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Motivation and Objectives

Most dynamic physical processes:

I allow accurate ODE description at the micro-scale (e.g.
particle systems, discretization of PDEs);

I have many length scales ⇒ system of ODEs is very large;

I allow effective description;

I closed-form effective equations are often unknown.

Our objectives:

I Model effective behavior without solving microscale ODEs

I Develop fast and accurate numerical closures.
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Problem formulation

ODEs of Newtonian particle dynamics (MD, DPD,SPH)

q̇i = vi, miv̇i =
∑

j f ij + f
(ext)
i , i = 1, ...N .

N is very large - direct solution is not feasible.
Molecular Dynamics (MD):

f ij = ∇iφε(qi − qj), φε - potential with support on the order of ε

Smoothed Particle Hydrodynamics (SPH):

f ij = −
(
Pj

n2
j

+ Pi

n2
i

+ 1
2µ

vi−vj

ninj |qi−qj |2
(qi − qj)·

)
∇iwε(qi − qj)

wε is a smooth function with support on the order of ε.
ε is the microscopic length scale.
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Length scales

ε - microscopic length scale

L - macroscopic length scale

Condition for scale separation:
ε� L
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Dimension Reduction with Numerical Closure
(DRNC) Method

1. Choose a spatial
resolution scale
(meso-scale) η:

ε� η � L.

2. Choose primary
mesoscale variables
(e.g. density and
mesoscale velocity).

3. Derive mesoscale
balance equations. The
mesoscale equations
contain fluxes (e.g.
stress).

Fluxes are functions of microscale variables.5



Approach (continue)

4. Use a computational closure to calculate the fluxes
approximately.

5. Use deconvolution to approximately reconstruct microscale
variables (e.g. particle positions and velocities) from the
corresponding mesoscale variables (mesoscale density and
velocity).

6. Calculate non-local fluxes.

7. Discretize the mesoscale equations on the mesoscale mesh
and integrate with coarse time step.
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Defining mesoscale variables

Mesoscale density,

ρη(t,x) =
∑N

j=1mjψη(x− qj(t)),

Mesoscale momentum,

ρηvη(t,x) =
∑N

j=1mjvj(t)ψη(x− qj(t)).

Smooth (weighting) function ψη(x) decays fast as |x|η →∞ and:∫
ψη(x)dx = 1.

A possible choice for ψη is truncated Gaussian function.

7



Integral approximations of the mesoscale
variables

Density:

ρη ≈
∫

Ω ρ
ε(x′)ψη(x− x′)dx′,

Momentum:

ρηvη(x) ≈
∫

Ω ρ
ε(x′)v(x′)ψη(x− x′)dx′,
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Evolution equations for mesocale averages

Conservation of mass: ∂tρ
η + div(ρηvη) = 0.

Conservation of the linear momentum:

∂t(ρ
ηvη) + div(ρηvη ⊗ vη) = divT η +

∑N
i=1 f

(ext)
i ψη(x− qi)

The mesoscale stress T η = T η
(c) + T η

(int),

I convection component:

T η
(c)(t,x) = −

∑N
j=1 mj(v

η(x)−vj)⊗(vη(x)−vj)ψη(x−qj)

I interaction component:

T η
(int)(t,x) =∑

(j,k) f jk⊗ (qk−qj)
∫ 1

0
ψη
(
s(x− qk) + (1− s)(x− qj)

)
ds.

Murdoch and Bedeaux (1994)
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Reconstruction of a microscale variable f

Mesoscale variable f is defined by the convolution operator, Rη:

f(x) = Rη[f ](x) =
∫
ψη(x− y)f(y)dy,

Rη is compact ⇒ R−1
η is unbounded.

Deconvolution (recovering f from f ) is an unstable ill-posed
problem.

Deconvolution is the most studied ill-posed problem. Many
regularization methods are available in the literature: Tikhonov
regularization, iterative methods, reproducing kernel methods,
maximum entropy method, dynamical system approach etc.
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Regularized iterative deconvolution[1]

f(x) ≈ f (n)(x) =
∑n

k=0(I −Rη)k[f ], f0 = f ,

where,

Rη[f ](x) =
∫
ψη(x− y)f(y)dy.

and

I[f ](x) = f(x)

f (n) is used to calculate T η in the meso-scale momentum
conservation equation.

[1] M. M. Lavrentev, V. Romanov, and S. Shishatskij, Ill-posed
problems of mathematical physics and analysis, American
Mathematical Society, Providence, RI, 1980.11



Example 1: Poiseuille flow

Smoothed Particle Hydrodynamics (SPH) ODEs:

q̇i = vi, miv̇i =
∑

j f ij + f
(ext)
i .

i = 1, ..., 32768.

f ij = −
(
Pj

n2
j

+ Pi

n2
i

+
4µiµj
µi+µj

vi−vj

ninj |qi−qj |2
(qi − qj)

)
·∇iwε(qi − qj)

ρη = const, vη =?

If µi = µ, then SPH particles behave effectively as a
Newtonian fluid with viscosity µ.

L 
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Effect of the mesoscale length on the accuracy
of DRNC method
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Figure: vη vs y for different η.

Closure is based on the zero-order deconvolution.
vη is accurate as long as η/L < 0.1
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Example 2: Two-phase layered flow

I Fluid is non-newtonian on the scale η

I No effective closed-form description exist

SPH ODEs:

q̇i = vi, miv̇i =
∑

j f ij + f
(ext)
i , N = 32768

f ij = −
(
Pj

n2
j

+ Pi

n2
i

+
4µiµj
µi+µj

vi−vj

ninj |qi−qj |2
(qi − qj)

)
·∇iwε(qi − qj).

Pi = kBTni
1−ani

− bn2
i van der Waals EOS

ρη =? and vη =?

L 
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Example 2: Two-phase layered flow

Comparison of coarse and direct solutions of the SPH equations at
different dimensionless times
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Figure: The width of the layers d is: a) d = 0.75η; and b) d = 2η

The second-order deconvolution is used15



Example 3: Reactive transport and mineral
precipitation in porous media

Laboratory experiment. Parallel injection of two solutions containing
Ca2+ and CO2−

3 . Mineral layer of CaCO3 is formed as result of
reaction Ca2++ CO2−

3 
CaCO3(s). Zhang et al., ES&T, 2011
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I Existing closed-form effective models are not satisfactory
(WRR2008, JCH2010)

I Microscale (pore-scale) description is very expensive
(number of discretization points ≈ 24,000,000)
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Length scales

Micro-scale ε = 1× 10−5 m; meso-scale η = 5× 10−3 m; and
macro-scale L = 4× 10−2m.

L 





17



Microscale SPH ODEs equations

Momentum conservation equations:

q̇i = vi, miv̇i =
∑

j f ij + f
(ext)
i , i ∈ fluid.

Advection-Diffusion-Reaction equation:

dI
dt =

∑
j∈fluid

pij −Ri I = [Ca2+], [CO3−
2 ]

Surface evolution/mineral precipitation:

d(mCaCO3
)i

dt = m0Ri

Reaction term Ri = k
(

[Ca2+]i[CO
3−]i

Ksp
− 1
)∑

j
δij

pij = 1
mi

DI(mini+mjnj)(Ii−Ij)

ninj(ri−rj)2
(ri − rj) · ∇iW (ri − rj , h)

Tartakovsky et al., JCP 200618



Evolution equations for meso-scale variables

Equations for ρη and vη are defined as before.

Meso-scale concentration I, I=Ca2+, CO2−
3 and CaCO3(s):

I
η
(t,x) =

∑N
j=1

1
nj
Iiψη(x− qj(t)),

Meso-scale evolution (Advection-Dispersion) equation:

∂t(I
η
) + div(vηI

η
) = divJη −

∑N
i=1Riψη(x− qi), I=Ca2+, CO2−

3

The meso-scale flux Jη = Jη(ad) + Jη(dif),

I advection component:

Jη
(ad)(t,x) = −

∑N
j=1mj(v

η(x)− vj)(I
η
(x)− Ij)ψη(x− qj)

I diffusion component:

Jη
(dif)(t,x) =∑

(j,k) pjk(qk − qj)
∫ 1

0
ψη
(
s(x− qk) + (1− s)(x− qj)

)
ds.
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Evolution equations for meso-scale variables

Evolution equation for meso-scale calcite concentration:

∂t(I
η
) =

∑N
i=1Riψη(x− qi), I=CaCO3(s)
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Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =2.0 !

A 

B 

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).21



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =8.93 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).22



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =26.79 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).23



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =62.52 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).24



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =120.57 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).25



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =200.96 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).26



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =294.74 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).27



Results: Coarse solution with numerical
closure

A 

B C 

t
d
 =482.29 !

Parallel injection of two solutions containing A=Ca2+ and B=CO2−
3 .

Mineral layer of C=CaCO3 is formed as result of reaction Ca2++
CO2−

3 
CaCO3(s).28



Comparison of reconstructed microscale
variables with the exact solution.

Ca2+ 

CO
3
2- CaCO

3
 

t
d
 =27.5 ! t

d
 =223.3 ! t

d
 =1112.5 !

Figure: The first row - direct solution. The second row - reconstructed
variables.
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Conclusions

I We proposed a new dimension reduction method:
I Other methods based on numerical closures:

Equation Free Method of Yannis Kevrekidis (Princeton)
Heterogeneous Multiscale Method of Weinan E (Princeton)

I Advantages of DRNC method:
Meso-scale equations help to chose an optimal
deconvolution
Doesn’t require a micro-scale solver

I For highly heterogeneous systems we currently use
reconstruction based on short bursts of the corresponding
micro-scale solver, similar to EFM.

References: Tartakovsky et al., JCP 2011; Tartakovsky and Scheibe,
AWR 2011.
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