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AMG Transfers for Nonsymmetric Systems: 
Schur Complements & Galerkin  Projections 



• Mathematical understanding & framework for developing a new 

flexible algebraic multigrid platform 

– Classes of transfer algorithm strategies including for non-symmetric 

–  arbitrary coarsening,  flexible coarse basis function support,     .                     

accurate interpolation of  arbitrary important modes  

   

 .                     

• Schur complement / AMG connection 

• Schur complements & Galerkin projections 

• Choosing subspaces … 

• Iterative solution of Galerkin system 

• Practical aspects & numerical demonstration 

Goal 

Outline 



What is   Multigrid ? 

• Determine Pi & Ri’s coefs 

• Project: Ai = Ri Ai+1 Pi 

• Construct Graph & Coarsen 

Solve A3u3=f3 

Solve A1u1=f1 directly. 

Smooth A3u3=f3. Set f2 = R2r3. 

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2.  

Set u3 = u3 + P2u2.  Smooth A3u3=f3.  

P2       R2
 

P1       R1
 

• Determine Pi & Ri sparsity pattern  

Algebraic     

^ 



Idealized AMG 
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Galerkin    Schur Complement 

Consider 

                   AP = 0           &         R A = 0 

 

Solution  P = 0, R = 0 ! 
 

 

 

 

 

   (AP)f = 0   with Pc = I   
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Subspaces 

cheaper 

better 

fN

Assume we are given 

sparsity pattern        . 

                 

Define 
 

 

where 

                                 . 

Then 

 

                                         truncated Schur complement   
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Cheaper … but not yet better 

Recall 

 

and consider discretization of  uxx + uyy + .8 uy . 

 

Using uniform f/c splitting and standard Nf  ,then 

in Fourier space  (M-1 A) is 
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want  

    Al+1 v = S v   

for constant v 



Near Null Space Preservation 

Define 
 

 

 

where 

                          A B  0         and    Bl+1 injected from B 

                                 

Then                                

 

 

for same problem as before   
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Solving the Galerkin System 

Define                                                   where   

 
 

Then,        AP = 0                      

 

 

 

where Z is an ortho-normal basis for squeezed Z 

 

Richardson iteration: 
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Implicit  

Sparsity pattern constraint:    remove stray nnzs from C 

 

Near null space constraint: 

  

  B = const    

 

  General                            

 

 

 

• No need to “squeeze” matrices !! 

• Relatively inexpensive 

                  

 

 

 

where Z is an ortho-normal basis for squeezed Z 

 

Richardson iteration: 
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Costs 

 

 

 

 

Costs depend on  

– # of iterations, # of near null space constraints, sparsity pattern 

 

 

              Matrix-matrix multiply: A P 

           1  iteration         Remove nnzs beyond desired sparsity pattern 

              Force zero rowsums or apply  I – XT(X XT)-1X 
 

• Costs can be mitigated to give practical algorithms 

 

– Few iterations needed, e.g. Smoothed Aggregation 

– Amortization opportunities: init. guess,  reuse of X XT   

block 

diagonal 
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MueMat/ MueLu 

Solve Galerkin System 

via a couple of 

Richardson iterations 

MueLu 

• New algorithms 

• Variable block friendly 

• Tpetra/Kokkos 
multicore aware, templated types 

 



ice  fracture 

via  XFEM 

Flexibility/Irregular Sparsity Patterns 

unstructured    structured 

 
 
aggregates 

 

 

stretched 

mesh 



ice  fracture via  XFEM 

Results 

unstructured      structured 

stretched mesh 

mesh vblk hybrid Galerkin+ 

1 
crack 

30  30 24 22 11 

60  60 24 29 12 

90  90 40 37 18 

120  120 38 42 17 

6 
cracks 

30  30 89 81 16 

60  60 103 116 15 

90  90 134 143 17 

120  120 151 165 16 

domains Galerkin+ 

4  4 12 

8 8 11 

12  12 10 

16  16 10 



AAT   AMG results 

Transfer Op 
 

complexity 
400-1 800-1 1600-1 3200-1 

PA-AMG 44 58 80 106 1.143 

PG-AMG 26 40 58 80 1.217 

Galerkin(1,0.95) 30 43 59 80 1.181 

Galerkin(1,1.05) 30 41 58 78 1.186 

Galerkin(2,0.95) 28 39 53 72 1.181 

Galerkin(2,1.05) 27 37 52 71 1.186 

Galerkin(3,0.95) 26 36 50 66 1.181 

Galerkin(3,1.05) 25 35 48 65 1.186 

GMRES its for 10-7 residual reduction 

AMG Vcycles (3 GS, 3 GS) 

64  64 mesh 
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P = 0 

 Schur comp. P 

 truncated Schur comp. P  

 practical AMG P  
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Grid Transfers via Galerkin Projection & Iteration 

  

 
 

 Symmetric/Nonsymmetric 

 Broad algorithmic framework encompassed by software base 

 Reusability  

 Flexibility 

 coarsening 

 grid transfer sparsity patterns 

 mode preservation 

Conclusions 
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demonstrations 
 

 XFEM fracture 

 anisotropic elasticity 

 unstructured   structured 

 fluid flow 


