
A new MINLP Solver

Ashutosh Mahajan and Team Minotaur

Mathematics and Computer Science Division
Argonne National Laboratory

2011 DOE Applied Mathematics Program Meeting
Washington, DC

October 18, 2011.

1 / 58

2 / 58

Introduction

Mixed-Integer Nonlinear Optimization

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, (MINLP)

x ∈ Zp × Rn−p,

where f , gi : Rn → R, i = 1, 2, . . . ,m.

When f is a convex quadratic function and gi are linear, – Convex MIQP.

If f , gi are convex and twice differentiable, – Convex MINLP.

If p = 0, – Global Optimization.

In general, f , gi may be black-box, non-differentiable functions.
For this talk, we assume f , gi are

twice differentiable at points of interest, and,
“factorable”.

3 / 58

Introduction

Mixed-Integer Nonlinear Optimization

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, (MINLP)

x ∈ Zp × Rn−p,

where f , gi : Rn → R, i = 1, 2, . . . ,m.

When f is a convex quadratic function and gi are linear, – Convex MIQP.

If f , gi are convex and twice differentiable, – Convex MINLP.

If p = 0, – Global Optimization.

In general, f , gi may be black-box, non-differentiable functions.
For this talk, we assume f , gi are

twice differentiable at points of interest, and,
“factorable”.

4 / 58

MINLP Applications
Power Transmission

Optimal Power Flow
Network Expansion
Contingency Analysis

5 / 58

MINLP Applications
Power Transmission

Optimal Power Flow
Network Expansion
Contingency Analysis

Power Generation
Nuclear Core Reloading
Design of Cogeneration Plants

source: Terlaky et al., 1994

6 / 58

MINLP Applications
Power Transmission

Optimal Power Flow
Network Expansion
Contingency Analysis

Power Generation
Nuclear Core Reloading
Design of Cogeneration Plants

Chemical Reactors
Design and Redesign
Blending and Pooling

source: Terlaky et al., 1994

7 / 58

MINLP Applications
Power Transmission

Optimal Power Flow
Network Expansion
Contingency Analysis

Power Generation
Nuclear Core Reloading
Design of Cogeneration Plants

Chemical Reactors
Design and Redesign
Blending and Pooling

Infrastructure
Water Distribution
Concrete Buildings
Open-Pit Mining
Wireless Networks

Biology, Logistics, Finance, . . .

source: Terlaky et al., 1994

8 / 58

MINOTAUR Toolkit

Mixed
I nteger
Nonlinear
Optimization
T oolkit:
A lgorithms,
Underestimators,
R elaxations.

Goals:

Fast, usable MINLP solvers.

Callable library for use in applications.

Ease of developing new algorithms.
The Story So Far

1 Implemented 4 solvers.
2 > 49k lines of code excluding unit tests and examples.
3 > 26k cpu-hours of testing.

9 / 58

Features
Bonmin FilMINT BARON Couenne Minotaur

Algorithms:
NLP B&B X × × × X
Quesada-Grossmann X X × × X
Branch-and-Reduce × × X X X

Support for Nonlinear Functions:
Parse Comp. Graph × × X X X
Nonlinear Reform. × × × × X
Native Derivat. × × × × X

Interfaces:
AIMMS × × X × ×
AMPL X X × X X
GAMS X × X X ×

Open Source X × × X X

10 / 58

Features
Bonmin FilMINT BARON Couenne Minotaur

Algorithms:
NLP B&B X × × × X
Quesada-Grossmann X X × × X
Branch-and-Reduce × × X X X

Support for Nonlinear Functions:
Parse Comp. Graph × × X X X
Nonlinear Reform. × × × × X
Native Derivat. × × × × X

Interfaces:
AIMMS × × X × ×
AMPL X X × X X
GAMS X × X X ×

Open Source X × × X X

11 / 58

Features
Bonmin FilMINT BARON Couenne Minotaur

Algorithms:
NLP B&B X × × × X
Quesada-Grossmann X X × × X
Branch-and-Reduce × × X X X

Support for Nonlinear Functions:
Parse Comp. Graph × × X X X
Nonlinear Reform. × × × × X
Native Derivat. × × × × X

Interfaces:
AIMMS × × X × ×
AMPL X X × X X
GAMS X × X X ×

Open Source X × × X X

12 / 58

Features
Bonmin FilMINT BARON Couenne Minotaur

Algorithms:
NLP B&B X × × × X
Quesada-Grossmann X X × × X
Branch-and-Reduce × × X X X

Support for Nonlinear Functions:
Parse Comp. Graph × × X X X
Nonlinear Reform. × × × × X
Native Derivat. × × × × X

Interfaces:
AIMMS × × X × ×
AMPL X X × X X
GAMS X × X X ×

Open Source X × × X X

13 / 58

Basic Algorithm: Branch-and-Bound
RELAX

BOUND

BRANCH

REPEAT

14 / 58

Basic Algorithm: Branch-and-Bound
RELAX

Relax integrality restrictions.
Relax nonconvex constraints.

Linear: Secant approx., McCormick approx., . . . , BARON, Couenne.
Quadratic: α−BB.
. . .

BOUND

BRANCH

REPEAT

15 / 58

Basic Algorithm: Branch-and-Bound
RELAX

Relax integrality restrictions.
Relax nonconvex constraints.

Linear: Secant approx., McCormick approx., . . . , BARON, Couenne.
Quadratic: α−BB.
. . .

BOUND

Solve using an LP, QP, NLP or SDP solver. Obtain a lower bound.

BRANCH

REPEAT

16 / 58

Basic Algorithm: Branch-and-Bound
RELAX

Relax integrality restrictions.
Relax nonconvex constraints.

Linear: Secant approx., McCormick approx., . . . , BARON, Couenne.
Quadratic: α−BB.
. . .

BOUND

Solve using an LP, QP, NLP or SDP solver. Obtain a lower bound.

BRANCH

If solution of relaxation satisfies (MINLP), update ub,

Otherwise, partition the feasible region into two (or more) parts.

REPEAT

17 / 58

Basic Algorithm: Branch-and-Bound
RELAX

Relax integrality restrictions.
Relax nonconvex constraints.

Linear: Secant approx., McCormick approx., . . . , BARON, Couenne.
Quadratic: α−BB.
. . .

BOUND

Solve using an LP, QP, NLP or SDP solver. Obtain a lower bound.

BRANCH

If solution of relaxation satisfies (MINLP), update ub,

Otherwise, partition the feasible region into two (or more) parts.

REPEAT

Repeat RELAX-BOUND-BRANCH on each part recursively,

until ub−lb
|ub| ≤ ε for a given ε ∈ R.

18 / 58

Four Main Components of Toolkit
Interfaces for reading input

AMPL

Engines to solve LP/NLP/QP

Bqpd

Filter-SQP

Ipopt

OSI-CLP

Algorithms to solve MINLP

Branch-and-Bound

Outer-Approximation

Quesada-Grossmann

Branch-and-Reduce

Base
Data Structures:

Problem
Constraints
Objective
Functions
Modifications
Gradient, Hessian, Jacobian

Tools for Search:
Node Processors
Node Relaxers
Branchers
Tree Manager

Utilities:
Loggers
Options
Timers

19 / 58

Four Main Components of Toolkit
Interfaces for reading input

AMPL

Your Interface Here
Engines to solve LP/NLP/QP

Bqpd

Filter-SQP

Ipopt

OSI-CLP

Your engine here

Algorithms to solve MINLP

Branch-and-Bound

Outer-Approximation

Quesada-Grossmann

Branch-and-Reduce

Your algorithm here

Base
Your Data Structures:

Problem
Constraints
Objective
Functions
Modifications
Gradient, Hessian, Jacobian

Your Tools for Search:
Node Processors
Node Relaxers
Branchers
Tree Manager

Utilities:
Loggers
Options
Timers

Highly Customizable
20 / 58

Handlers

Above constructs are independent of type of problem.

Handlers implement (type specific) above methods.

Popular in constraint-programming, SCIP.
Examples:

LinearHandler
BilinearHandler
QuadraticHandler
MultilinearHandler
. . .

Handlers contain type specific methods to:
Presolve, reformulate and relax a problem.
Check feasibility of a given point.
Separate or cut a given point.
Find a branching candidate.

21 / 58

Handlers

Above constructs are independent of type of problem.

Handlers implement (type specific) above methods.

Popular in constraint-programming, SCIP.
Examples:

LinearHandler
BilinearHandler
QuadraticHandler
MultilinearHandler
. . .
Your application specific Handler

Handlers contain type specific methods to:
Presolve, reformulate and relax a problem.
Check feasibility of a given point.
Separate or cut a given point.
Find a branching candidate.

22 / 58

Example of a Handler

How to write a convex NLP Branch-and-Bound solver with Minotaur.

RELAX

BOUND

BRANCH

REPEAT

23 / 58

Example of a Handler

How to write a convex NLP Branch-and-Bound solver with Minotaur.

RELAX
min

x
f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, →
x ∈ Zp × Rn−p,

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

x∈ Rn.

BOUND

BRANCH

REPEAT

24 / 58

Example of a Handler

How to write a convex NLP Branch-and-Bound solver with Minotaur.

RELAX
min

x
f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, →
x ∈ Zp × Rn−p,

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

x∈ Rn.

BOUND

Solve using an NLP solver. Obtain a lower bound, say f (xNLP).

BRANCH

REPEAT

25 / 58

Example of a Handler

How to write a convex NLP Branch-and-Bound solver with Minotaur.

RELAX
min

x
f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, →
x ∈ Zp × Rn−p,

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

x∈ Rn.

BOUND

Solve using an NLP solver. Obtain a lower bound, say f (xNLP).

BRANCH

If xNLP integer feasible, update ub.

Otherwise partition: xi ≤ bxNLP
i c ∨ xi ≥ dxNLP

i e.
REPEAT

26 / 58

Example of a Handler

How to write a convex NLP Branch-and-Bound solver with Minotaur.

RELAX
min

x
f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, →
x ∈ Zp × Rn−p,

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

x∈ Rn.

BOUND

Solve using an NLP solver. Obtain a lower bound, say f (xNLP).

BRANCH

If xNLP integer feasible, update ub.

Otherwise partition: xi ≤ bxNLP
i c ∨ xi ≥ dxNLP

i e.
REPEAT

Repeat RELAX-BOUND-BRANCH on each part recursively,

until ub−lb
|ub| ≤ ε for a given ε ∈ R.

27 / 58

Example of a Handler
How to write a convex NLP Branch-and-Bound solver with Minotaur.

Node Relaxer

Do nothing!

Node Processor
Solve Relaxn.

lb ≥ ub?

Is Feasible?

Return

Branch

Update ub
Return

yes

no
yes

no

Brancher

Pick a
fractional variable.

Use Minotaur::IntVarHandler for all three

28 / 58

Example of a Handler
How to write a convex NLP Branch-and-Bound solver with Minotaur.

Node Relaxer

Do nothing!

Node Processor
Solve Relaxn.

lb ≥ ub?

Is Feasible?

Return

Branch

Update ub
Return

yes

no
yes

no

Brancher

Pick a
fractional variable.

Use Minotaur::IntVarHandler for all three
relax() {
// empty
}

bool isFeasible() {
// test integrality
}

cand* findBrCandidates() {
// return fractional variables
}
branch(cand) {
// return modifications
}

29 / 58

Example of a Handler
How to write a convex NLP Branch-and-Bound solver with Minotaur.

Node Relaxer

Do nothing!

Node Processor
Solve Relaxn.

lb ≥ ub?

Is Feasible?

Return

Branch

Update ub
Return

yes

no
yes

no

Brancher

Pick a
fractional variable.

Use Minotaur::IntVarHandler for all three
Solver in < 200 lines:

Read instance. Load Engine.

Create IntVarHandler.

Load it to NodeProcessor, Brancher, NodeRelaxer.

Solve.
30 / 58

Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024 4096

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Normalized Time

Minotaur

Bonmin

MINLP-BB

Time taken for 463 MINLP Instances from GAMS, MacMINLP, CMU test-sets.

31 / 58

PART - II
Reformulating MINLPs

32 / 58

Basic Algorithm: Branch-and-Bound
RELAX

Relax integrality restrictions.
Relax nonconvex constraints.

Linear: Secant approx., McCormick approx., . . . , BARON, Couenne.
Quadratic: α−BB.
. . .

BOUND

Solve using an LP, QP, NLP or SDP solver. Obtain a lower bound.

BRANCH

If solution of relaxation satisfies (MINLP), update ub,

Otherwise, partition the feasible region into two (or more) parts.

REPEAT

Repeat RELAX-BOUND-BRANCH on each part recursively,

until ub−lb
|ub| ≤ ε for a given ε ∈ R.

33 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

34 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

250+ nodes after solving for 45s

35 / 58

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

250+ nodes after solving for 45s

36 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

250+ nodes after solving for 45s

37 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

250+ nodes after solving for 45s

38 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

39 / 58

What Could Go Wrong

Syn20M04M : a synthesis design problem in
chemical engineering

Problem size : 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

250+ nodes after solving for 45s

Solver Time Nodes
Bonmin >2h >149k
MINLP-BB >2h >150k
Minotaur >2h >264k

40 / 58

Improving Coefficients: An Example
(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

41 / 58

Improving Coefficients: An Example
(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

42 / 58

Improving Coefficients: An Example
(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

43 / 58

Improving Coefficients: An Example
(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

Reformulation:
(2) x1 + 5x2 ≤ 14

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 14

(2) is tight.

If x2 = 1

x1 ≤ 9

(2) is tight.

(1) and (2) are equivalent. But relaxation of (2) is tighter.
44 / 58

Improving Coefficients: Linear to Nonlinear

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.

If g(x1, x2, . . . , xk) + M.0 ≤ b, is loose, we can tighten the formulation.

Let gu =max
x

g(x1, . . . , xk) (MAX-g)

s.t. li ≤ xi ≤ ui, i = 1, . . . , k.

If gu < b, then reformulate it as g(x1, . . . , xk) + (M − b + gu)y ≤ gu.
In general (MAX-g) is as difficult a problem as the original MINLP.
An upper bound on (MAX-g) will also tighten it somewhat.
Trade-off between time and quality of bound. Fast or Tight.

45 / 58

Improving Coefficients: Linear to Nonlinear

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.

If g(x1, x2, . . . , xk) + M.0 ≤ b, is loose, we can tighten the formulation.

Let gu =max
x

g(x1, . . . , xk) (MAX-g)

s.t. li ≤ xi ≤ ui, i = 1, . . . , k.

If gu < b, then reformulate it as g(x1, . . . , xk) + (M − b + gu)y ≤ gu.

In general (MAX-g) is as difficult a problem as the original MINLP.
An upper bound on (MAX-g) will also tighten it somewhat.
Trade-off between time and quality of bound. Fast or Tight.

46 / 58

Improving Coefficients: Linear to Nonlinear

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.

If g(x1, x2, . . . , xk) + M.0 ≤ b, is loose, we can tighten the formulation.

Let gu =max
x

g(x1, . . . , xk) (MAX-g)

s.t. li ≤ xi ≤ ui, i = 1, . . . , k.

If gu < b, then reformulate it as g(x1, . . . , xk) + (M − b + gu)y ≤ gu.
In general (MAX-g) is as difficult a problem as the original MINLP.
An upper bound on (MAX-g) will also tighten it somewhat.
Trade-off between time and quality of bound. Fast or Tight.

47 / 58

Improving Coefficients: Using Implications

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.
Often, y, xi also occur in other constraints of MINLP. e.g.

g(x1, x2, . . . , xk)−My ≤ b

0 ≤ x1 ≤ M1y

0 ≤ x2 ≤ M2y

. . .

y ∈ {0, 1}

y = 0⇒ x1 = x2, . . . = xk = 0. (Implications)
If g(0, . . . , 0) < b, then we can tighten.
No need to solve (MAX-g). Fast and Tight.

48 / 58

Improving Coefficients: Using Implications

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.
Often, y, xi also occur in other constraints of MINLP. e.g.

g(x1, x2, . . . , xk)−My ≤ b

0 ≤ x1 ≤ M1y

0 ≤ x2 ≤ M2y

. . .

y ∈ {0, 1}

y = 0⇒ x1 = x2, . . . = xk = 0. (Implications)
If g(0, . . . , 0) < b, then we can tighten.

No need to solve (MAX-g). Fast and Tight.

49 / 58

Improving Coefficients: Using Implications

g(x1, x2, . . . , xk) + My ≤ b,

li ≤ xi ≤ ui, i = 1, . . . , k,

y ∈ {0, 1}.
Often, y, xi also occur in other constraints of MINLP. e.g.

g(x1, x2, . . . , xk)−My ≤ b

0 ≤ x1 ≤ M1y

0 ≤ x2 ≤ M2y

. . .

y ∈ {0, 1}

y = 0⇒ x1 = x2, . . . = xk = 0. (Implications)
If g(0, . . . , 0) < b, then we can tighten.
No need to solve (MAX-g). Fast and Tight.

50 / 58

Just one of Presolve Methods

Advanced functions of presolve (Reformulating):

Improve coefficients.

Disaggregate constraints.

Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Popular in Mixed-Integer Linear Optimization (Savelsbergh, 1994).

51 / 58

Presolve: Computational Results
Syn20M04M from egon.cheme.cmu.edu

No Presolve

Basic Presolve Full Presolve

Variables: 420

328 292

Binary Vars: 160

144 144

Constraints: 1052

718 610

Nonlin. Constr: 56

56 56

Bonmin(sec): >7200

NA NA

Minotaur(sec): >7200

>7200 2.3

52 / 58

Presolve: Computational Results
Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve

Full Presolve

Variables: 420 328

292

Binary Vars: 160 144

144

Constraints: 1052 718

610

Nonlin. Constr: 56 56

56

Bonmin(sec): >7200 NA

NA

Minotaur(sec): >7200 >7200

2.3

53 / 58

Presolve: Computational Results
Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve Full Presolve
Variables: 420 328 292
Binary Vars: 160 144 144
Constraints: 1052 718 610
Nonlin. Constr: 56 56 56
Bonmin(sec): >7200 NA NA
Minotaur(sec): >7200 >7200 2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s
Full Presolve

54 / 58

Presolve

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Normalized Time

with presolve
without presolve

Time taken in Branch-and-Bound on all 463 instances.

55 / 58

Presolve

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Normalized Time

Minotaur with presolve
Minotaur without presolve

Bonmin

Time taken in Branch-and-Bound on 96 RSyn-X and Syn-X instances.

56 / 58

Closing Remarks and Future Directions

There are several important applications of MINLP.

This class of problems offer variety of challenges. Exciting times ahead!

Both theory and computation.
Many, many improvements required in several aspects:

Tackling non-convexity
Reformulating
Relaxing
Solving and re-solving relaxations
Branching
Heuristics
Representation, evaluation and derivatives of nonlinear functions

Minotaur will be available soon at
http://www.mcs.anl.gov/minotaur

57 / 58

http://www.mcs.anl.gov/minotaur

A new MINLP Solver

Ashutosh Mahajan and Team Minotaur

Mathematics and Computer Science Division
Argonne National Laboratory

2011 DOE Applied Mathematics Program Meeting
Washington, DC

October 18, 2011.

58 / 58

