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Motivation: Large-scale statistical inverse problems

« Statistical inverse problem: formalized process of
determining unobservable system properties and
associated uncertainties through fusion of
experimental data and computational models.

— Especially challenging for large-scale PDE-based simulation
models with high-dimensional parameters

« Central to performing predictive simulations and
ultimately decision under uncertainty for many DOE
applications.

— e.g., global climate change, nuclear waste repositories,
groundwater contamination, carbon sequestration, clean
combustion, coal gasification, nuclear fuel cycle, ...



Research objectives

* Develop scalable numerical algorithms for large-
scale Bayesian inversion in complex systems
— Exploit the structure of the underlying mathematical model

— Capitalize on advances in large-scale simulation-based
optimization and inversion methods

* Develop new approaches using concepts from
projection-based reduced-order modeling and
stochastic spectral approximations

— Combined with a goal-oriented view to overcome the
challenges of high-dimensional parameters
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Parameterized dynamical systems

Arising, for example, from spatial discretization
of partial differential equations describing the
system of interest.
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x € RY: state vector (e.g., flow unknowns)

u € RYi: input vector (e.g., boundary forcing)
p € RVr: parameter vector (e.g., properties)

y € RNo: output vector (e.g., forces, moments)



Projection-based reduced-order models
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x € RN state vector

p € RV»: parameter vector
u € RVi: input vector

y € RNo: output vector
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xr = Ar(p)xr + Br(p)u
yr = Cr(p)xr

xr € R": reduced state vector
V € RVX": reduced basis



Why does model reduction work?

* Input —» Output map is often much simpler than the
full simulation model suggests
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Why does model reduction work?

* Inthe linear case, the complexity of the input—output
map can be gquantified in rigorous terms
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“Reachable” modes Observable” modes
— easy to reach — generate large output energy
— dominant eigenmodes of a  — dominant eigenmodes of an
controllability Gramian observability Gramian

“Hankel singular values are to model order what singular
values are to matrix rank.” (Matlab hsvd documentation)



High-dimensional parameters: Why a challenge?

e Most model reduction methods volume of n-ball inscribed
-~ In the unitary hypercube
sample the parameter space .-\ VS. number of dimensions
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 If we have many/distributed parameters

(hundreds, thousands)
can we really expect the
Input—output map to be
low-dimensional?

http://en.wikipedia.org/wiki/Sensitivity analysis



High-dimensional parameters: There is hope

« Even if the parameter space is of high dimension, the
outputs of interest are often of very low dimension

— Engineering decisions are usually of low dimension (~1)

 If you have many outputs, is your system really

e Qur approach:

— Formulate the problem to account for the ultimate
decision/prediction quantity of interest

— Re-parameterize the problem in a goal-oriented manner
(reduce parameter dimension) (Lieberman, W., Ghattas; SISC 2010)

— Use optimization to search a high-dimensional space efficiently
In a goal-oriented manner (Bui-Thanh, W., Ghattas; SISC 2008)



Inverse problem reformulation:

Exploiting the data-to-prediction map Lieberman W in prep.

« Experimental data: low-dimensional O(102)
« Parameter: high-dimensional O(10°)
* Prediction output of interest: low-dimensional O(1)
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 Identify reduced parameter subspace in which to
perform the inference, with the goal of accurate
predictions — “inference for prediction”

* An example where making the system boundary
larger may make the problem “simpler”



A control-theoretic approach to

“inference for prediction” e " P
« Parameter (high-dimensional): P
 Measurements (sparse): ve = O.p

« Prediction outputs of interest: 'y, = O,p

unobse Servable

» Separate observable subspaces %

for experiment (V) and prediction
(V,) processes reveal primary
contributors of uncertainty

Experiment Prediction

* Determine modes that are
experiment and prediction
observable (W)

Mode informed by experiment

but not needed for prediction Wieds inomind By sipeient

and required for prediction

« Sacrifice inversion . »
. ; ode needed for prediction but
accuracy but maintain not informed by experiment®
accuracy in output predictions

Mutual

* Primary source of uncertainty



Inference for prediction: Linear case

Lieberman, W.; in prep.

Truncated SVD:

* Inverse problem solution is the vector in the range of
O, that minimizes the data mismatch

piovP = V.<arg min —||O Vea—vy.|3
acR”
TsvD ~T'SVD
Vp _ Opp

Inference for prediction:

* Find a low-dimensional basis W such that only the
modes of p informed by experiment and required for
prediction are inverted

. 1 ..
plft = w {arg nin 5 |O. Wb — V€||ﬁ}
IFP ~ [ F'P
Yp = Opp




Inference for prediction: Linear theory

Algorithm 1: IFP Basis Generation (TSVD)

Step 1. Define G = Vf-_L;lVEO? where VELCV?

is the eigendecomposition of Ol O,.

S . . . ... 2+ T
Step 2. Compute the eigendecomposition ¥ vl
of the “Gramian product” GTOgOpG.

Step 3. Define the IF'P basis:
W =G¥y Y-

Theoretical Result: The prediction -y_gF P obtained by using
Algorithm 1 to generate the basis W 1s equal to the prediction
obtained by the TSVD approach:

IFP _  TSVD
Y =Y

Similar algorithms for analogous treatment of Tikhonov-regularized
inverse problems and linear-Gaussian statistical inverse problems.



Posterior predictive covariance

o Statistical setting: parameter estimated by a probability
distribution; prediction inherits stochasticity from parameter
estimate.

 Linear Gaussian case: mean of the prediction E[y ] is given by
IFP solution of an associated Tikhonov-regularized problem

« Prediction covariance cov(y,) Is essential for treating the
uncertainty (e.g., in design or control)

Theoretical Result: The IFP methodology leads to prediction
covariance essentially for free, since

0,I,0] =0,WEW'0/

where

.= (;'+0°0l0,)!

1s the covariance of the parameter estimate.

* Once the posterior predictive mean is computed by IFP, the
covariance can be obtained for the cost of matrix multiplications.



Advection-diffusion example
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Inference for prediction: Truncated SVD

2 . o Prediction output of interest
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Inference for prediction: Tikhonov regularization
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Inference for prediction: Statistical inverse problem
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Adaptive surrogates for nonlinear problems

Nonlinear forward models: constructing an accurate
surrogate over the entire parameter space may be
prohibitive
— Posterior concentrates on a small fraction of the prior support;
particularly for high-dimensional problems
— Localizing a surrogate mitigates the impact of nonlinearity

Inference problems: can we construct a surrogate only
over the support of the posterior? How to do this before
characterizing the posterior?

New adaptive approach, based on the cross-entropy
method and importance sampling:

— Construct a sequence of “cheap” surrogates and biasing
distributions that converges to the posterior

— Surrogates (e.g., polynomial chaos expansions) remain local
and low-order



Adaptive surrogates for nonlinear problems

» Overall procedure:
— Seek a biasing distribution that is close to the posterior 7 (p) < L(p)r(p)
(p is the parameter, L is the likelihood function, = is the prior)
— Pick biasing distribution q(p) from a simple family of
distributions, parameterized by v

min Dy, (7 (p) | g(piv)) = max [ L(p)w(p)loga(p:v) dp

 [terative approach:
— Use sequential importance sampling to estimate the integral
above, with a sequence of biasing distributions q(p,v,,)
— At each iteration use a localized surrogate, based on q(p), to
evaluate the likelihood function

1 | |
v, ., =argmax—» L(p")logq(p",v)
v n- -

« Example: use Gaussian biasing distributions and Hermite
polynomial chaos surrogates
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» Sparse grids used to construct polynomial chaos surrogates in
both cases
.

Example: 2-D source inversion problem
(model evaluation points and posterior density contours)

1

Number of model evaluations/polynomial order selected to

ensure comparable accuracy!

Adaptive surrogates for nonlinear problems




Adaptive surrogates for nonlinear problems

 Example: nonlinear inverse heat conduction problem

— Infer boundary heat flux from internal temperature ou 0 u
measurements; note temperature-dependent 9t 8:1: %
conductivity c(u)

— Heat flux parameterized with Fourier modes (11 dimensions)
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Adaptive surrogates for nonlinear problems

* Final biasing distribution also provides a good foundation
for efficient MCMC sampling (e.g., use as proposal in an
independence sampler)
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 Method is not limited to polynomial chaos surrogates or
Gaussian biasing distributions:
— Projection-based reduced order models
— Mixtures of exponential family distributions

* Dimensionality reduction is necessary and complementary



Conclusions

e Surrogate models provide dramatic speedups in
solution of large-scale inverse problems

» For problems with high-dimensional parameter
spaces, use goal-oriented approaches to overcome
curse of dimensionality:

— Formulate the problem to account for the ultimate
decision/prediction quantity of interest and re-parameterize
the problem in a goal-oriented manner

— Adaptive approach using stochastic optimization methods to
construct surrogates that are accurate over the support of
the posterior distribution.

* In the linear case, our approach has rigorous theory
and connections to balanced truncation

* Not all problems are amenable to model reduction
— But many are, especially if you keep your goal in mind
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