

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

A framework to analyze regime behaviors and metastability in the climate system

> Eric Vanden-Eijnden Courant Institute of Mathematical Sciences New York University

In collaboration with Weiqing Ren (NUS) and Xu Yang (NYU) Part of DOE funded project with Guang Lin (PNNL)

KOD KARD KED KED BE YOUR

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

[Methodology](#page-5-0)

[Stochastic ODE model](#page-8-0)

[Stochastic PDE model](#page-14-0)

Regimes in Climate - examples

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Weather pattern over central Europe (Baur, 1951), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Pacific-North American (PNA) pattern, etc.

Kuroshio current (Taft, 1972)

Gulf stream (Bane and Dewar, 1988)

റെ ര

Regimes in Climate

- Regimes as multiple equilibrium states of barotropic models (Charney–Devore 79, Legras–Ghil 85, Tung–Tosenthal 85, ...).
- Regimes as most likely states of equilibrium distribution from statistical mechanics (Miller 90, Robert–Sommeria 91, Majda *et al.* 05, 06, ...).
- Data-driven approaches (Majda *et al.* 10, 11, ...).

Dynamics of transitions between regimes?

- Transitions caused by effect of noise typically analyzed in small dimensional idealized models (Hasselmann 76, Egger 81, Saravanan *et al.*, Sura 02, ...).
- Transition as heteroclinic orbits (Crommelin *et al* 03, Selten–Branstator 04, Ide–Ghil 04, ...).

No dynamical information from standard equilibrium statistical mechanics approaches!**KORK ERKEY EL POLO**

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Our strategy

[Motivation](#page-1-0)

- **[Methodology](#page-5-0)**
- **Stochastic** [ODE model](#page-8-0)
- **Stochastic** [PDE model](#page-14-0)
- [Conclusions](#page-24-0)
- Use equilibrium statistical mechanics framework (information theory) to determine invariant measure (IM) of the climate system;
- Establish conditions under which this IM is multimodal, i.e. may displays several regimes;
- *Re-install dynamics* add appropriate forcing and damping terms in the bare equations to guarantee that the resulting stochastic partial differential equations (SPDEs) have the correct IM;
- Analyze these SPDEs in the small noise limit using large deviation theory and the string method to find most likely pathways between the different regimes.

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

2 [Methodology](#page-5-0)

[Stochastic ODE model](#page-8-0)

[Stochastic PDE model](#page-14-0)

Two-dimensional barotropic QG equations

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
\frac{\partial q}{\partial t} + \nabla^{\perp}\psi \cdot \nabla q + U(t)\frac{\partial q}{\partial x} + \beta \frac{\partial \psi}{\partial x} = \mathcal{D}_q(\Delta)q + F_q,
$$

\n
$$
q = \Delta \psi + h,
$$

\n
$$
\frac{dU}{dt} = \int h \frac{\partial \psi}{\partial x} dx dy + \mathcal{D}_U(U) + F_U,
$$

Here $\psi(t, x, y)$ is the stream function, $q(t, x, y)$ the vorticity, $h(x, y)$ the bottom topography, $U(t)$ the zonal base flow and β the beta-plane parameter (Pedlosky 79, Vallis 05).

Inviscid equations with $D = F = 0$ preserve

Energy
$$
E = \frac{1}{2}U^2 + \frac{1}{2}\int |\nabla \psi|^2 dxdy,
$$

Entropy
$$
Q = \beta U + \frac{1}{2}\int |q|^2 dxdy.
$$

. *.* .

Predictions of equilibrium statistical mechanics

IM maximizes the entropy $- \int \mu \log \mu$ under the constraints:

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
Canonical: \int Q d\mu = Q_0, \quad \text{Microcanonical: } E = E_0.
$$

$$
d\mu = Z^{-1} \exp(-\varepsilon^{-1} Q) \delta(E - E_0) \, dU d\psi,
$$

- \bullet Most likely states = selective decay states in QG flow, enstrophy varies faster than energy.
- Only choice leading to multimodal distribution.

Dynamics? choose D and *F* so that we formally have the invariant measure (cf strategy of Landau-Lifshitz for NS equations)**KORK ERKER ADAM ADA**

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

[Methodology](#page-5-0)

3 [Stochastic ODE model](#page-8-0)

[Stochastic PDE model](#page-14-0)

Single-mode truncation

Inviscid equations reduce to:

$$
\psi(t, x, y) = a(t) \sin(kx) + b(t) \cos(kx),
$$

$$
h(x, y) = H \sin(kx), \quad (k \neq 0).
$$

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
\dot{a} = kb(t)\Big(U(t) - \frac{\beta}{k^2}\Big),
$$
\n
$$
\dot{b} = -ka(t)\Big(U(t) - \frac{\beta}{k^2}\Big) + \frac{U(t)H}{k},
$$
\n
$$
\dot{U} = -\frac{b(t)Hk}{2}.
$$

The energy and enstrophy now read:

$$
E = \frac{1}{2}U^2 + \frac{k^2}{4}(a^2 + b^2),
$$

$$
Q = \beta U + \frac{1}{4}((H - k^2a)^2 + k^4b^2)
$$

.

 $\nu \propto \Omega$

STATISTICS

Invariant measure $\sim \exp(-\varepsilon^{-1}Q)\delta(E-E_0)$

Most likely states are given by the minimizers of *Q* subject to the constraint $E = E_0$.

Reinstall dynamics

$\dot{\mathbf{X}} = \mathbf{B}(\mathbf{X}) - \mathcal{P}(\mathbf{X}) M_{\gamma} \nabla_{\mathbf{X}} Q(\mathbf{X}) + \sqrt{2\varepsilon} \mathcal{P}(\mathbf{X}) M_{\gamma}^{1/2} \circ \eta$

with the projection operator

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
\mathcal{P} = \mathrm{Id} - \frac{M_{\gamma} \nabla_{\boldsymbol{X}} E \otimes \nabla_{\boldsymbol{X}} E}{\langle \nabla_{\boldsymbol{X}} E, M_{\gamma} \nabla_{\boldsymbol{X}} E \rangle}.
$$

Maximum likelihood path

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

In the small noise limit, transition occurs via maximum likelihood path (MLP) of large deviation theory.

MLP is minimizer in

$$
\inf_{\mathcal{M}} \frac{1}{2} \int_{-T}^{T} \left| \left(\mathcal{P}(\varphi) M_{\gamma} \right)^{-1/2} \left(\dot{\varphi} - \mathcal{P}(\varphi) \big(\boldsymbol{B}(\varphi) - M_{\gamma} \nabla_{\boldsymbol{X}} Q(\varphi) \big) \right) \right|^2 \, \mathrm{d} t,
$$

where

$$
\mathcal{M} = \left\{ \varphi \middle| \varphi(t) \in C([-T, T], \mathbb{R}^3), \ \dot{\varphi} \perp \nabla_{\boldsymbol{x}} E, \ \varphi(-T) = \boldsymbol{X}_0, \ \varphi(T) = \boldsymbol{X}_1 \right\}
$$

Nongradient system with conservative nongradient force

 $\nabla_{\mathbf{X}}E \perp \mathbf{B}, \quad \nabla_{\mathbf{X}}Q \perp \mathbf{B}, \quad \nabla \mathbf{B} = \mathbf{B}.$

KOD KARD KED KED BE YOUR

MLP solves

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

where $[\cdot]^\perp$ denotes projection perpendicular to the path. Computed by string method

 Ω

Here $\beta = k = 2$ $\beta = k = 2$ $\beta = k = 2$, $H = 1$ $H = 1$, $E_0 = 2$ $E_0 = 2$ $E_0 = 2$ and $M_{\gamma} = 0.5, 1, 2$ $M_{\gamma} = 0.5, 1, 2$ $M_{\gamma} = 0.5, 1, 2$ $M_{\gamma} = 0.5, 1, 2$.

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Metastable states of invariant measure

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Minimize the enstrophy *Q* subject to the constraint $E = E_0$:

$$
\min_{U,\psi} Q = \beta U + \frac{1}{2} \int q^2 dx dy,
$$

s.t.
$$
\frac{1}{2}U^2 + \frac{1}{2} \int |\nabla \psi|^2 dx dy = E_0.
$$

Using Lagrange multiplier,

$$
\mu U_c = -\beta, \quad \mu \Delta \psi_c = \Delta (\Delta \psi_c + h).
$$

N.B. These are the stationary solutions of the original system without dissipation and forcing.

KOD KARD KED KED BE YOUR

Number of critical points \Rightarrow roots of μ :

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
E_0 = \frac{\beta^2}{2\mu^2} + \frac{1}{2} \sum_{\bm{k}} \frac{|\bm{k}|^2 \left| \widehat{h}_{\bm{k}} \right|^2}{\left(\mu + |\bm{k}|^2 \right)^2},
$$

Stability \Rightarrow signs of eigenvalues of Hessian matrix:

$$
(M_Q)_{\boldsymbol{k}\boldsymbol{k}'} = \begin{cases} \frac{\mu^3 |\boldsymbol{k}|^4 \left| \widehat{h}_{\boldsymbol{k}} \right|^2}{\beta^2 \left(\mu + |\boldsymbol{k}|^2 \right)^2} - |\mu| |\boldsymbol{k}|^2 + |\boldsymbol{k}|^4, & \text{if } \boldsymbol{k} = \boldsymbol{k}',\\ \frac{\mu^3 |\boldsymbol{k}|^2 |\boldsymbol{k}'|^2 \widehat{h}_{\boldsymbol{k}} \widehat{h}_{\boldsymbol{k}'}^*}{\beta^2 \left(\mu + |\boldsymbol{k}|^2 \right) \left(\mu + |\boldsymbol{k}'|^2 \right)}, & \text{if } \boldsymbol{k} \neq \boldsymbol{k}'. \end{cases}
$$

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

Stochastic partial differential equations

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
\frac{\partial \psi}{\partial t} = -\Delta^{-1} \Big(\nabla^{\perp} \psi \cdot \nabla q + U(t) \frac{\partial q}{\partial x} + \beta \frac{\partial \psi}{\partial x} \Big) \n- \gamma_1 \Delta (\Delta \psi + h) + \sqrt{2 \varepsilon \gamma_1} \eta(t, x, y) + \gamma_1 \frac{\delta E}{\delta \psi} \lambda(t),
$$
\n
$$
\frac{dU}{dt} = \int h \frac{\partial \psi}{\partial x} d\mathbf{x} - \gamma_2 \beta + \sqrt{2 \varepsilon \gamma_2} \xi(t) + \gamma_2 \frac{\delta E}{\delta U} \lambda(t),
$$

where $q = \Delta \psi + h$ and the Lagrange multiplier $\lambda(t)$ is

$$
\lambda(t)=\frac{\int (q-h)(-\gamma_1\Delta q+\sqrt{2\varepsilon\gamma_1}\circ\eta)\,\mathrm{d}\mathbf{x}+U(\gamma_2\beta-\sqrt{2\varepsilon\gamma_2}\circ\xi)}{\int (q-h)\gamma_1(q-h)\,\mathrm{d}\mathbf{x}+\gamma_2\,U^2}.
$$

KORKARYKERKE PORCH

N.B. γ_1 and γ_2 can be pseudo-differential operators.

Dissipation via Ekman drag:
$$
\gamma_1 = \gamma \Delta^{-2}
$$
, $\gamma_2 = \tilde{\gamma}$

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

$$
\frac{\partial q}{\partial t} + \nabla^{\perp}\psi \cdot \nabla q + U(t)\frac{\partial q}{\partial x} + \beta \frac{\partial \psi}{\partial x} = -\gamma q + \sqrt{2\varepsilon\gamma}\eta(t, x, y) - \gamma\psi\lambda(t),
$$

\n
$$
q = \Delta\psi + h,
$$

\n
$$
\frac{dU}{dt} = \int h \frac{\partial \psi}{\partial x} d\mathbf{x} - \tilde{\gamma}\beta + \sqrt{2\varepsilon\tilde{\gamma}}\xi(t) + \tilde{\gamma}U\lambda(t),
$$

\nwhere

$$
\lambda(t) = \frac{\int \psi(-\gamma q + \sqrt{2\varepsilon\gamma} \circ \eta) \, \mathrm{d}\mathbf{x} + U(\widetilde{\gamma}\beta - \sqrt{2\varepsilon\widetilde{\gamma}} \circ \xi)}{\gamma \int |\psi|^2 \, \mathrm{d}\mathbf{x} + \widetilde{\gamma} U^2}.
$$

N.B. fixing the damping fixes the forcing by fluctuation-dissipation theorem (FDT).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

String method to compute MLP

[Motivation](#page-1-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

1 Evolve the string according to

$$
\tilde{\varphi} = \varphi^n + \delta t(\pm \boldsymbol{B}^n + \boldsymbol{G}^n),
$$

where $\varphi=(q,U)^{\mathsf{T}}$, and

$$
\boldsymbol{B} = \begin{pmatrix} -\nabla^{\perp} \psi \cdot \nabla q - U \frac{\partial q}{\partial x} - \beta \frac{\partial \psi}{\partial x} \\ \int h \frac{\partial \psi}{\partial x} d\boldsymbol{x} \end{pmatrix}, \quad \boldsymbol{G} = -\begin{pmatrix} \gamma \boldsymbol{q} \\ \widetilde{\gamma} \beta \end{pmatrix}.
$$

KOD KARD KED KED BE YOUR

2 Reparametrize $\tilde{\varphi}$ via arc-length, to obtain $\bar{\varphi}$. **3** Project $\bar{\varphi}$ on the energy surface $E=E_0,$ to obtain $\varphi^{n+1}.$

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Example (16-mode topography)

We take the domain size as $L_x = 2\pi$, $L_y = \pi$. The parameters are chosen as $\beta = 1$, $E_0 = 10$. The friction coefficients are taken as $\gamma = \tilde{\gamma} = 4$.

KOD KARD KED KED BE YOUR

Metastable vorticity patterns and the pathways

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. \end{array}$ ă 290

Dynamics of streamlines and vorticity

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

Dynamics of streamlines and vorticity

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

[Methodology](#page-5-0)

Stochastic [ODE model](#page-8-0)

Stochastic [PDE model](#page-14-0)

[Conclusions](#page-24-0)

[Methodology](#page-5-0)

[Stochastic ODE model](#page-8-0)

Conclusion:

- [Motivation](#page-1-0)
- [Methodology](#page-5-0)
- **Stochastic** [ODE model](#page-8-0)
- **Stochastic** [PDE model](#page-14-0)
- **[Conclusions](#page-24-0)**

- Design SPDE models that are consitent with predictions of equilibrium statistical mechanics and can capture the noise-induced transition between different selective decay states (representing different climate regimes).
- Calculate the maximum likelihood path of large deviation theory by the string method to describe the transitions between different regimes in the small noise limit.
- Can be generalized to other models with different forcing and dissipation, including cases where statistical mechanics framework breaks down (nonequilibrium statistical steady states).
- Can be generalized to situations with weak damping and forcing (different order of limits than weak noise).