pessimism



The Trotter Step Size Required for Accurate Quantum Simulation of Quantum
Chemistry

David Poulin," M. B. Hastings,?? Dave Wecker,> Nathan Wiebe,> Andrew C. Doherty,* and Matthias Troyer®

! Département de Physique, Université de Sherbrooke, Québec, Canada
) 2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
3 Quantum Architectures and Compu n Group, Microsoft Research, Redmond, WA 98052, USA
4Centre for Engineered Quantum Systems, School of Ph
The University of Sydney, Sydney, NSW 2006, Austral
5 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
(Dated: June 20, 2014)

The simulation of molecules is a widely anticipated application of quantum computers. However,
recent studies [1, 2] have cast a shadow on this hope by revealing that the complexity in gate count
of such simulations increases with the number of spin tals N as N®, which becomes prohibitive
even for molecules of modest size N ~ 100. This study was partly based on a scaling analysis of the
Trotter step required for an ensemble of random artificial molecules. Here, we revisit this analysis and
find instead that the scaling is closer to N® in worst case for real model molecules we have studied,
indicating that the random ensemble fails to accurately capture the statistical properties of real-
world molecules. Actual scaling may be significantly better than this due to averaging effe
then present an alternative ulation scheme and show that it can sometimes outperform existing
schemes, but that this p ity depen icially on the details of the simulated molecule. We
obtain further improvements using a version of the coalescing scheme of [1]; this scheme is based
on using different Trotter steps for different terms. The method we use to bound the complexity
of simulating a given molecule is efficient, in contrast to the approach of [1, 2] which relied on
exponentially costly classical exact simulation.

Improving Quantum Algorithms for Quantum Chemistry

M. B. Hastings,'? Dave Wecker,? Bela Bauer,! and Matthias Troyer®

! Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
2 Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
3 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

We present several improvements to the standard Trotter-Suzuki based algorithms used in the
simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner
transformations are implemented to reduce their cost from linear or logarithmic in the number
of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we
demonstrate how many operations can be parallelized, leading to a further linear decrease in the
parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits
required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly
reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian
to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are
validated using numerical simulation and detailed gate counts are given for realistic molecules.

Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush,! Jarrod McClean,? Dave Wecker,! Aldn Aspuru-Guzik,? and Nathan Wiebe!

L Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
(Dated: February 6, 2015)

Although the simulation of quantum chemistry is one of the most anticipated applications of
quantum computing, the scaling of known upper bounds on the complexity of these algorithms is
daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the error
operator and analyzed scaling with respect to the number of spin orbitals. However, we find that
these error bounds can be loose by up to sixteen orders of magnitude for some molecules. Further-
more, numerical results for small systems fail to reveal any clear correlation between ground state
error and number of spin orbitals. We instead argue that chemical properties, such as the maximum
nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the
cost of a quantum simulation. Our analysis motivates several strategies to use classical processing
to further reduce the required Trotter step size and to estimate the necessary number of steps, with-
out requiring additional quantum resources. Finally, we demonstrate improved methods for state
preparation techniques which are asymptotically superior to proposals in the simulation literature.

Brilliant, careful
optimization of
frotterization



Algorithms and Improvements

SeCOﬂd
Quoantized

Sparse
Simulation
methods

( )

Prepare Measure —

_ Y,
i\
Adiabatic simulation
Jordan Adiabefic Trotrerization Phase estimation and
Wigrier Preparation to CNOZ circuits logica! readout
Bravyi Unitary Coupled Choose physical Quantum variational
Kitaev Cluster elementary gates Hamiltonian estimation



Replacing
Jordan-Wigner



Occupation number basis and
Jordan-Wigner transformation

@ Qubit Creation and annihilation operators:

P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928). R. Somma, G. Ortiz, J.E.Gubernatis, E. Knill, R. Laflamme, “Simulating physical phenomena by quantum
networks”, Phys Rev. A 65, 042323 (2002).



Strings and ladders

@ Exponentiating products of Pauli-Z matrices:

These ladders are hard ’r/

implement and are O(n)
long in IW for CNOT but O(1) for n-qubit Molmer-

Sorenson gates

From transistor to trapped-ion computers for quantum chemistry
M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, E.

Solano, arXiv:1307.4326



http://arxiv.org/find/quant-ph/1/au:+Yung_M/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Casanova_J/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Mezzacapo_A/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+McClean_J/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Lamata_L/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Aspuru_Guzik_A/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Solano_E/0/1/0/all/0/1
http://arxiv.org/abs/1307.4326

The parity basis

® Make parity local - store parity in the qubits

@ Parity is local! But occupancy is non-local

S. Bravyi and A. Yu. Kitaev, “Fermionic quantum computation”, Annals of Physics, 298 210-226 2002



The Bravyi-Kitaev basis

@ Strike a happy medium between local occupancy and
local parity

Orbitals Orbitals
3 2 1 0
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Z //
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Qubits in occupation number basis Qubits in Bravyi-Kitaev basis

Old basis New basis

S. Bravyi and A. Yu. Kitaev, "Fermionic quantum computation”, Annals of Physics, 298
210-226 (2002), J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012)



An example: Hz in a minimal basis
X0) = [Vg)|a) Ix1) =[¥g)|B)  |x2) = [du))  [x3) = |¥u)|B)

For this example n = 4

H2 potential energy surfaces D) 1 photon per ba

Ground
Excited 1
Excited 2
Excited 3
theory

10 20 30

11 photons per bit

Energy (Hartrees)

100

0
15 2 25 3 35 B : 5 10

atomic seperation (au) Attempts before success

B. P Lanyon, J. D Whitfield, G. G Gillett, M. E Goggin, M. P Almeida, I Kassal, J. D Biamonte, M Mohseni, B. J Powell, M
Barbieri, A Aspuru-Guzik, A. G White, Towards Quantum Chemistry on a Quantum Computer, Nature Chemistry, 2, 106,
2010



A Tale of Two Transformations

@ The Jordan-Wigner spin Hamiltonian for H:

_0.8175 14 0.1725 07 +0.1725 07 —0.22 03 —0.22 07 +0.1675 0707 +0.12 0Z0% +
0.165 050} +0.165 oi0f +0.12 050} +0.175 o505 —0.0225 05050708 —0.0225 o5o50]{0f —

0.0225 ofo50f0g +0.0225 o5 oyoi ol +0.0225 0i03otoy —0.0225 oi03o]{of —0.0225 o50507 05 —
0.0225 30500

@ The Bravyi-Kitaev spin Hamiltonian for H:

—0.8175 1+ 0.1725 0 + 0.1675 07 — 0.22 0% + 0.1725 0707 +0.12 020% + 0.175 0207 —
0.0225 050§ —0.0225 050y +0.0225 o50%0f +0.0225 oyoio] +0.165 o50f0f +0.12 oi0i0f —

0.0225 of030f — 0.0225 oio50; — 0.22 o050} + 0.0225 oio50i0% + 0.0225 ciojoioy +

YAy Ay Ay A
0.165 o505070;

@ These two Hamiltonians are isospectral.

@ Lets compare the computational cost of simulating them



Accuracy Vs cost
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Special Purpose
Hardware: Ion Traps



Strings and ladders

@ Exponentiating products of Pauli-Z matrices:

These ladders are hard to
implement and are O(log n)

long in BK for CNOT but O(1) for log n qubit
Molmer-Sorenson gates

Scalable!



Trapping Ions

Electrodes generate trapping field

From transistor to trapped-ion computers for quantum chemistry
M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, E.
Solano, arXiv:1307.4326


http://arxiv.org/find/quant-ph/1/au:+Yung_M/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Casanova_J/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Mezzacapo_A/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+McClean_J/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Lamata_L/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Aspuru_Guzik_A/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Solano_E/0/1/0/all/0/1
http://arxiv.org/abs/1307.4326

Fabricating Surface Traps

Movie credit: Georgia Tech Research Institute (GTRI)



Components for scalable ion traps '

Junctions

06-16-2011 GTRI/QIS
20 ion chain in an anharmonic well. Gen III trap.

S. C. Doret et al. New J. Phys. 14, 073012 (2012),
J. T. Merrill et al, New J. Phys. 13, 103005 (2011)




Couple Ions
together
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Preliminary
Results

@ Bravyi-Kitaev makes Molmer-Sorensen simulation of interacting fermions
SCALABLE

@ Motivates development of M-S gates on surface trap



Special Purpose
Hardware: Adiabatic



The Adiabatic Model

Quantum Computation by Adiabatic Evolution, Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser, quant-
ph/0001106v1
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Defining and detecting quantum speedup

coe and 'l'h€| r Fal l? Troels F. Rgnnow,' Zhihui Wang,? Joshua Job,? Sergio Boixo,* Sergei V. Isakov,’

David Wecker,® John M. Martinis,” Daniel A. Lidar,® and Matthias Troyer*!

A) Range 1

Speedup absent for
large problems
(BAD)

1401.2910v1

arxXiv

v200 V288 V392 V512
Linear problem size vV N

"Comparing the performance of the device on random spin glass instances with limited
precision to simulated classical and quantum annealers, we find no evidence of
quantfum speedup when the entire dafa set is considered, and obtain inconclusive
results when comparing subsets of instances on an instance-by-instance basis.”



Could we develop a useful device for simulation from this?

Jordan
Electronic \ 'V'dner Spin
structure Hamiltonian
Bravyi
Kitaev

Can we build an adiabatic device for these spin
Hamiltonians, instead of the classical Ising model?

Two problems 1) Not Ising form -non-ZZ couplings
2) Not two local - have high weight
operators



Gadgets

Generate k-local interactions in an effective Hamiltonian at
Kth order in perturbation theory using k-ancilla

V[<< A/2

ZZ

H,=A+B+C H,=-AZ2®Z,+2,®2,+72,8Z,)

anc

Az 1/3 1 s V s
v:(?) (A®X,+B®X,+C®X,) Heﬁ:V+sz;V+(K+) V.,



Jordan-Wigner vs Bravyi-Kitaev

Jordan Couplings scale as
Wigner n-‘loca! i ~An
Hamiltonian
Not scalable.
\ Couplings scale as
BrClVYI log n-local logn
Kitaev Hamiltonian A A

Scalable.

Babbush, R., Love, P. J. & Aspuru-Guzik, A. Adiabatic Quantum Simulation of Quantum Chemistry. 1311.3967v2 (2013).



I zzyzx Rd I What couplings are needed?

CVY;Y} — —CkXin ZZZ]
A B

Gadgets reduce locality - they can also reduce the types of
interaction to XX, ZZ and XZ

This quantum simulator has the same couplings as a
Universal AQC, but not the clock

Intermediate between quantfum annealing and Universal AQC

Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys Rev A 78, 012352
(2008).
Babbush, R., Love, P. J. & Aspuru-Guzik, A. Adiabatic Quantum Simulation of Quantum Chemistry. 1311.3967v2 (2013).



For the example of
H2 in a minimal basis

For a single gadget:
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Readout energies using the tunneling spectroscopy of a probe qubit

A A
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A. J. Berkley, A. J. Przybysz, T. Lanting, R. Harris, N. Dickson, F. Altomare, M. H. Amin, P. Bunyk, C.
Enderud, E. Hoskinson, M. W. Johnson, E. Ladizinsky, R. Neufeld, C. Rich, A. Yu. Smirnoy, E.

Tolkacheva, S. Uchaikin, and A. B. Wilson. Tunneling Spectroscopy Using a Probe Qubit. Physical
Review B. 87 020502 2013.




Removing Phase
Estimation



Quantum Variational/RDM methods

We want to find the smallest eigenvalue of:

Classically separate minimization of each term fails -
rdms do not correspond to global state

Quantumly one can variationally minimize a global
quantum state, evaluate terms separately

A variational eigenvalue solver on a quantum processor Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong
Yung, Xiao-Qi Zhou, Peter J Love, Alan Aspuru-Guzik, and Jeremy L O'Brien http://arxiv.org/abs/1304.3061vl



http://arxiv.org/abs/1304.3061v1

The Unitary Coupled Cluster ansatz

Reference state usually Hartree-Fock ground state

Truncated
Cluster Operator

I'=1T14+1>+13+ ...+ 1y

’l“"T" TS
= Yt 1= X il

pqrs

Classically construction of the coupled cluster state is
challenging

Quantumly it is a particular time evolution from the
Hartree Fock state



Sparse Methods



Beyond second quantized

00001011

00001001

00000110

00000101

00000011

Second quantization maps all particle
sectors to qubits. n qubits for n orbitals.

But for electronic structure Hamiltonians
the number of electrons is a good

quantum number.

Minimal qubit number is 7, = log,

For fixed electron number use first
quantized basis of Slater determinants
and CI matrix




The compact mapping a pgsis state is specified by an
00001011 (3,1,0) electron configuration

00001010 (3'1) Each configuration labels a Slater
00001001  (3,0) determinant

o,(rn)  0,(r) 0,(1)
00000110 (2,1) (2,1.3) = ¢(1) ¢,(r,) ¢5(r,)
00000101 (2,0) olz) 9,(ry) O5(r3)

00000011 (1,0) How is the Hamiltonian expressed
in this basis?



The CI Matrix elements

1) Diagonal elemen’r conﬁgura’rlons do not differ

({9} H|{9})= Z o)+ > ((ij|kt)— (ij| Ik))

i=1 1<j

2) Configurations differ by one

(46,.0,3|H|0,0,}) = (8, ||, )+ X ((pll a1) - (pl]1q))
3) Configurations differ by two
({6,.0,.0, 3 H|{0,.9,.0.}) = (0,0,| | 6,0.)+ ({pql|rs)— {pq|sr))

¢k (X1 ) ¢l (Xg)dxl dXQ




The CI Matrix iIs Sparse

d = ine(ne —-1)(n,—n,)n —n,—1)+n,(n,—n,)+1

Can apply sparse matrix techniques fo this which
require a number of calls polynomial in d, e.g.

D. W. Berry and A. M. Childs, "Black-box Hamiltonian simulation and
unitary implementation,” Quantum Information and Computation, vol. 12, no.
1-2, pp. 29-62, 2012.

For A > [[H]], Auae > [l O(At by + | A1)
If ed > ||H||t > /€ O(d*/?[loglog d||H||t]*/?1)

If all terms have comparable norms O(( At)?’/ 2\/E(log d)7/ 4) \%

Hence simulation of the CI matrix using these methods is
efficient, and qubit optimal.



Graph coloring for the CI matrix

A scheme using at most d® colors:

es, #ofnodes x'<x
to which y 1s connected.
[t 1s the number of nodes

connected to y that come
before x

This gives a pair of
labels for each
undirected edge

Can prove for CI matrix this gives a 1-sparse decomposition

Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix, Borzu Toloui, Peter J. Love, arXiv:1312.2579


http://arxiv.org/find/quant-ph/1/au:+Toloui_B/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Love_P/0/1/0/all/0/1

Using the definition of the CI matrix.

1) Diagonal element: configurations do not differ
({#,}| H|{9,}) Label O

2) Configurations differ by one
({6,.9,}|H|{¢,.9,}) Label (p.q)

3) Configurations differ by two
(10..9,.9,}|H|{9,.9,.0,3) Label (pq,rs)

This gives exactly d colors



Conclusions

Many algorithmic improvements

None exploit structure of problem beyond

the definition of the electronic structure
Born-O hei
Second Quantization R PrOblem

Approximation

Further simulation studies and

Bravyi-Kitacv Jordan-Wigner experiments needed to assess new
Transformation Transformation m e'|' h o) d (S

Connection to CI matrix may enable
theoretical progress in bounding cost of
state preparation

Gadgetize

Variational Methods

Adiabatic Quantum Simulation Gate Model Simulation

Recent dramatic progress in sparse
methods yet to be considered

Tunneling Spectroscopy Phase Estimation Algorithm

Exponential improvement in precision for simulating sparse Hamiltonians, Dominic W. Berry: Andrew M. Childs, Richard
Cleve, Robin Kothari, Rolando D. Somma arxiv:1312.1414
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