A fourth order accurate finite difference scheme for the elastic wave equation in second order $formula$ tion $¹$ </sup>

B. Sjögreen and N.A.Petersson

Lawrence Livermore National Laboratory

October 18, 2011

 1 Work performed under the auspices of the U.S. Department of Energ[y by](#page-0-0) [Law](#page-1-0)[rence](#page-0-0) [Li](#page-1-0)[verm](#page-0-0)[ore](#page-19-0) [Nati](#page-0-0)[ona](#page-19-0)[l](#page-0-0)
vatory under Contract DE-AC52-07NA27344. LLNL-PRES-505131. \longleftrightarrow and an analyzing and all and all and an all an Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-505131.

Computational seismology

 $\rho \mathbf{u}_{tt} = \text{div}\sigma + \mathbf{f}$

- \blacktriangleright **u** = **u**(x, y, z, t) displacement vector (**u** = (*u* v *w*)).
- \blacktriangleright $f = f(x, y, z, t)$ forcing = earthquake model
- \blacktriangleright stress tensor:

$$
\sigma = \begin{pmatrix} (2\mu + \lambda)u_x & \mu(u_y + v_x) & \mu(u_z + w_x) \\ \mu(u_y + v_x) & (2\mu + \lambda)v_y & \mu(v_z + w_y) \\ \mu(u_z + w_x) & \mu(v_z + w_y) & (2\mu + \lambda)w_z \end{pmatrix}
$$

 $\rho = \rho(x, y, z), \mu = \mu(x, y, z), \lambda = \lambda(x, y, z)$ mtrl. prop.

റെ ര

Domain and wave types

Computational domain

- \blacktriangleright Traction free boundary condition at surface.
- ► Pressure wave with speed $c_p = \sqrt{(2\mu + \lambda)/\rho}$.
- Shear wave with speed $c_s = \sqrt{\mu/\rho}$.
- ▶ Wave speed ratio $c_p/c_s > \sqrt{2}$.
- \triangleright Rayleigh waves on surface, slower than P- and S-waves.

Topography handled by curvilinear grid

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

 QQ

Grid refinement for depth varying wave speeds.

Resolution requirements

$$
h=\frac{\min c_s}{Pf}
$$

- \blacktriangleright Grid spacing h
- \blacktriangleright Points per shortest wavelength P
- \blacktriangleright Highest frequency f
- \triangleright Material shear wave speed c_s

Typical values: $f = 10$ Hz, $c_s = 300$ m/s, $P = 15$ (second order), $P = 7$ (fourth order), gives

$$
h = 2m \text{ (2nd order)} \quad h = 4.29m \text{ (4th order)}
$$

Domain size 200 km \rightarrow 100,000 pts/dimension (2nd) 46,620 (4th)

KORK ERKER ADE YOUR

Objective

KORK ERKER ADE YOUR

This work (new): 4th order accurate energy conserving method.

Previous work: 2nd order accurate energy conserving method. Extensions to

- \blacktriangleright Curvilinear grids
- \blacktriangleright Far field boundaries
- \blacktriangleright Mesh refinement
- \blacktriangleright Viscoelastic model

Energy conserving methods for the elastic wave equation

 E^n discrete energy at t_n , integral over space, conserved when $\mathbf{f} = \mathbf{0}$

$$
E^n=E^{n-1}=\ldots=E^0.
$$

Compatibility with norm, $c_1||u^n||_h \leq E^n \leq c_2||u^n||_h$ gives stability,

$$
||u^n||_h \leq E^n/c_1 = \ldots = E^0/c_1 \leq c_2/c_1||u^0||_h
$$

- Stability for inhomogeneous material, real b.c., any c_p/c_s .
- \triangleright Stable for long time integration
- \blacktriangleright Dissipation free
- \triangleright Robust code, no numerical parameters to tune, but must be careful to not introduce unresolved frequencies

Energy estimate gives long time stability

Standard stability gives convergence on $0 < t < T$ with T fixed.

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) Þ $2Q$

Example: Wave equation with mixed derivative term

$$
u_{tt} = (2au_x + au_y)_x + (au_x + 2au_y)_y, \quad (x, y) \in [0, 1]^2, \quad t > 0
$$

 $a = a(x, y) > 0$ variable coefficient. Boundary conditions:

$$
u = 0 \t\t at x = 0
$$

\n
$$
2u_x + u_y = 0 \t\t at x = 1
$$

\n
$$
u(x, y, t) = u(x, y + 1, t) \t\t (periodic in y)
$$

K ロ ▶ K 御 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단

Energy estimate

$$
\frac{1}{2}\frac{d}{dt}\left(||u_t||^2 + (u_x, au_x) + (u_x + u_y, a(u_x + u_y)) + (u_y, au_y)\right) = 0
$$

(Note: Non-negative terms give L^2 estimate) Derived by partial integration:

$$
\frac{1}{2} \frac{d}{dt} ||u_t||^2 = (u_t, u_{tt}) = \dots =
$$
\n
$$
-\frac{1}{2} \frac{d}{dt} ((u_x, 2au_x) + (u_x, au_y) + (u_y, au_x) + (u_y, 2au_y)) + B.\mathsf{T}
$$
\nEnergy terms: $(u_x, au_x) + (u_x + u_y, a(u_x + u_y)) + (u_y, au_y)$
\n $B.\mathsf{T} = u_t a (2u_x + u_y)|_{x=1} - u_t a (2u_x + u_y)|_{x=0}$ zero by b.c.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Discretization

Cartesian grid with constant spacing h. Centered finite difference operators

$$
\partial u(x_i)/\partial x \to D_0 u_i, \quad i=1,\ldots,N
$$

satisfying summation-by-parts

$$
(u, D_0v)_h = -(D_0u, v)_h + u_Nv_N - u_1v_1
$$

in a discrete, weighted, scalar product $(u, v)_h$. Further notation:

$$
D_{+}u_{i}=(u_{i+1}-u_{i})/h, \qquad D_{-}u_{i}=(u_{i}-u_{i-1})/h.
$$

In two dimensions: $D_0^{(x)}$ $\varrho^{(\times)}_0$ u $_{i,j}$ and $D^{(\gamma)}_0$ $0^{(y)} u_{i,j}$.

KORKAR KERKER E VOOR

Discretization

 $(au_y)_x \approx D_0^{(x)}$ $\int_0^{(x)} (aD_0^{(y)}u)$ and $(au_x)_x \approx D_0^{(x)}$ $\binom{(x)}{0}$ (a $D_0^{(x)}$ u) same energy estimate as for PDE possible, but

- \blacktriangleright Energy not positive definite, norm estimate not possible.
- Boundary condition $2u_x + u_y = 0$ implicit.

Second order method $(au_x)_x \approx D_+(a_{i-1/2}D_-u_i)$, where Energy estimate based on

$$
D_{+}(a_{j-1/2}D_{-}u_{j})=D_{0}(a_{j}D_{0}u_{j})-\frac{h^{2}}{4}D_{+}D_{-}(a_{j}D_{+}D_{-}u_{j}),
$$

Square completion with $x-y$ terms Keeps energy pos. def.

Use of ghost points, gives explicit discrete b.c. with no boundary modification of D_+D_- .

Fourth order accurate operator

$$
(au_x)_x \approx G(a, u)_j = D_0(a_jD_0u_j) + \frac{h^4}{18}D_+D_-D_+(a_{j-1/2}D_-D_+D_-u_j)
$$

$$
-\frac{h^6}{144}(D_+D_-)^2(a_j(D_+D_-)^2u_j) + \text{boundary modifications}
$$

- \triangleright G is five point wide operator away from the boundary.
- \triangleright D₀ SBP operator of order 4/2, needed for xy-derivatives.
- G also order 4/2. Boundary modified at $j = 1, \ldots, 6$.
- ▶ B.T.=0 in SBP is 4th order accurate b.c. \rightarrow 4th order error.
- ► Boundary modification of $(D_+D_-)^3$ gives first order errors that can be made to cancel first order errors of $D_0(aD_0u)$.
- \blacktriangleright Can expand $G(a,u)_j = \sum_{m=1}^8\sum_{k=1}^8 \beta_{j,k,m}$ a $_k$ u_m, $j=1,\ldots,6.$ Coefficient tensor β with 129 non-zero elements out of 384.

KORKAR KERKER E VOOR

G uses ghost points, D_0 does not.

4th order P-C time discretization gives energy conservation

Can prove time discrete energy conservation:

$$
E^{n+1/2} = E^{n-1/2}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Method stable (energy positive) for $CFL < 1.3$. No stiffness for high order.

Numerical examples

Elastic wave equation, 2D

$$
\rho u_{tt} = ((2\mu + \lambda)u_x)_x + (\lambda v_y)_x + (\mu v_x)_y + (\mu u_y)_y
$$

$$
\rho v_{tt} = (\mu v_x)_x + (\mu u_y)_x + (\lambda u_x)_y + ((2\mu + \lambda)v_y)_y
$$

 $0 < x < L_x$, $0 < y < L_y$, $t > 0$. Initial data: $u(x, y, 0)$ and $u_t(x, y, 0)$ given. Boundary data: y-periodic, with Dirichlet b.c. on $x = L_x$ and

$$
(2\mu + \lambda)u_x + \lambda v_y = 0 \qquad x = 0
$$

$$
\mu(v_x + u_y) = 0 \qquad x = 0
$$

KORK ERKER ADE YOUR

Energy test with random material

$$
\rho(x, y) = 4 + \theta
$$
 $\mu(x, y) = 2 + \theta$ $\lambda(x, y) = 2(r^2 - 2) + \theta$

Random variable $\theta \in [0,1]$. Approximate wave speed ratio $r = c_p/c_s$. Initial data also random numbers.

Energy change per time step. Total $> 220,000$ steps. c_p/c_s arbitrarily large. 4 8 9 4 5 4 5 4 5 4 5 4 5

 2990

Rayleigh waves

Surface waves at $x = 0$, solutions u_s traveling wave in y and decaying as e^{-ax} into the domain.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

 μ , λ , and ρ constant.

34 seconds vs. 54 hours CPU time

 $\mu = 0.001$, error 10^{-4} need 34 seconds with 4th order scheme, 54 hours with 2nd order scheme.

イロト 不優 ト 不重 ト 不重 トー

 \Rightarrow

 2990

Summary and future directions

- Ath order accurate non-dissipative difference scheme, L^2 norm stable with heterogeneous material and boundary conditions.
- \blacktriangleright 4th order in both space and time.
- \triangleright Significant savings in computational resources.
- In High order second derivative approximation of $(\mu(x)u_x)_x$, with norm stable boundary closure, useful in other applications.
- \triangleright To be implemented into the 3D WPP solver.
- \triangleright To be used in new solver for source and material inversion, using adjoint wave propagation.

Reference

[1] B. Sjögreen and N.A.Petersson, A fourth order finite difference scheme for the elastic wave equation in second order formulation, Lawrence Livermore National Laboratory, LLNL-JRNL-483427, (to appear in J.Scient.Comput.).4 D > 4 P + 4 B + 4 B + B + 9 Q O