Towards an Optimal Parallel Approximate Sparse
Factorization Algorithm Using Hierarchically
Semi-separable Structures

X. Sherry Li
Lawrence Berkeley National Laboratory

CACHE - Algorithms and Software for Communication Avoidance and
Communication Hiding at the Extreme Scale (Math/CS Institute)

Collaborators: Shen Wang, Jianlin Xia, Maarten V. de Hoop (Purdue
University)

DOE Applied Mathematics Program Meeting, Oct. 17-19, 2011

CACHE targets exascale computers & simulations

» Algorithm efficiency depends ...

> less on FLOPS, more on data movements (on-node memory
access, inter-node communication)

» Problems with 3D geometry

» Indefinite, ill-conditioned problems

The problem

» Solving sparse Ax = b by Gaussian elimination: A= LU

T Deliver reliable solution, error bounds, condition estimation,
efficient for many RHS, . . .

Complexity wall ... far from linear
Serial [George '73, Hoffman/Martin/Rose, Eisenstat, Schultz and
Sherman]
For model problems, Nested Dissection ordering gives optimal
complexity in exact arithmetic

» 3D (K3 = N grids): O(N*/3) MEM, O(N?) FLOPS
Parallel: [Gupta/Karypis/Kumar '97] (WSMP solver)
Subtree-subcube mapping, 2-dim. matrix partitioning

» 3D: O(N*/3/v/P) COMM-Volume

» Flop-to-Byte ratio: (’)('\\ljg)
(c.f., ScaLAPACK dense LU: O(

))

=

Breaking the complexity wall

Exploit “data-sparseness” in dense submatrices

» data-sparse: matrix may be dense, but has a compressed
representation smaller than N2

What types of data-sparse representations?
» Fast multipole method [Greengard, Roklin, Starr, et al]

» Hierarchical matrices: H-matrix, H2-matrix [Bebendorf, Borm,
Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]

» Semi-separable matrices, Quasi-separable matrices [Bini,
Chandrasekaran, Dewilde, Eidelman, Gohberg, Gemignani, Gohberg,
Gu, Kailath, Olshevsky, van der Veen, Van Barel, Vandebril, White,
et al]

» Others . . .

Breaking the complexity wall

Exploit “data-sparseness” in dense submatrices

» data-sparse: matrix may be dense, but has a compressed
representation smaller than N2

What types of data-sparse representations?
» Fast multipole method [Greengard, Roklin, Starr, et al]

» Hierarchical matrices: H-matrix, H2-matrix [Bebendorf, Borm,
Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]

» Semi-separable matrices, Quasi-separable matrices [Bini,
Chandrasekaran, Dewilde, Eidelman, Gohberg, Gemignani, Gohberg,
Gu, Kailath, Olshevsky, van der Veen, Van Barel, Vandebril, White,
et al]

» Others . . .

GOAL: sparse structured factorization = sparse factorization +
internal rank structured factorization

(Hierarchically) Semi-Separable matrix

An HSS matrix is a dense matrix whose off-diagonal blocks are
low-rank

» Dense, 2x2 block — SVD compression: . I'_

D, UB V)
UB VT Dy .

» Recursion — Nested structure

< U2BD21V1T U1%2V2T) (Z;g;)33 (wivi wivy)

(%)t wd) (Wi 2
mrr—

I~ I

me—

I L

Ar

Recursive relation, HSS tree

Bl | o e D

~ 3 Uyt | B i
__lvDAJL‘:‘ UsR,
= U;= 7
H "B 7(U6R6> \
A— ‘E:f‘m; 36 10413
= @/\/\ XX/\
o e |7 = A\ [\ /) /)
I~ : b
e 1 2 4 5 8 9 11 12

Assume k leaves, 2k — 1 nodes, log, k levels

Do_1=A, U1 =0, Voy1 =0,
D U, B, V.
D' e A . A a arateo N
! et < Ug, B, V. De,)

@ Y

[Uy O Re, (Vg O We,
w= (5w) (&) v=(v) (we)

Previous work (serial): solving linear systems in HSS form

» HSS construction: O(r N?), r is the HSS rank
» Rank Revealing QR (RRQR) with column pivoting: AP = QR
» May use Modified Gram-Schmidt (MGS), or RR-TSQR
[Hoemmen et al.], or random sampling
» HSS ULV factorization [Chandrasekaran-Dewilde-Gu]: O(r?>N)
» QL+ LQ — ULV

» HSS solution: O(r N)

Xia, On the complexity of some Hierarchically structured matrix algorithms,
preprint, 2011.

Xia, Chandrasekaran, Gu, Li, Fast algorithms for hierarchically semiseparable
matrices, pp. 953-976, 2010.

New in CACHE: parallel HSS for sparse linear systems

» Parallel HSS construction, factorization, solution
» Analysis of communication

» Embedding parallel HSS in parallel sparse multifrontal
solver

Wang, Li, Xia, de Hoop, Efficient scalable algorithms for Hierarchically

Semi-separable matrices, submitted to SISC.

Parallelization strategy

» Work along the tree level by level, bottom up.
» more parallelism than postorder, slightly more flops in lower
order terms.
» 2D block-cyclic distribution at each tree node
(#Levels = log P)
» each P; works on the bottom level leaf node i,
> every 2 processors cooperate on a Level 2 node: 3, 6, 10 and
13,
» every 4 processors cooperate on a Level 3 node: 7 and 14

{0,1,2,3; 4,5,6,7} 4

0y {1 & {8 {4 {5 {6 {7} lLevel nodes

Parallel MGS-RRQR : v/P x /P cores
Fysny — Q(,L:r)R(1:r,1:r)

j = 1:r

Jl IN PARALLEL, search for the column f; with the maximum norm;
2. nommalize f to qi: a; = fi/|fl, r = If;

3. BROADCAST g; within the context associated with the node i;
4. PBLAS2: rj= quF,-;

5. rank one update: F;=F; —qjr;.

» Assume cost of broadcasting/reducing a message of n words:
comm = [#msg, vol] = [log P, nlog P]

» Step 1: search of pivot column, comm = [log v/P, LP log \/ﬁ]

> Step 3: broadcast pivot column among process row,

[log v'P, T log /P

» Total: RRQRcomm = [Iog VP, M\;%N logVP| - r

Parallel row compression

> Level 1 (local): T;. = U,-7',~’: . P;
owns the ith stripe. Bounds on
dimensions: U;: m X r,
'NI',-,::rx(N—m)

> Level 2 (subgroups of 2-cores)
» Re-distribution: T;.. is
re-distributed among 2 cores.
pair-wise exchange :
01,2345 67
comm = [2, 2N 2]

» RRQR (MGS): I
comm = [Iog \/Z 27;/ |0g \/5] * I nodes

Parallel row compression (cont)

> Level 3 (subgroups of 4-cores)
» Re-distribution: 7’, is

re-distributed among 4 cores (2D

block-cyclic).
pair-wise exchange:
02 1<3,4<6,5<7.

comm = [2, 2N 2]

> RRQR (MGS):

comm = [log /4, 2’\2"’ log /4] - r

nodes

Communication in row compression:
#msg = O(rlog® P)
#words = O(r N log P)

Flop-to-Byte ratio: O(5—5)

Plog P
(c.f. dense LU: (’)(%))

0 {1 & &

{0,1,2,3;4,5,6,7}

4y {5} & N

Level

Parallel HSS ULV factorization

» Kernel operation: ULV factorization [Chandrasekaran et al.]

D1 U1 B; V2T —
Us B> VlT D5
» Py assigned to first stripe, P; I .

assigned to second stripe.

>

Two steps: QL + LQ — ULV factorization. (can handle
unsymmetric matrix)

ULV (1): Parallel QL factorization of U;

» QL factorization: U; = Q; <9>

Ui
» Updating:
Q0 Dy U1B1 V'
0 Q2T U2 32 VlT D2 i i i
“““““ T | L —
R 0 !l i
D ~ o i
_ ' (Ul B V2T> i |
= 0 - e |
<Uz B V1T> g~

» No communication.

ULV (2): Parallel LQ (transposed QR) of upper D;
> (partial) LQ factorization:
o= (521 623 (uha 2)o
» Updating D; and V:
(o (o@?vﬂ) (3 9= ((Lfi,t o) (alimc?;vzg))
(o) (wsrarr) (a2)

» One level up: merge 4 residual blocks to the parent node.
two-one merge: 0 <1

N

| —

At the highest level: direct LU factorization of D;

Parallel HSS solution

: UrBi(q] Vo)T o x12 Q[bro

0 QID qq xo1 Q) ba
U2By(gf i)T 2 b2 q4 x22 QJ by

New in CACHE: parallel HSS for sparse linear systems

» Parallel HSS construction, factorization, solution
» Analysis of communication

» Embedding parallel HSS in parallel sparse multifrontal
solver

Parallel multifrontal sparse factorization

> Nested dissection ordering — Separator tree
» Top-down assignment of processors to subtrees

» Bottom-up elimination

o

SRR BOE

4 ¢ By ¢ 2]

Level 3

Level 2

Level 1

Level 0

Frontal and Update matrices

» Each separator corresp. to a dense submatrix (frontal &
update)
» often, off-diagonal blocks are low-rank

Embedding HSS in multifrontal

All Frontal & Update matrices are approximated by HSS

Need following operations:

» frontal HSS factorization of F;

» extend-add of two HSS update
matrices U; and U;

Final Cholesky factor: Classical vs HSS-embedded
A P

\ }.-":
AN :

\.

MF 4+ HSS: two types of tree-based parallelism

» Outer tree: separator tree for multifrontal factorization

» Inner tree: HSS tree at each internal separator node

Utilizing ScaLAPACK 2D block-cyclic distribution and
sub-communicator

parallel

level
switch _ _,7 3.7 /N)

level

local multifrontal trees

Rank-relaxed complexity

» Serial sparse Cholesky [Xia '11, Chandrasekaran et al. '11]

» N = sparse matrix size
» K = frontal matrix size: 2D: K = N¥/2, 3D: K = N1/3

Problem r = Max rank Mem. Fact. FLOPS Classical Mem. & FLOPS
2D Poisson O(1) O(Nloglog N) O(Nlog N) (Nlog N) O(N3/2)
2D Helmholtz O(log K)

3D Poisson O(K) O(N log N) O(N*/3) O(N*/3) O(N?)

3D Helmholtz | O(K) O(N log N) O(N* 3 1og N)

Rank-relaxed complexity

» Serial sparse Cholesky [Xia '11, Chandrasekaran et al. '11]

» N = sparse matrix size
» K = frontal matrix size: 2D: K = N¥/2, 3D: K = N1/3

Problem r = Max rank Mem. Fact. FLOPS Classical Mem. & FLOPS
2D Poisson O(1) O(Nloglog N) O(Nlog N) (Nlog N) O(N3/2)
2D Helmholtz O(log K)

3D Poisson O(K) O(N log N) O(N*/3) O(N*/3) O(N?)

3D Helmholtz | O(K) O(N log N) O(N* 3 1og N)

» Gaps in analysis of parallel algorithms
» Classical sparse Cholesky [Gupta et al. '97]
» 3D: O(N*3/y/P) COMM-Volume
» HSS-embedded sparse factorization 77

» Communication lower bound ??

Parallel performance

» Cray XE6 (hopper at NERSC)
» Example: Helmholtz equation with PML boundary

(-8 125) = st (1)

A: Laplacian

w: angular frequency

v(x): seismic velocity field

u(x,w): time-harmonic wavefield solution

» FD discretized linear system:
» Complex, pattern-symmetric, non-Hermitian,

» Indefinite, ill-conditioned

Weak scaling test

MPI wall time (s)

» 2D mesh N x N: 5000, 10000, 20000, 40000, 80000
Processor counts: 16, 64, 256, 1024, 4096

Up to 6.4 billion unknowns

» 3x faster than classical multifrontal, needs 1/2 memory

5 [| —*— Redistribution

HSS on topmost separator

MF + HSS solver

Exact LU
——HSS construction
RRQR factorization

MPI wall time (s)

w0 MF]
y ——MF+HSS

5000 10000 20000 40000 80000
N (size of A)

05000 10000 20000 40000 80000
n (n »xn mesh)

3D test

» N =3003=27M

» Topmost frontal matrix size K2 = 90, 000,
Max rank = 1391 (7 = 107%)

» P =1024

Time (s) | Gflops/s (peak%) | Comm% | Mem (GB)
MF 4206.4 2385.2 (27.7%) 32.6% 3143.7
MF+HSS 2171.3 2511.3 (29.2%) 41.2% 1104.4
HSS-compr | 1388.5 15.3%

3D test

» N =3003=27M

» Topmost frontal matrix size K2 = 90, 000,
Max rank = 1391 (7 = 107%)

» P =1024

Time (s) | Gflops/s (peak%) | Comm% | Mem (GB)
MF 4206.4 2385.2 (27.7%) 32.6% 3143.7
MF+HSS 2171.3 2511.3 (29.2%) 41.2% 1104.4
HSS-compr | 1388.5 15.3%

» MF+HSS worked for 4003, 5003, but pure MF failed

Summary

STATUS
» First demonstration of parallel HSS-embedded sparse solver

» Removing “short-cut”: dense extend-add — HSS extend-add
(O(log N) reduction in FLOPS; communication 77)
» Extending to generalized multifrontal code [Artem Napov]
» Random sampling methods for HSS construction

Summary

STATUS
» First demonstration of parallel HSS-embedded sparse solver

» Removing “short-cut”: dense extend-add — HSS extend-add
(O(log N) reduction in FLOPS; communication 77)
» Extending to generalized multifrontal code [Artem Napov]
» Random sampling methods for HSS construction

LONG TERM RESEARCH
» Analyze communication bound, design communication
avoiding version
» General purpose preconditioner? (different from ILU)

» Apply to broader DOE simulation problems: acceleror, fusion,
etc.

» Precondition the CA-Krylov algorithms [with Demmel's group]

» Analysis of wider problems that admit low rank

