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Overview

Introduction to probability density function methods and their application to a
simple stochastic advection problem.

Hopf characteristic functional approach to nonlocal problems (e.g. diffusion
problems) and derivation of differential constraints for the probability density
function associated with the stochastic solution.

Differential constraints for the probability density function of the wave
equation and other PDEs subject to random boundary conditions, random
initial conditions and random forcing terms.

Classification of differential constraints: differential constraints depending on the
specific stochastic field equation under consideration and intrinsic constraints
depending only on the structure of the joint probability density function.

Analytical verification of some differential constraints for random waves in a
one-dimensional spatial domain.

Brief discussion on the completeness of a set of differential constraints.



Functional integral representation of the probability density
function associated with the solution to stochastic PDEs

In order to fix ideas, let us consider the nonlinear advection-diffusion problem
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The probability density function of the random variable ¥(z,%;w), i.e. the stochastic
solution at (z,t) , admits the following integral representation
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The integrals are formally from —oo to o© although the joint PDF may be compactly
supported. If N — oo we obtain the functional integral representation
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Simple operations involving the probability density function

The Dirac delta function formalism allows us to perform various types of operations on the
probability density function in a practical way. For instance,
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A. Khuri, “Applications of Dirac's delta function in statistics”, Int. J. Math. Edu. Sci. Tech. 35(2), 2004.



Nonlinear advection problem

Let us consider a prototype nonlinear advection problem with a random forcing term,
random initial condition and periodic boundary conditions

Gaussian random variable

oy o 1 v

N 4 @b% :1 §§(w) sin(x)sin(20t), «x€[0,2x], t>0
| L2, 0:0) = £ sin(z) + n(w)
\Periodic B.C. \

Gaussian random variable

The joint response-excitation probability density function for this system has the
following integral representation
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Nonlinear advection problem in probability space
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Therefore, the joint response-excitation PDF associated with the solution to the
nonlinear advection problem satisfies
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Once the response-excitation PDF is available we can compute the response probability
of the system and the statistical moments of the solution as
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Snapshots of the response probability density function

© D. Venturi and G. E. Karniadakis, "New evolution equations for the joint response-excitation
probability density function of stochastic solutions to first-order nonlinear PDEs”, JCP, 2011 (Submitted)



Mean and variance of the stochastic solution
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A Comparsion between ME-PCM and PDF method

PCM versus PDF
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The response PDF tends to split in two
parts after time t=0.5. A global Gauss-
Hermite probabilistic collocation method
does not accurately capture the response
statistics.
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ME-PCM versus PDF
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PCM: 50 Gauss-Hermite points (50x50
collocation points)

ME-PCM: 10 elements of order 10
(100x100 collocation points)



Some remarks

O In general, the computation of the statistical properties associated with the
solution to a stochastic PDE subject to high-dimensional forcing, random
boundary conditions or random initial conditions is a challenging problem.

O standard stochastic approaches such as ME-PCM, sparse grid adaptive stochastic
collocation or generalized spectral decompositions cannot generally overcome
the curse of dimensionality.

O By using a PDF method, we have shown that first-order quasi-linear stochastic
problems can be transformed into equivalent problems involving the joint
response-excitation probability density function.

Is it possible to extend this method to arbitrary stochastic PDEs?

O Unfortunately, higher-order equations such as the advection-diffusion
eqguation or the wave equation, do not admit a closed equation for the one-
point probability density function associated with the stochastic solution.

O Therefore we are led to investigate the possibility to formulate an evolution
problem for the probability density function in terms of a proper set of
differential constraints.



A simple evolution equation yielding to nonlocal solutions

Let us consider a one-dimensional diffusion problem subject to random initial
conditions of arbitrary dimensionality
O 0%1)
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The analytical solution can expressed in terms of Green functions as
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In this case computation of the statistical properties of the solution at a specific
space-time location involves the full probability density functional of the initial
condition g .

In other words, when we try to advance in time the diffusion problem, we see that
the PDF of the solution ¥ at a specific space location depends on the joint
probability of the solution at all spatial locations in the previous time step.

This suggests that the PDF of the solution of the diffusion problem do not satisfy a
point-wise equation. It does satisfy, however, a functional differential equation.



Hopf characteristic functional approach

The full statistical information of the solution to the diffusion problem is encoded in
the Hopf characteristic functional
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An evolution equation for F[8] can be easily determined by using functional
derivatives techniques, e.g.
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This functional differential equation holds for every test field ((z,%) and it cannot be
reduced, in general, to a standard PDE for the one-point characteristic function or the PDF
of the solution. Note that the structure of the functional differential equation is the same as

the heat equation.



Differential constraints arising from the Hopf equation

We can equivalently consider the joint Hopf characteristic functional of ¥ and ¥,
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These equations hold for arbitrary test fields 5(X, 7)and 7(X, 7). In particular, they hold
for
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which can be expressed in terms a differential constraint involving the joint characteristic
function or, equivalently, the joint probability density function
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Differential constraints arising from the Hopf equation (2)

The result is
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This differential constraint has to be satisfied by the joint probability density function
associated with every solution to the heat equation.

It does not allow to determine uniquely the joint probability density of ¥ and ..

The joint probability density function of ¥ and v, satisfies also additional

differential constraints which will be obtained hereafter for the prototype problem of
a 1D wave equation.

In order to determine these differential constraints we can use a more direct

functional integral method which can be shown to be completely equivalent to the
Hopf characteristic functional approach just illustrated.

By evaluating the Hopf functional differential equation for test fields that are different

from Dirac deltas we obtain other types of partial differential equations for the joint
PDF.



Wave equation subject to random boundary conditions
and random initial conditions

Let us consider the prototype problem of a one-dimensional wave equation subject to
random boundary conditions or random initial conditions of arbitrary dimensionality
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We define

!/ def 8_?7b

Y(x, t;w) = — (2t w) v, = 5 (2", t"; w)

and look for an evolution equation governing the joint probability density function
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The average (-) is defined as a functional integral with respect to the joint probability
functional of the random |n|t|nl(rgm)d|t|on and the random boundary conditions. In
order obtain an equation for Pyy/y we differentiate it with respect to different
independent variables and try to build up the wave equation within the average.

O D. Venturi and G. E. Karniadakis, *'Differential constraints for the probability density function of stochastic
solutions to the wave equation”, Int. J. for Uncertainty Quantification, 2011



Differential constraints depending on the wave equation (1)
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As before, this identity has to be satisfied by the joint PDF of every solution to the
wave equation and it involves unusual partial differential operators which we shall
call limit partial derivatives. For subsequent mathematical developments it is
convenient to reserve a special symbol for these operators, i.e. we shall define
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This allows us to write the differential constraint in a PDE-like form
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Differential constraints depending on the wave equation (2)

We can formulate another differential constraint depending on the wave equation. To
this end, let us consider again the joint PDF
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Combining these two results and taking the wave equation into account yields the
differential constraint
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Thanks to a set of additional differential constraints arising form the structure of the
probability density function it can be shown that this constraint is equivalent to the
one involving second order limit partial derivatives (previous slide).



An equation for the response probability density

If we integrate the differential constraint
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with respect to b and ¢ we obtain the evolution equation for the response
probability density, i.e., the probability density of the random wave (0
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This equation is not closed. Thus, in order to compute pgb@ we need a closure

approximation of the two averages above. This approximation can be constructed, e.g.,
by expanding the two averages in a functional power series.

O G. N. Bochkov, A. A. Dubkov and A. N. Malakhov, **Structure of the correlation dependence of nonlinear stochastic
functionals”, Radiophysics and Quantum Electronics, 20(3), pp. 276-280, 1977.

° . Chen, S. Chen and R. H. Kraichnan, “"Probability distribution of a stochastically advected scalar field”,

Phys. Rev. Lett., 63, pp. 2657-2660, 1989.

O D. M. Tartakovsky and S. Broyda, ~'PDF equations for advective-reactive transport in heterogeneous porous
media with uncertain properties”, J. Contam. Hydrol., vol. 120-121, pp. 129-140, 2011



Intrinsic constraints depending on the structure of the joint PDF

The fields appearing in the joint density are, in general, related to each other. For instance,
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If ) isanalytic in ¢ and x then an infinite number of intrinsic differential constraints
(depending only on the structure of the joint PDF) can be formulated.



A summary of differential constraints involving the joint PDF

We summarize here some differential constraints we have obtained so far
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Numerical issues in the simulation of a boundary value problem for
the joint response-excitation PDF

The support of the joint response excitation probability density may be a compact set.

Deterministic boundary and initial conditions are associated with Dirac delta functions

in probability space. The numerical simulation of an equation involving Dirac delta
function is a challenging problem.

O The boundary conditions and the initial conditions for the joint response-excitation
density are nonlocal. This means that if we need to set, e.g. a Dirichlet boundary
condition in physical space, then the corresponding condition in probability space is

set for
(a,b,c)
Py = / / Py dbelc

O The joint response excitation density could be a discontinuous function.



An analytical example - waves in 1D infinite domains

Consider the boundary value problem
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The solution is the well-known d’Alambert wave

W(z, tw) ng ) [, (z + Ut) + hy (x — Ut)]

The joint probability of %, 1; and ¢, can be obtained by using the mapping approach

a,b,c
{617627§3} pélfQ&:z

&i(z, t, 2’ ¢, 2"t a,b,¢)
3D Linear transformation l l Jacobian /

/EN/A PN (a,b,c) 1 (a1 & ,G3)
{¢a¢ta¢x} Poppraprr = |J| Pe,g,es



Snapshots of the response probability density function
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An analytical verification of a simple differential constraint

Let us show that the joint PDF of the random wave satisfies
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O D. Venturi and G. E. Karniadakis, *'Differential constraints for the probability density function of stochastic
solutions to the wave equation”, Int. J. for Uncertainty Quantification, 2011



Is the set of differential constraints complete?

The differential constraints we have obtained are identically satisfied by the joint

probability density function associated with the solution to the stochastic wave equation.
At this point we pose the fundamental question:

-
Is it possible to compute the probability density function of the

wave as the solution to a suitable set of differential constraints?
L How many of them do we need in order to have a complete system?

J

O It can be shown that a boundary value problem involving only one constraint is ill-
posed, i.e., it admits an infinite number of solutions.
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O In the next slide we show that the set of constraints involving limit partial derivatives

of first-order with respect to all variables is complete for first-order nonlinear
stochastic PDEs .

O tis still an open question if the set of first-order differential constraints is complete
for higher-order nonlinear stochastic PDEs.



A complete set of first-order differential constraints
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The full set of first-order differential constraints is
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This is the closed and exact evolution equation for the joint PDF of the system




Conclusions

First-order nonlinear and quasi-linear scalar stochastic PDEs always admit a
reformulation in terms of a linear evolution equation involving the one-point
probability density function. Such equation can be solved efficiently using methods for
high-dimensional problems such as sparse grid or proper generalized decomposition.
Furthermore, if randomness come only from boundary or initial conditions then a PDF
method can overcome the curse of dimensionality problem.

However, higher-order stochastic PDEs such as the wave equation do not admit, in
general, a corresponding closed evolution equation for the PDF associated with the
solution at a specific space-time location. In these cases one can resort to closure
approximations or even try to solve numerically the Hopf functional differential
equation for the probability density functional of the solution.

In this talk we have developed a new methodology that allows us to obtain a set of
differential constraints satisfied by the PDF associated with the solution to a stochastic
PDE. The set of these differential constraints was shown to be complete for first-order
stochastic PDEs, i.e. it allows to compute uniquely the PDF of the system.

It is still an open question if there exist a set of differential constraints, e.g. the one
involving first-order limit partial derivatives with respect to all variables, that allows to
determine uniquely the probability density function of the solution to higher-order
nonlinear SPDEs.



