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f Regimes in Climate - examples

Weather pattern over central Europe (Baur, 1951), North
Atlantic Oscillation (NAO), Arctic Oscillation (AO),
Moltivation Pacific-North American (PNA) pattern, etc.

Kuroshio current (Taft, 1972)

Small meander stale Large meander state
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" 4 Paths of Kurashio
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‘f Regimes in Climate

@ Regimes as multiple equilibrium states of barotropic
models (Charney—Devore 79, Legras—Ghil 85,
Tung—Tosenthal 85, ...).

@ Regimes as most likely states of equilibrium distribution
from statistical mechanics (Miller 90, Robert—-Sommeria 91,
Majda et al. 05, 06, ...).

@ Data-driven approaches (Majda et al. 10, 11, ...).

Motivation

Dynamics of transitions between regimes?

@ Transitions caused by effect of noise - typically analyzed
in small dimensional idealized models (Hasselmann 76,
Egger 81, Saravanan et al., Sura 02, ...).

@ Transition as heteroclinic orbits (Crommelin et al 03,
Selten—Branstator 04, Ide—Ghil 04, ...).

No dynamical information from standard equilibrium
statistical mechanics approaches!



‘? Our strategy

Motivation

@ Use equilibrium statistical mechanics framework
(information theory) to determine invariant measure (IM)
of the climate system;

@ Establish conditions under which this IM is multimodal,
i.e. may displays several regimes;

@ Re-install dynamics - add appropriate forcing and
damping terms in the bare equations to guarantee that
the resulting stochastic partial differential equations
(SPDEs) have the correct IM;

@ Analyze these SPDEs in the small noise limit using large

deviation theory and the string method to find most likely
pathways between the different regimes.
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‘? Two-dimensional barotropic QG equations
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Methodology

Here «(t, x, y) is the stream function, q(t, x, y) the vorticity,
h(x, y) the bottom topography, U(t) the zonal base flow and
5 the beta-plane parameter (Pedlosky 79, Vallis 05).

Inviscid equations with D = F = 0 preserve

Energy E= %Uz £ % f V|2 dxdy,

Enstrophy Q=pU+ ;f\q\z dxdy.



‘? Predictions of equilibrium statistical mechanics

IM maximizes the entropy — [ 1.log 1 under the constraints:

Methodology Canonical: /Qdﬂ = Qy, Microcanonical: E = Ej.

du=Z"exp(—e 'Q)J(E — Ep) dUd),

@ Most likely states = selective decay states — in QG flow,
enstrophy varies faster than energy.

@ Only choice leading to multimodal distribution.

Dynamics? choose D and F so that we formally have the
invariant measure (cf strategy of Landau-Lifshitz for NS
equations)
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? Single-mode truncation

P(t, x, y) =a(t) sin(kx) + b(t) cos(kx),
h(x,y) =Hsin(kx), (k #0).

Inviscid equations reduce to:

Stochastic
ODE model

a=— kb(t)(U(t) 0 )

k2
b= —ka(t) (U(t) - %) + U(I?H,
o _b(t;Hk_

The energy and enstrophy now read:

_1 2 k? 2 2
E=3U +T( + b%),

Q=pU+ %((H — k?a)? + k*b?).



* Invariant measure ~ exp(—<c 'Q)J(E — Ep)

Enstrophy landscape on energy surface Ey = 2:
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Stochastic
ODE model 25
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Most likely states are given by the minimizers of Q subject to
the constraint £ = E.



f Reinstall dynamics
X = B(X) — P(X)M,VxQ(X) + V2eP(X)M!/2 o,
with the projection operator
M, VxE @ VxE
=Id— = :
Stochastic P <VXE, M»yVXE)

ODE model
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Deterministic flow



? Maximum likelihood path

In the small noise limit, transition occurs via maximum
likelihood path (MLP) of large deviation theory.

Stochastic

ODE model MLP is minimizer in

2

niy [ |(Peem) (o~ Ple)(BGo) - x| et

where
m={elolt € C-T, TLE), & L VxE, o(~T) = Xo, (1) = X1}

Nongradient system with conservative nongradient force

VxE LB, VxQLlB, PB=B.



t

MLP solves

0=[B+P(MVxQ())]"  (uphil
0=[B-P(M,VxQ(¢))]"  (downhil)
where []* denotes projection perpendicular to the path.

Stochastic
ODE model

Computed by string method
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Here s=k=2, H=1,Ey=2and M, =0.5,1,2.
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? Metastable states of invariant measure

Minimize the enstrophy Q subject to the constraint E = Ep:

. B 1 >
nJL? Q_BU+2fq dxdy,

Stochastic
PDE model

s.t. %Uz + % f IV dxdy = Eo.

Using Lagrange multiplier,
pUc = =B, plApe = A(Ayc + h).

N.B. These are the stationary solutions of the original system
without dissipation and forcing.



Number of critical points = roots of u:

Stochastic
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Stability = signs of eigenvalues of Hessian matrix:
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? Stochastic partial differential equations
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PDE model 5 Ib

) SE
fh dX — 28 + /2e72£(t) + Wzm/\(t)
where g = Aty + h and the Lagrange multiplier A(t) is

][(q—h)( YA+ \/2ev1 0on)dx + U(728 — \/267205)

A(t) =
f(q— (g — hdx + 72 U?

N.B. 74 and ~» can be pseudo-differential operators.
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? Dissipation via Ekman drag: 74 = yA™2, v =7

0

8—?+VL¢ Vaq+ Ut )——l—ﬁfw —vq + v/ 2evn(t, X, y) — v (1),

4 _ ][haﬂ dX — 7B + /256 (t) + FUA(D),
Stochastic t ox
PDE model

where

][1/1 —vq+ v/2eyon)dx + URFSB — \/25705
A(t) =
3 f 0 ax U

N.B. fixing the damping fixes the forcing by fluctuation-dissipation
theorem (FDT).



? String method to compute MLP

@ Evolve the string according to

, = "+ 5t(=B" + G"),
et

where ¢ = (g, U)7, and

-Vty - vg- U - oL g
5= 022 ax e=- ()
ox
© Reparametrize ¢ via arc-length, to obtain ¢.
© Project @ on the energy surface E = Eg, to obtain 1.
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Example (16-mode topography)

We take the domain size as Ly = 27, L, = 7. The
parameters are chosen as 8 =1, Ey = 10. The friction
coefficients are taken as vy =75 = 4.
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Conclusions

Metastable vorticity patterns and the pathways
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? Dynamics of streamlines and vorticity

(a) (b)
25

= *;20 4@ ig":: is% f i
g

( a) (h)

nmye




? Dynamics of streamlines and vorticity
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Conclusions

Conclusion:

@ Design SPDE models that are consitent with predictions
of equilibrium statistical mechanics and can capture the
noise-induced transition between different selective
decay states (representing different climate regimes).

@ Calculate the maximum likelihood path of large deviation
theory by the string method to describe the transitions
between different regimes in the small noise limit.

@ Can be generalized to other models with different forcing
and dissipation, including cases where statistical
mechanics framework breaks down (nonequilibrium
statistical steady states).

@ Can be generalized to situations with weak damping and
forcing (different order of limits than weak noise).
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