

Methodology

Stochastic ODE mode

Stochastic PDE mode

Conclusions

A framework to analyze regime behaviors and metastability in the climate system

> Eric Vanden-Eijnden Courant Institute of Mathematical Sciences New York University

In collaboration with Weiqing Ren (NUS) and Xu Yang (NYU) Part of DOE funded project with Guang Lin (PNNL)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Methodology

Stochastic ODE mode

Stochastic PDE mode

Conclusions

Methodology

3 Stochastic ODE model

Regimes in Climate - examples

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Weather pattern over central Europe (Baur, 1951), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Pacific-North American (PNA) pattern, etc.

Kuroshio current (Taft, 1972)

Gulf stream (Bane and Dewar, 1988)

🗄 ୬ବ୍ଚ

Regimes in Climate

- Regimes as multiple equilibrium states of barotropic models (Charney–Devore 79, Legras–Ghil 85, Tung–Tosenthal 85, ...).
- Regimes as most likely states of equilibrium distribution from statistical mechanics (Miller 90, Robert–Sommeria 91, Majda *et al.* 05, 06, ...).
- Data-driven approaches (Majda et al. 10, 11, ...).

Dynamics of transitions between regimes?

- Transitions caused by effect of noise typically analyzed in small dimensional idealized models (Hasselmann 76, Egger 81, Saravanan *et al.*, Sura 02, ...).
- Transition as heteroclinic orbits (Crommelin *et al* 03, Selten–Branstator 04, Ide–Ghil 04, ...).

No dynamical information from standard equilibrium statistical mechanics approaches!

Motivation

Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

- Methodology
- Stochastic ODE mode
- Stochastic PDE model
- Conclusions

- Use equilibrium statistical mechanics framework (information theory) to determine invariant measure (IM) of the climate system;
- Establish conditions under which this IM is multimodal, i.e. may displays several regimes;
- *Re-install dynamics* add appropriate forcing and damping terms in the bare equations to guarantee that the resulting stochastic partial differential equations (SPDEs) have the correct IM;
- Analyze these SPDEs in the small noise limit using large deviation theory and the string method to find most likely pathways between the different regimes.

Methodology

Stochastic ODE mode

Stochastic PDE mode

Conclusions

2 Methodology

3 Stochastic ODE model

Stochastic PDE model

Two-dimensional barotropic QG equations

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

$$\begin{aligned} \frac{\partial q}{\partial t} + \nabla^{\perp}\psi \cdot \nabla q + U(t)\frac{\partial q}{\partial x} + \beta \frac{\partial \psi}{\partial x} &= \mathcal{D}_{q}(\Delta)q + F_{q}, \\ q &= \Delta \psi + h, \\ \frac{\mathrm{d}U}{\mathrm{d}t} &= \int h\frac{\partial \psi}{\partial x} \,\mathrm{d}x \,\mathrm{d}y + \mathcal{D}_{U}(U) + F_{U}, \end{aligned}$$

Here $\psi(t, x, y)$ is the stream function, q(t, x, y) the vorticity, h(x, y) the bottom topography, U(t) the zonal base flow and β the beta-plane parameter (Pedlosky 79, Vallis 05).

Inviscid equations with $\mathcal{D} = F = 0$ preserve

Energy
$$E = \frac{1}{2}U^2 + \frac{1}{2}\int |\nabla \psi|^2 \, \mathrm{d}x \, \mathrm{d}y,$$

Enstrophy $Q = \beta U + \frac{1}{2}\int |q|^2 \, \mathrm{d}x \, \mathrm{d}y.$

Predictions of equilibrium statistical mechanics

IM maximizes the entropy $-\int \mu \log \mu$ under the constraints:

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Canonical:
$$\int Q d\mu = Q_0$$
, Microcanonical: $E = E_0$.

$$d\mu = Z^{-1} \exp(-\varepsilon^{-1} Q) \delta(E - E_0) \, dU d\psi,$$

- Most likely states = selective decay states in QG flow, enstrophy varies faster than energy.
- Only choice leading to multimodal distribution.

Dynamics? choose \mathcal{D} and F so that we formally have the invariant measure (cf strategy of Landau-Lifshitz for NS equations)

Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

Methodology

Stochastic ODE model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Single-mode truncation

Inviscid equations reduce to:

$$\psi(t, x, y) = a(t)\sin(kx) + b(t)\cos(kx),$$

$$h(x, y) = H\sin(kx), \quad (k \neq 0).$$

Motivation

Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

$$\begin{split} \dot{a} &= kb(t)\Big(U(t) - \frac{\beta}{k^2}\Big),\\ \dot{b} &= -ka(t)\Big(U(t) - \frac{\beta}{k^2}\Big) + \frac{U(t)H}{k}\\ \dot{U} &= -\frac{b(t)Hk}{2}. \end{split}$$

The energy and enstrophy now read:

$$E = \frac{1}{2}U^{2} + \frac{k^{2}}{4}(a^{2} + b^{2}),$$
$$Q = \beta U + \frac{1}{4}((H - k^{2}a)^{2} + k^{4}b^{2})$$

Invariant measure $\sim \exp(-\varepsilon^{-1}Q)\delta(E-E_0)$

Most likely states are given by the minimizers of *Q* subject to the constraint $E = E_0$.

Reinstall dynamics

$\dot{\boldsymbol{X}} = \boldsymbol{B}(\boldsymbol{X}) - \mathcal{P}(\boldsymbol{X})\boldsymbol{M}_{\gamma}\nabla_{\boldsymbol{X}}\boldsymbol{Q}(\boldsymbol{X}) + \sqrt{2\varepsilon}\mathcal{P}(\boldsymbol{X})\boldsymbol{M}_{\gamma}^{1/2}\circ\eta,$

with the projection operator

Motivation

Methodology

Stochastic ODE model

Stochastic PDE mode

Conclusions

$$\mathcal{P} = \mathrm{Id} - rac{M_{\gamma}
abla_{\mathbf{X}} E \otimes
abla_{\mathbf{X}} E}{\langle
abla_{\mathbf{X}} E, M_{\gamma}
abla_{\mathbf{X}} E
angle}.$$

Maximum likelihood path

Motivation Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

In the small noise limit, transition occurs via maximum likelihood path (MLP) of large deviation theory.

MLP is minimizer in

$$\inf_{\mathcal{M}} \frac{1}{2} \int_{-\tau}^{\tau} \left| \left(\mathcal{P}(\varphi) M_{\gamma} \right)^{-1/2} \left(\dot{\varphi} - \mathcal{P}(\varphi) \left(\boldsymbol{B}(\varphi) - M_{\gamma} \nabla_{\boldsymbol{X}} \boldsymbol{Q}(\varphi) \right) \right) \right|^{2} \, \mathrm{d}t,$$

where

$$\mathcal{M} = \left\{ \varphi \middle| \varphi(t) \in \mathrm{C}([-T, T], \mathbb{R}^3), \ \dot{\varphi} \perp \nabla_{\boldsymbol{X}} \boldsymbol{E}, \ \varphi(-T) = \boldsymbol{X}_0, \ \varphi(T) = \boldsymbol{X}_1 \right\}$$

Nongradient system with conservative nongradient force

 $abla_{\mathbf{X}} \mathbf{E} \perp \mathbf{B}, \quad \nabla_{\mathbf{X}} \mathbf{Q} \perp \mathbf{B}, \quad \mathcal{P} \mathbf{B} = \mathbf{B}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MLP solves

Motivation

Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

where $[\cdot]^{\perp}$ denotes projection perpendicular to the path. Computed by string method

Here $\beta = k = 2$, H = 1, $E_0 = 2$ and $M_{\gamma_0} = 0.5$, 1, 2.

900

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Metastable states of invariant measure

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Minimize the enstrophy *Q* subject to the constraint $E = E_0$:

$$\min_{U,\psi} \quad Q = \beta U + \frac{1}{2} \int q^2 \, \mathrm{d}x \, \mathrm{d}y,$$

s.t.
$$\frac{1}{2}U^2 + \frac{1}{2} \int |\nabla \psi|^2 \, \mathrm{d}x \, \mathrm{d}y = E_0.$$

Using Lagrange multiplier,

$$\mu U_{c} = -\beta, \quad \mu \Delta \psi_{c} = \Delta (\Delta \psi_{c} + h).$$

N.B. These are the stationary solutions of the original system without dissipation and forcing.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Number of critical points \Rightarrow roots of μ :

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

$$E_{0} = rac{eta^{2}}{2\mu^{2}} + rac{1}{2}\sum_{k}rac{|k|^{2}\left|\widehat{h}_{k}
ight|^{2}}{\left(\mu + |k|^{2}
ight)^{2}},$$

Stability \Rightarrow signs of eigenvalues of Hessian matrix:

$$(M_{Q})_{\boldsymbol{k}\boldsymbol{k}'} = \begin{cases} \frac{\mu^{3} |\boldsymbol{k}|^{4} \left| \hat{h}_{\boldsymbol{k}} \right|^{2}}{\beta^{2} \left(\mu + |\boldsymbol{k}|^{2} \right)^{2}} - |\mu| |\boldsymbol{k}|^{2} + |\boldsymbol{k}|^{4}, & \text{if } \boldsymbol{k} = \boldsymbol{k}', \\ \frac{\mu^{3} |\boldsymbol{k}|^{2} \left| \boldsymbol{k}' \right|^{2} \hat{h}_{\boldsymbol{k}} \hat{h}_{\boldsymbol{k}'}^{*}}{\beta^{2} \left(\mu + |\boldsymbol{k}|^{2} \right) \left(\mu + |\boldsymbol{k}'|^{2} \right)}, & \text{if } \boldsymbol{k} \neq \boldsymbol{k}'. \end{cases}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Stochastic partial differential equations

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

$$\begin{split} \frac{\partial \psi}{\partial t} &= -\Delta^{-1} \left(\nabla^{\perp} \psi \cdot \nabla q + U(t) \frac{\partial q}{\partial x} + \beta \frac{\partial \psi}{\partial x} \right) \\ &- \gamma_1 \Delta (\Delta \psi + h) + \sqrt{2\varepsilon \gamma_1} \eta(t, x, y) + \gamma_1 \frac{\delta E}{\delta \psi} \lambda(t), \\ \frac{\mathrm{d}U}{\mathrm{d}t} &= \int h \frac{\partial \psi}{\partial x} \, \mathrm{d} \mathbf{x} - \gamma_2 \beta + \sqrt{2\varepsilon \gamma_2} \xi(t) + \gamma_2 \frac{\delta E}{\delta U} \lambda(t), \end{split}$$

where $q = \Delta \psi + h$ and the Lagrange multiplier $\lambda(t)$ is

$$\lambda(t) = \frac{\int (q-h)(-\gamma_1 \Delta q + \sqrt{2\varepsilon\gamma_1} \circ \eta) \,\mathrm{d}\boldsymbol{x} + U(\gamma_2 \beta - \sqrt{2\varepsilon\gamma_2} \circ \xi)}{\int (q-h)\gamma_1(q-h) \,\mathrm{d}\boldsymbol{x} + \gamma_2 U^2}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

N.B. γ_1 and γ_2 can be pseudo-differential operators.

Dissipation via Ekman drag:
$$\gamma_1 = \gamma \Delta^{-2}$$
, $\gamma_2 = \widetilde{\gamma}$

 $\frac{\partial \boldsymbol{q}}{\partial t} + \nabla^{\perp}\psi \cdot \nabla \boldsymbol{q} + \boldsymbol{U}(t)\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{x}} + \beta \frac{\partial \psi}{\partial \boldsymbol{x}} = -\gamma \boldsymbol{q} + \sqrt{2\varepsilon\gamma}\eta(t, \boldsymbol{x}, \boldsymbol{y}) - \gamma\psi\lambda(t),$

Motivation Methodology

Stochastic ODE mode

Stochastic PDE model $q = \Delta \psi + h,$ $\frac{\mathrm{d}U}{\mathrm{d}t} = \int h \frac{\partial \psi}{\partial x} \,\mathrm{d}x - \tilde{\gamma}\beta + \sqrt{2\varepsilon\tilde{\gamma}}\xi(t) + \tilde{\gamma}U\lambda(t),$

Conclusions

where

$$\lambda(t) = \frac{\int \psi(-\gamma \boldsymbol{q} + \sqrt{2\varepsilon\gamma} \circ \eta) \,\mathrm{d}\boldsymbol{x} + \boldsymbol{U}(\widetilde{\gamma}\beta - \sqrt{2\varepsilon\widetilde{\gamma}} \circ \xi)}{\gamma \int |\psi|^2 \,\mathrm{d}\boldsymbol{x} + \widetilde{\gamma}\boldsymbol{U}^2}$$

N.B. fixing the damping fixes the forcing by fluctuation-dissipation theorem (FDT).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

String method to compute MLP

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Evolve the string according to

$$\tilde{\boldsymbol{\varphi}} = \boldsymbol{\varphi}^n + \delta t (\pm \boldsymbol{B}^n + \boldsymbol{G}^n),$$

where $oldsymbol{arphi}=(oldsymbol{q},oldsymbol{U})^{ extsf{T}}$, and

$$\boldsymbol{B} = \begin{pmatrix} -\nabla^{\perp}\psi \cdot \nabla \boldsymbol{q} - \boldsymbol{U}\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{x}} - \beta \frac{\partial \psi}{\partial \boldsymbol{x}} \\ \int \boldsymbol{h}\frac{\partial \psi}{\partial \boldsymbol{x}} \, \mathrm{d}\boldsymbol{x} \end{pmatrix}, \quad \boldsymbol{G} = -\begin{pmatrix} \gamma \boldsymbol{q} \\ \widetilde{\gamma}\beta \end{pmatrix}.$$

Reparametrize $\tilde{\varphi}$ via arc-length, to obtain $\bar{\varphi}$.

Solution Project $\bar{\varphi}$ on the energy surface $E = E_0$, to obtain φ^{n+1} .

Methodology

Stochastic ODE model

Stochastic PDE model

Conclusions

Example (16-mode topography)

We take the domain size as $L_x = 2\pi$, $L_y = \pi$. The parameters are chosen as $\beta = 1$, $E_0 = 10$. The friction coefficients are taken as $\gamma = \tilde{\gamma} = 4$.

Metastable vorticity patterns and the pathways

Motivation

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Dynamics of streamlines and vorticity

>1

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Dynamics of streamlines and vorticity

Methodology

Stochastic ODE mode

Stochastic PDE model

Conclusions

Methodology

Stochastic ODE mode

Stochastic PDE mode

Conclusions

Methodology

3 Stochastic ODE model

Conclusion:

- ODE model
- Conclusions

- Design SPDE models that are consitent with predictions of equilibrium statistical mechanics and can capture the noise-induced transition between different selective decay states (representing different climate regimes).
- Calculate the maximum likelihood path of large deviation theory by the string method to describe the transitions between different regimes in the small noise limit.
- Can be generalized to other models with different forcing and dissipation, including cases where statistical mechanics framework breaks down (nonequilibrium statistical steady states).
- Can be generalized to situations with weak damping and forcing (different order of limits than weak noise).