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Regimes in Climate - examples

Weather pattern over central Europe (Baur, 1951), North
Atlantic Oscillation (NAO), Arctic Oscillation (AO),
Pacific-North American (PNA) pattern, etc.

Kuroshio current (Taft, 1972)

Gulf stream (Bane and Dewar, 1988)
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Regimes in Climate

Regimes as multiple equilibrium states of barotropic
models (Charney–Devore 79, Legras–Ghil 85,
Tung–Tosenthal 85, ...).
Regimes as most likely states of equilibrium distribution
from statistical mechanics (Miller 90, Robert–Sommeria 91,
Majda et al. 05, 06, ...).
Data-driven approaches (Majda et al. 10, 11, ...).

Dynamics of transitions between regimes?

Transitions caused by effect of noise - typically analyzed
in small dimensional idealized models (Hasselmann 76,
Egger 81, Saravanan et al., Sura 02, ...).
Transition as heteroclinic orbits (Crommelin et al 03,
Selten–Branstator 04, Ide–Ghil 04, ...).

No dynamical information from standard equilibrium
statistical mechanics approaches!
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Our strategy

Use equilibrium statistical mechanics framework
(information theory) to determine invariant measure (IM)
of the climate system;
Establish conditions under which this IM is multimodal,
i.e. may displays several regimes;
Re-install dynamics - add appropriate forcing and
damping terms in the bare equations to guarantee that
the resulting stochastic partial differential equations
(SPDEs) have the correct IM;
Analyze these SPDEs in the small noise limit using large
deviation theory and the string method to find most likely
pathways between the different regimes.
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Two-dimensional barotropic QG equations

∂q
∂t

+∇⊥ψ · ∇q + U(t)
∂q
∂x

+ β
∂ψ

∂x
= Dq(∆)q + Fq,

q = ∆ψ + h,
dU
dt

=

∫
h
∂ψ

∂x
dx dy +DU(U) + FU ,

Here ψ(t , x , y) is the stream function, q(t , x , y) the vorticity,
h(x , y) the bottom topography, U(t) the zonal base flow and
β the beta-plane parameter (Pedlosky 79, Vallis 05).

Inviscid equations with D = F = 0 preserve

Energy E =
1
2

U2 +
1
2

∫
|∇ψ|2 dx dy ,

Enstrophy Q = βU +
1
2

∫
|q|2 dx dy .
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Predictions of equilibrium statistical mechanics

IM maximizes the entropy −
∫
µ logµ under the constraints:

Canonical:
∫

Q dµ = Q0, Microcanonical: E = E0.

dµ = Z−1 exp(−ε−1Q)δ(E − E0) dUdψ,

Most likely states = selective decay states – in QG flow,
enstrophy varies faster than energy.
Only choice leading to multimodal distribution.

Dynamics? choose D and F so that we formally have the
invariant measure (cf strategy of Landau-Lifshitz for NS
equations)
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Single-mode truncation
ψ(t , x , y) =a(t) sin(kx) + b(t) cos(kx),

h(x , y) =H sin(kx), (k 6= 0).

Inviscid equations reduce to:

ȧ = kb(t)
(

U(t)− β

k2

)
,

ḃ = −ka(t)
(

U(t)− β

k2

)
+

U(t)H
k

,

U̇ = −b(t)Hk
2

.

The energy and enstrophy now read:

E =
1
2

U2 +
k2

4
(a2 + b2),

Q = βU +
1
4
(
(H − k2a)2 + k4b2).
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Invariant measure ∼ exp(−ε−1Q)δ(E − E0)

Enstrophy landscape on energy surface E0 = 2:

Most likely states are given by the minimizers of Q subject to
the constraint E = E0.
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Reinstall dynamics
Ẋ = B(X )− P(X )Mγ∇X Q(X ) +

√
2εP(X )M1/2

γ ◦ η,

with the projection operator

P = Id− Mγ∇X E ⊗∇X E
〈∇X E ,Mγ∇X E〉

.

Deterministic flow
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Maximum likelihood path

In the small noise limit, transition occurs via maximum
likelihood path (MLP) of large deviation theory.

MLP is minimizer in

inf
M

1
2

∫ T

−T

∣∣∣∣(P(ϕ)Mγ

)−1/2
(
ϕ̇− P(ϕ)

(
B(ϕ)−Mγ∇X Q(ϕ)

))∣∣∣∣2 dt ,

where

M =

{
ϕ
∣∣∣ϕ(t) ∈ C([−T ,T ],R3), ϕ̇ ⊥ ∇X E , ϕ(−T ) = X 0, ϕ(T ) = X 1

}
Nongradient system with conservative nongradient force

∇X E ⊥ B, ∇X Q ⊥ B, PB = B.
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MLP solves{
0 =

[
B + P

(
Mγ∇X Q(ϕ)

)]⊥ (uphill)
0 =

[
B − P

(
Mγ∇X Q(ϕ)

)]⊥ (downhill)

where [·]⊥ denotes projection perpendicular to the path.

Computed by string method

Here β = k = 2, H = 1, E0 = 2 and Mγ = 0.5,1,2.
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Metastable states of invariant measure

Minimize the enstrophy Q subject to the constraint E = E0:

min
U,ψ

Q = βU +
1
2

∫
q2 dx dy ,

s.t.
1
2

U2 +
1
2

∫
|∇ψ|2 dx dy = E0.

Using Lagrange multiplier,

µUc = −β, µ∆ψc = ∆(∆ψc + h).

N.B. These are the stationary solutions of the original system
without dissipation and forcing.
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Number of critical points⇒ roots of µ:

E0 =
β2

2µ2 +
1
2

∑
k

|k |2
∣∣∣ĥk

∣∣∣2(
µ+ |k |2

)2 ,

Stability⇒ signs of eigenvalues of Hessian matrix:

(MQ)kk ′ =



µ3 |k |4
∣∣∣ĥk

∣∣∣2
β2
(
µ+ |k |2

)2 − |µ| |k |
2 + |k |4 , if k = k ′,

µ3 |k |2
∣∣k ′∣∣2 ĥk ĥ∗k ′

β2
(
µ+ |k |2

)(
µ+

∣∣k ′∣∣2) , if k 6= k ′.
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Stochastic partial differential equations

∂ψ

∂t
= −∆−1

(
∇⊥ψ · ∇q + U(t)

∂q
∂x

+ β
∂ψ

∂x

)
− γ1∆(∆ψ + h) +

√
2εγ1η(t , x , y) + γ1

δE
δψ

λ(t),

dU
dt

=

∫
h
∂ψ

∂x
dx − γ2β +

√
2εγ2ξ(t) + γ2

δE
δU

λ(t),

where q = ∆ψ + h and the Lagrange multiplier λ(t) is

λ(t) =

∫
(q − h)(−γ1∆q +

√
2εγ1 ◦ η) dx + U(γ2β −

√
2εγ2 ◦ ξ)∫

(q − h)γ1(q − h) dx + γ2U2
.

N.B. γ1 and γ2 can be pseudo-differential operators.
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Dissipation via Ekman drag: γ1 = γ∆−2, γ2 = γ̃

∂q
∂t

+∇⊥ψ · ∇q + U(t)
∂q
∂x

+ β
∂ψ

∂x
= −γq +

√
2εγη(t , x , y)− γψλ(t),

q = ∆ψ + h,
dU
dt

=

∫
h
∂ψ

∂x
dx − γ̃β +

√
2εγ̃ξ(t) + γ̃Uλ(t),

where

λ(t) =

∫
ψ(−γq +

√
2εγ ◦ η) dx + U(γ̃β −

√
2εγ̃ ◦ ξ)

γ

∫
|ψ|2 dx + γ̃U2

.

N.B. fixing the damping fixes the forcing by fluctuation-dissipation
theorem (FDT).
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String method to compute MLP

1 Evolve the string according to

ϕ̃ = ϕn + δt(±Bn + Gn),

where ϕ = (q,U)T , and

B =

−∇⊥ψ · ∇q − U ∂q
∂x − β

∂ψ
∂x∫

h
∂ψ

∂x
dx

 , G = −
(
γq
γ̃β

)
.

2 Reparametrize ϕ̃ via arc-length, to obtain ϕ̄.
3 Project ϕ̄ on the energy surface E = E0, to obtain ϕn+1.
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Example (16-mode topography)
We take the domain size as Lx = 2π, Ly = π. The
parameters are chosen as β = 1, E0 = 10. The friction
coefficients are taken as γ = γ̃ = 4.
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Metastable vorticity patterns and the pathways
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Dynamics of streamlines and vorticity
(a) (b) (c)
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Dynamics of streamlines and vorticity
(a) (b) (c)
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Figure: Snapshots of the vorticity function q along the transition
path from X 1 to X 0; the states labeled by (a) and (i) are the initial
and final states, and (d) is the saddle point. The pathway is
different from the one connecting X 0 to X 1 as shown in Figure ??.
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Conclusion:
Design SPDE models that are consitent with predictions
of equilibrium statistical mechanics and can capture the
noise-induced transition between different selective
decay states (representing different climate regimes).
Calculate the maximum likelihood path of large deviation
theory by the string method to describe the transitions
between different regimes in the small noise limit.
Can be generalized to other models with different forcing
and dissipation, including cases where statistical
mechanics framework breaks down (nonequilibrium
statistical steady states).
Can be generalized to situations with weak damping and
forcing (different order of limits than weak noise).
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