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Computational seismology
ρutt = divσ + f

I u = u(x , y , z , t) displacement vector (u = (u v w)).
I f = f(x , y , z , t) forcing = earthquake model
I stress tensor:

σ =

(2µ+ λ)ux µ(uy + vx) µ(uz + wx)
µ(uy + vx) (2µ+ λ)vy µ(vz + wy )
µ(uz + wx) µ(vz + wy ) (2µ+ λ)wz


I ρ = ρ(x , y , z), µ = µ(x , y , z), λ = λ(x , y , z) mtrl. prop.



Domain and wave types

Computational domain

I Traction free boundary condition at surface.

I Pressure wave with speed cp =
√

(2µ+ λ)/ρ.

I Shear wave with speed cs =
√
µ/ρ.

I Wave speed ratio cp/cs >
√

2.

I Rayleigh waves on surface, slower than P- and S-waves.



Topography handled by curvilinear grid

Grid refinement for depth varying wave speeds.



Resolution requirements

h =
min cs

Pf

I Grid spacing h

I Points per shortest wavelength P

I Highest frequency f

I Material shear wave speed cs

Typical values: f = 10 Hz, cs = 300 m/s, P = 15 (second order),
P = 7 (fourth order), gives

h = 2m (2nd order) h = 4.29m (4th order)

Domain size 200 km → 100,000 pts/dimension (2nd) 46,620 (4th)



Objective

This work (new): 4th order accurate energy conserving method.

Previous work: 2nd order accurate energy conserving method.
Extensions to

I Curvilinear grids

I Far field boundaries

I Mesh refinement

I Viscoelastic model



Energy conserving methods for the elastic wave equation

En discrete energy at tn, integral over space, conserved when f = 0

En = En−1 = . . . = E 0.

Compatibility with norm, c1||un||h ≤ En ≤ c2||un||h gives stability,

||un||h ≤ En/c1 = . . . = E 0/c1 ≤ c2/c1||u0||h

I Stability for inhomogeneous material, real b.c., any cp/cs .

I Stable for long time integration

I Dissipation free

I Robust code, no numerical parameters to tune, but must be
careful to not introduce unresolved frequencies



Energy estimate gives long time stability

Standard stability gives convergence on 0 < t < T with T fixed.



Example: Wave equation with mixed derivative term

utt = (2aux + auy )x + (aux + 2auy )y , (x , y) ∈ [0, 1]2, t > 0

a = a(x , y) > 0 variable coefficient. Boundary conditions:

u = 0 at x = 0

2ux + uy = 0 at x = 1

u(x , y , t) = u(x , y + 1, t) (periodic in y)



Energy estimate

1

2

d

dt

(
||ut ||2 + (ux , aux) + (ux + uy , a(ux + uy )) + (uy , auy )

)
= 0

(Note: Non-negative terms give L2 estimate)
Derived by partial integration:

1

2

d

dt
||ut ||2 = (ut , utt) = . . . =

− 1

2

d

dt
((ux , 2aux) + (ux , auy ) + (uy , aux) + (uy , 2auy )) + B.T

Energy terms: (ux , aux) + (ux + uy , a(ux + uy )) + (uy , auy )
B.T . = uta(2ux + uy )|x=1 − uta(2ux + uy )|x=0 zero by b.c.



Discretization

Cartesian grid with constant spacing h.
Centered finite difference operators

∂u(xi )/∂x → D0ui , i = 1, . . . ,N

satisfying summation-by-parts

(u,D0v)h = −(D0u, v)h + uNvN − u1v1

in a discrete, weighted, scalar product (u, v)h. Further notation:

D+ui = (ui+1 − ui )/h, D−ui = (ui − ui−1)/h.

In two dimensions: D
(x)
0 ui ,j and D

(y)
0 ui ,j .



Discretization

(auy )x ≈ D
(x)
0 (aD

(y)
0 u) and (aux)x ≈ D

(x)
0 (aD

(x)
0 u) same energy

estimate as for PDE possible, but

I Energy not positive definite, norm estimate not possible.

I Boundary condition 2ux + uy = 0 implicit.

Second order method (aux)x ≈ D+(aj−1/2D−uj), where Energy
estimate based on

D+(aj−1/2D−uj) = D0(ajD0uj)− h2

4 D+D−(ajD+D−uj),

Square completion with x-y terms Keeps energy pos. def.

Use of ghost points, gives explicit discrete b.c. with no boundary
modification of D+D−.



Fourth order accurate operator

(aux)x ≈ G (a, u)j = D0(ajD0uj)+
h4

18
D+D−D+(aj−1/2D−D+D−uj)

− h6

144
(D+D−)2(aj(D+D−)2uj) + boundary modifications

I G is five point wide operator away from the boundary.

I D0 SBP operator of order 4/2, needed for xy -derivatives.

I G also order 4/2. Boundary modified at j = 1, . . . , 6.

I B.T.=0 in SBP is 4th order accurate b.c. → 4th order error.

I Boundary modification of (D+D−)3 gives first order errors
that can be made to cancel first order errors of D0(aD0u).

I Can expand G (a, u)j =
∑8

m=1

∑8
k=1 βj ,k,makum, j = 1, . . . , 6.

Coefficient tensor β with 129 non-zero elements out of 384.

I G uses ghost points, D0 does not.



4th order P-C time discretization gives energy conservation

Can prove time discrete energy conservation:

En+1/2 = En−1/2.

Method stable (energy positive) for CFL < 1.3. No stiffness for
high order.



Numerical examples

Elastic wave equation, 2D

ρutt = ((2µ+ λ)ux)x + (λvy )x + (µvx)y + (µuy )y

ρvtt = (µvx)x + (µuy )x + (λux)y + ((2µ+ λ)vy )y

0 < x < Lx , 0 < y < Ly , t > 0.
Initial data: u(x , y , 0) and ut(x , y , 0) given.
Boundary data: y -periodic, with Dirichlet b.c. on x = Lx and

(2µ+ λ)ux + λvy = 0 x = 0

µ(vx + uy ) = 0 x = 0



Energy test with random material

ρ(x , y) = 4 + θ µ(x , y) = 2 + θ λ(x , y) = 2(r2 − 2) + θ

Random variable θ ∈ [0, 1]. Approximate wave speed ratio
r = cp/cs . Initial data also random numbers.

Energy change per time step. Total > 220, 000 steps.
cp/cs arbitrarily large.



Rayleigh waves

Surface waves at x = 0, solutions us traveling wave in y and
decaying as e−ax into the domain.

µ, λ, and ρ constant.



34 seconds vs. 54 hours CPU time

Error vs. CPU time

µ = 0.001, error 10−4 need 34 seconds with 4th order scheme, 54
hours with 2nd order scheme.



Rayleigh waves



Summary and future directions

I 4th order accurate non-dissipative difference scheme, L2 norm
stable with heterogeneous material and boundary conditions.

I 4th order in both space and time.

I Significant savings in computational resources.

I High order second derivative approximation of (µ(x)ux)x , with
norm stable boundary closure, useful in other applications.

I To be implemented into the 3D WPP solver.

I To be used in new solver for source and material inversion,
using adjoint wave propagation.
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