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Motivation: Large-scale statistical inverse problems 

• Statistical inverse problem: formalized process of 
determining unobservable system properties and 
associated uncertainties through fusion of 
experimental data and computational models. 
– Especially challenging for large-scale PDE-based simulation 

models with high-dimensional parameters 
 

• Central to performing predictive simulations and 
ultimately decision under uncertainty for many DOE 
applications. 
– e.g., global climate change, nuclear waste repositories, 

groundwater contamination, carbon sequestration, clean 
combustion, coal gasification, nuclear fuel cycle, … 

 
 
 



Research objectives 

• Develop scalable numerical algorithms for large-
scale Bayesian inversion in complex systems 
– Exploit the structure of the underlying mathematical model 
– Capitalize on advances in large-scale simulation-based 

optimization and inversion methods 
 

• Develop new approaches using concepts from 
projection-based reduced-order modeling and 
stochastic spectral approximations 
– Combined with a goal-oriented view to overcome the 

challenges of high-dimensional parameters 



Parameterized dynamical systems 

Arising, for example, from spatial discretization 
of partial differential equations describing the 
system of interest. 



Projection-based reduced-order models 

 

 



Why does model reduction work? 

• Input → Output map is often much simpler than the 
full simulation model suggests  
 
 
 
 
 
 

 

Inputs State Outputs 

x u y 



Why does model reduction work? 
• In the linear case, the complexity of the input—output 

map can be quantified in rigorous terms 
 
 
 
 
 
 

 
“Reachable” modes 
– easy to reach 
– dominant eigenmodes of a 

controllability Gramian 

“Observable” modes 
– generate large output energy 
– dominant eigenmodes of an 

observability Gramian 

x u y 

“Hankel singular values are to model order what singular 
values are to matrix rank.” (Matlab hsvd documentation) 



High-dimensional parameters: Why a challenge? 

• Most model reduction methods 
sample the parameter space 
to build the basis 

 
 
 
 
 
 
 

• If we have many/distributed parameters 
(hundreds, thousands) 
can we really expect the 
input—output map to be 
low-dimensional? 
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volume of n-ball inscribed 
in the unitary hypercube 
vs. number of dimensions 



High-dimensional parameters: There is hope 

• Even if the parameter space is of high dimension, the 
outputs of interest are often of very low dimension 
– Engineering decisions are usually of low dimension (~1) 

• If you have many outputs, is your system really 
encompassing the ultimate prediction/decision? 
 
 

 

• Our approach: 
– Formulate the problem to account for the ultimate 

decision/prediction quantity of interest 
– Re-parameterize the problem in a goal-oriented manner 

(reduce parameter dimension) (Lieberman, W., Ghattas; SISC 2010) 

– Use optimization to search a high-dimensional space efficiently 
in a goal-oriented manner (Bui-Thanh, W., Ghattas; SISC 2008) 

x p y d 
  



Inverse problem reformulation: 
Exploiting the data-to-prediction map 

• Experimental data: low-dimensional O(102) 
• Parameter: high-dimensional O(105)  
• Prediction output of interest: low-dimensional O(1) 

 
 
 
 
 
 
 
 

• Identify reduced parameter subspace in which to 
perform the inference, with the goal of accurate 
predictions → “inference for prediction” 

• An example where making the system boundary 
larger may make the problem “simpler” 
 

Lieberman, W.; in prep. 
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• Parameter (high-dimensional):  

• Measurements (sparse): 

• Prediction outputs of interest: 

 

• Separate observable subspaces 
for experiment (Ve) and prediction 
(Vp) processes reveal primary 
contributors of uncertainty 

• Determine modes that are 
experiment and prediction 
observable (W) 

• Sacrifice inversion 
accuracy but maintain 
accuracy in output predictions 

 

A control-theoretic approach to 
“inference for prediction” Lieberman, W.; in prep. 

Experiment 



Inference for prediction: Linear case 

Truncated SVD:  

• Inverse problem solution is the vector in the range of 
Oe that minimizes the data mismatch 

 

 

 

Inference for prediction: 
• Find a low-dimensional basis W such that only the 

modes of p informed by experiment and required for 
prediction are inverted 

Lieberman, W.; in prep. 



Inference for prediction: Linear theory 

Similar algorithms for analogous treatment of Tikhonov-regularized 
inverse problems and linear-Gaussian statistical inverse problems. 



Posterior predictive covariance 

• Statistical setting: parameter estimated by a probability 
distribution; prediction inherits stochasticity from parameter 
estimate. 

• Linear Gaussian case: mean of the prediction E[yp] is given by 
IFP solution of an associated Tikhonov-regularized problem 

• Prediction covariance cov(yp) is essential for treating the 
uncertainty (e.g., in design or control) 

 

• Once the posterior predictive mean is computed by IFP, the 
covariance can be obtained for the cost of matrix multiplications. 



Advection-diffusion example 

Computational domain 
 
 

(red dots are sensor locations) 

Prescribed 
initial condition 



Inference for prediction: Truncated SVD 

Prediction output of interest 

Comparing predictions 
from IFP and TSVD 

approaches 

r=54 (Ve) 
s=15 (W) 



Inference for prediction: Tikhonov regularization 

Prediction output of interest 

Comparing predictions 
from IFP and Tikhonov-
regularized approaches 

r=4005 (=n) 
s=11 (W) 

 



Inference for prediction: Statistical inverse problem 

Prediction outputs of interest 

Posterior predictive density function contours 

Traditional approach 
r=4005 (=n) 

IFP approach 
s=2 



Adaptive surrogates for nonlinear problems 

• Nonlinear forward models:  constructing an accurate 
surrogate over the entire parameter space may be 
prohibitive 
– Posterior concentrates on a small fraction of the prior support; 

particularly for high-dimensional problems 
– Localizing a surrogate mitigates the impact of nonlinearity 

• Inference problems:  can we construct a surrogate only 
over the support of the posterior? How to do this before 
characterizing the posterior?  

• New adaptive approach, based on the cross-entropy 
method and importance sampling: 
– Construct a sequence of “cheap” surrogates and biasing 

distributions that converges to the posterior 
– Surrogates (e.g., polynomial chaos expansions) remain local 

and low-order 



Adaptive surrogates for nonlinear problems 

• Overall procedure: 
– Seek a biasing distribution that is close to the posterior 

(p is the parameter, L is the likelihood function, π is the prior)  
– Pick biasing distribution q(p) from a simple family of 

distributions, parameterized by v 
 

• Iterative approach: 
– Use sequential importance sampling to estimate the integral 

above, with a sequence of biasing distributions q(p,vm) 
– At each iteration use a localized surrogate, based on q(p), to 

evaluate the likelihood function  
 
 

• Example: use Gaussian biasing distributions and Hermite 
polynomial chaos surrogates 
 

 



Adaptive surrogates for nonlinear problems 

adaptive surrogate global surrogate 

• Sparse grids used to construct polynomial chaos surrogates in 
both cases  

• Number of model evaluations/polynomial order selected to 
ensure comparable accuracy!  

• Example: 2-D source inversion problem  
(model evaluation points and posterior density contours) 

p1 p1 

p2 p2 



Adaptive surrogates for nonlinear problems 

• Example: nonlinear inverse heat conduction problem 
– Infer boundary heat flux from internal temperature  

measurements; note temperature-dependent  
conductivity c(u) 

– Heat flux parameterized with Fourier modes (11 dimensions) 
 
 

(thick solid line) full model 
(thin solid line) adaptive surrogate 

(dotted line) global surrogate 

# model 
evals 

polynomial 
order 

global 
surrogate 35929 5 8.37 

adaptive 
surrogate 5763 2 0.0032 



Adaptive surrogates for nonlinear problems 

• Final biasing distribution also provides a good foundation 
for efficient MCMC sampling (e.g., use as proposal in an 
independence sampler) 
 
 
 
 

 
 
 
 
 

• Method is not limited to polynomial chaos surrogates or 
Gaussian biasing distributions: 
– Projection-based reduced order models 
– Mixtures of exponential family distributions 

• Dimensionality reduction is necessary and complementary 



Conclusions 

• Surrogate models provide dramatic speedups in 
solution of large-scale inverse problems 

• For problems with high-dimensional parameter 
spaces, use goal-oriented approaches to overcome 
curse of dimensionality: 
– Formulate the problem to account for the ultimate 

decision/prediction quantity of interest and re-parameterize 
the problem in a goal-oriented manner 

– Adaptive approach using stochastic optimization methods to 
construct surrogates that are accurate over the support of 
the posterior distribution. 

• In the linear case, our approach has rigorous theory 
and connections to balanced truncation 

• Not all problems are amenable to model reduction 
– But many are, especially if you keep your goal in mind 
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