
Classifying Parallel Computation with Network Theory & Machine Learning

Sean Whalen, Lawrence Berkeley National Laboratory
August 10, 2011

High performance computing is an essential component of scientific research. Supercomputers
are also a lucrative target for attackers; massive computing power is increasingly leveraged for brute
force cracking of encryption, and even the creation (“mining”) of the virtual currency, BitCoin.
Such services have been commodified and can be purchased over the web. Despite this, little work
has been done to ensure that these valuable systems are being used properly. The Cyber Security
project at Lawrence Berkeley National Laboratory aims to address this problem by developing
anomaly detection approaches specifically for fingerprinting programs running on HPC systems.
Our machine learning and network theory techniques are able to classify parallel computation
based on their communication patterns with a 95-99% accuracy rate [WPB11].

Our threat model includes two classes of anomalies: unauthorized users running malicious code,
and authorized users running unauthorized code. Static analysis alone has proven computationally
expensive in the past, so we focus on recognizing patterns present in dynamic (runtime) information
in the form of communication patterns, represented by MPI library calls. We leverage the concept
that in the distributed memory model used by the majority of HPC programs, the communication
patterns exhibited by programs reflect their underlying mathematical algorithm. Those patterns
have previously been categorized into 13 equivalence classes called computational dwarves. For ex-
ample, the following image shows a data-dependent topology demonstrated by molecular dynamics
simulator namd under different molecular arrangements. The number of bytes sent between nodes is
linearly mapped from dark blue (lowest) to red (highest), and white indicating no communication.

Our goal is to classify a patterns of communication from HPC programs, labeling the pattern
as generated by a specific program, or more generally, its dwarf class. We constructed classifiers
using four approaches: subgraph isomorphism testing, network motif distributions, per-node call
distributions, and machine learning. The latter three are effective classifiers. Bayesian network and
random forest machine learning algorithms performed with nearly perfect true and false positive
rates using 10-fold cross validation. Hypothesis testing with motif and call distributions are less
accurate but orders of magnitude faster, excluding the initial motif discovery phase.

Many factors can complicate classification. E.g., communication patterns can change with the
number of nodes, hardware architecture, datasets, inputs, or even software flaws. We have evaluated
our approach using common HPC programs with multiple logs varying such factors. If topology
variance is bounded, our approach works well. For “swiss-army” programs (e.g., the matlab binary),
classification is more difficult. Also, adversaries can try to fool a system by mimicking the behavior
of authorized programs. We plan to leverage hardware counters, static analysis, Bayesian factor
graphs, and other approaches to address issues involving adversaries “swiss-army” programs.

[WPB11] Sean Whalen, Sean Peisert, and Matt Bishop. Network-Theoretic Classification of Paral-
lel Computation Patterns. In Proceedings of the First International Workshop on Char-
acterizing Applications for Heterogeneous Exascale Systems (CACHES), June 4, 2011.


