Towards an Optimal Parallel Approximate Sparse Factorization Algorithm Using Hierarchically Semi-separable Structures

X. Sherry Li
Lawrence Berkeley National Laboratory

CACHE – Algorithms and Software for Communication Avoidance and Communication Hiding at the Extreme Scale (Math/CS Institute)

Collaborators: Shen Wang, Jianlin Xia, Maarten V. de Hoop (Purdue University)

CACHE targets exascale computers & simulations

- Algorithm efficiency depends ...
 - less on FLOPS, more on data movements (on-node memory access, inter-node communication)
- Problems with 3D geometry
- Indefinite, ill-conditioned problems
The problem

- Solving sparse $Ax = b$ by Gaussian elimination: $A = LU$

- Deliver reliable solution, error bounds, condition estimation, efficient for many RHS, . . .

- Complexity wall ... far from linear
 - **Serial** [George ’73, Hoffman/Martin/Rose, Eisenstat, Schultz and Sherman]
 For model problems, Nested Dissection ordering gives optimal complexity in exact arithmetic
 - 3D ($K^3 = N$ grids): $O(N^{4/3})$ MEM, $O(N^2)$ FLOPS
 - **Parallel:** [Gupta/Karypis/Kumar ’97] (WSMP solver)
 Subtree-subcube mapping, 2-dim. matrix partitioning
 - 3D: $O(N^{4/3}/\sqrt{P})$ COMM-Volume
 - Flop-to-Byte ratio: $O\left(\frac{N^{2/3}}{\sqrt{P}}\right)$
 (c.f., ScaLAPACK dense LU: $O\left(\frac{N}{\sqrt{P}}\right)$)
Breaking the complexity wall

Exploit “data-sparseness” in dense submatrices

- **data-sparse**: matrix may be dense, but has a compressed representation smaller than N^2

What types of data-sparse representations?

- Hierarchical matrices: \mathcal{H}-matrix, \mathcal{H}^2-matrix [Bebendorf, Borm, Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]
- Others . . .
Exploit “data-sparseness” in dense submatrices

- **data-sparse**: matrix may be dense, but has a compressed representation smaller than N^2

What types of data-sparse representations?

- Hierarchical matrices: \mathcal{H}-matrix, \mathcal{H}^2-matrix [Bebendorf, Borm, Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]
- Others . . .

GOAL: sparse structured factorization = sparse factorization + internal rank structured factorization
(Hierarchically) Semi-Separable matrix

An HSS matrix is a dense matrix whose off-diagonal blocks are low-rank

- Dense, 2x2 block \rightarrow SVD compression:

 $\begin{pmatrix}
 D_1 & U_1 B_1 V_2^T \\
 U_2 B_2 V_1^T & D_2
 \end{pmatrix}$

- Recursion \rightarrow Nested structure

\[
A \approx \begin{pmatrix}
\begin{pmatrix}
 D_1 & U_1 B_1 V_2^T \\
 U_2 B_2 V_1^T & D_2
\end{pmatrix} & (U_1 R_1) B_3 \begin{pmatrix}
 W_4^T V_4^T & W_5^T V_5^T
\end{pmatrix} \\
(U_4 R_4) B_6 \begin{pmatrix}
 W_1^T V_1^T & W_2^T V_2^T
\end{pmatrix} & \begin{pmatrix}
 D_4 & U_4 B_4 V_5^T \\
 U_5 B_5 V_4^T & D_5
\end{pmatrix}
\end{pmatrix}
\]
Assume k leaves, $2k - 1$ nodes, log$_2 k$ levels

$$D_{2k-1} = A, \quad U_{2k-1} = \emptyset, \quad V_{2k-1} = \emptyset,$$
$$D_i = A|_{t_i \times t_i} \approx \begin{pmatrix} D_{c_1} & U_{c_1} B_{c_1} V_{c_2}^T \\ U_{c_2} B_{c_2} V_{c_1}^T & D_{c_2} \end{pmatrix},$$
$$U_i = \begin{pmatrix} U_{c_1} & 0 \\ 0 & U_{c_2} \end{pmatrix} \begin{pmatrix} R_{c_1} \\ R_{c_2} \end{pmatrix}, \quad V_i = \begin{pmatrix} V_{c_1} & 0 \\ 0 & V_{c_2} \end{pmatrix} \begin{pmatrix} W_{c_1} \\ W_{c_2} \end{pmatrix},$$
Previous work (serial): solving linear systems in HSS form

- **HSS construction:** \(\mathcal{O}(r N^2) \), \(r \) is the HSS rank
 - Rank Revealing QR (RRQR) with column pivoting: \(AP = QR \)
 - May use Modified Gram-Schmidt (MGS), or RR-TSQR [Hoemmen et al.], or random sampling

- **HSS ULV factorization** [Chandrasekaran-Dewilde-Gu]: \(\mathcal{O}(r^2 N) \)
 - \(QL + LQ \rightarrow ULV \)

- **HSS solution:** \(\mathcal{O}(r N) \)

New in CACHE: parallel HSS for sparse linear systems

- Parallel HSS construction, factorization, solution
 - Analysis of communication

- Embedding parallel HSS in parallel sparse multifrontal solver

Wang, Li, Xia, de Hoop, *Efficient scalable algorithms for Hierarchically Semi-separable matrices*, submitted to SISC.
Parallelization strategy

- Work along the tree level by level, bottom up.
 - more parallelism than postorder, slightly more flops in lower order terms.
- 2D block-cyclic distribution at each tree node ($\#Levels = \log P$)
 - each P_i works on the bottom level leaf node i,
 - every 2 processors cooperate on a Level 2 node: 3, 6, 10 and 13,
 - every 4 processors cooperate on a Level 3 node: 7 and 14
Parallel MGS-RRQR: $\sqrt{P} \times \sqrt{P}$ cores

$F_{M \times N} \rightarrow Q(:, 1 : r) R(1 : r, 1 : r)$

```
for j = 1:r
    1. IN PARALLEL, search for the column $f_j$ with the maximum norm;
    2. normalize $f_j$ to $q_j$: $q_j = f_j / \|f_j\|$, $r_{jj} = \|f_j\|$
    3. BROADCAST $q_j$ within the context associated with the node $i$;
    4. PBLAS2: $r_j = q_j^T F_i$;
    5. rank one update: $F_i = F_i - q_j r_j$.
end
```

- Assume cost of broadcasting/reducing a message of n words:
 $comm = [\#msg, vol] = [\log P, n \log P]$

- Step 1: search of pivot column, $comm = [\log \sqrt{P}, \frac{N}{\sqrt{P}} \log \sqrt{P}]$

- Step 3: broadcast pivot column among process row,
 $[\log \sqrt{P}, \frac{M}{\sqrt{P}} \log \sqrt{P}]$

- Total: $RRQR_{comm} = \left[\log \sqrt{P}, \frac{M+N}{\sqrt{P}} \log \sqrt{P}\right] \cdot r$
Parallel row compression

Level 1 (local): $T_{i,:} = U_i \tilde{T}_{i,:}$, P_i owns the ith stripe. Bounds on dimensions: $U_i : m \times r$, $\tilde{T}_{i,:} : r \times (N - m)$

Level 2 (subgroups of 2-cores)

- Re-distribution: $\tilde{T}_{i,:}$ is re-distributed among 2 cores.

 pair-wise exchange:
 $0 \leftrightarrow 1$, $2 \leftrightarrow 3$, $4 \leftrightarrow 5$, $6 \leftrightarrow 7$

 $comm = [2, \frac{rN}{2}]$

- RRQR (MGS):

 $comm = [\log \sqrt{2}, \frac{2r + N}{\sqrt{2}} \log \sqrt{2}] \cdot r$
Parallel row compression (cont)

- Level 3 (subgroups of 4-cores)
 - Re-distribution: \tilde{T}_i: is re-distributed among 4 cores (2D block-cyclic).

 pair-wise exchange:

 $0 \leftrightarrow 2$, $1 \leftrightarrow 3$, $4 \leftrightarrow 6$, $5 \leftrightarrow 7$.

 $\text{comm} = [2, \frac{r N}{4}]$

 - RRQR (MGS):

 $\text{comm} = [\log \sqrt{4}, \frac{2r+N}{\sqrt{4}} \log \sqrt{4}] \cdot r$

Communication in row compression:

$\# msg = O(r \log^2 P)$

$\# \text{words} = O(r N \log P)$

Flop-to-Byte ratio: $O\left(\frac{N}{P \log P}\right)$

(c.f. dense LU: $O\left(\frac{N}{\sqrt{P}}\right)$)
Parallel HSS ULV factorization

Kernel operation: ULV factorization [Chandrasekaran et al.]

\[
\begin{pmatrix}
D_1 & U_1 B_1 V_2^T \\
U_2 B_2 V_1^T & D_2
\end{pmatrix}
\]

P_0 assigned to first stripe, P_1 assigned to second stripe.

Two steps: $QL + LQ \rightarrow ULV$ factorization. (can handle unsymmetric matrix)
ULV (1): Parallel QL factorization of \(U_i \)

- **QL factorization**: \(U_i = Q_i \begin{pmatrix} 0 \\ \tilde{U}_i \end{pmatrix} \)

- **Updating**:

\[
\begin{pmatrix}
Q_1^T \\
0 \\
Q_2^T
\end{pmatrix}
\begin{pmatrix}
D_1 & U_1 B_1 V_2^T \\
U_2 B_2 V_1^T & D_2
\end{pmatrix}
=
\begin{pmatrix}
\hat{D}_1 & \begin{pmatrix} 0 \\ \tilde{U}_1 B_1 V_2^T \end{pmatrix} \\
0 & \hat{D}_2
\end{pmatrix}
\]

- **No communication.**
ULV (2): Parallel LQ (transposed QR) of upper \hat{D}_i

- **(partial) LQ factorization:**

\[
\hat{D}_i = \begin{pmatrix}
\hat{D}_i; 1, 1 & \hat{D}_i; 1, 2 \\
\hat{D}_i; 2, 1 & \hat{D}_i; 2, 2
\end{pmatrix} = \begin{pmatrix}
L_i & 0 \\
L_i; 2, 1 & \tilde{D}_i
\end{pmatrix} q_i^T
\]

- **Updating \hat{D}_i and V_i:**

\[
\begin{pmatrix}
\hat{D}_1 \\
0 \\
\tilde{U}_2 B_2 V_1^T
\end{pmatrix}
\begin{pmatrix}
\tilde{U}_1 B_1 V_2^T \\
\tilde{D}_2
\end{pmatrix}
\begin{pmatrix}
q_1 & 0 \\
0 & q_2
\end{pmatrix} =
\begin{pmatrix}
L_1 & 0 & 0 & 0 \\
L_1; 2, 1 & \tilde{D}_1 & \tilde{U}_1 B_1(q_2^T V_2)^T \\
L_2 & 0 & 0 & 0 \\
L_2; 2, 1 & \tilde{D}_2
\end{pmatrix}
\]

- **One level up: merge 4 residual blocks to the parent node.**

 two-one merge: $0 \leftrightarrow 1$

At the highest level: direct LU factorization of D_i;
Parallel HSS solution

\[
\begin{bmatrix}
Q_1^T D_1 q_1 \\
0 \\
\tilde{U}_2 B_2 (q_1^T V_1)^T \\
\end{bmatrix}
\begin{bmatrix}
0 \\
\tilde{U}_1 B_1 (q_2^T V_2)^T \\
Q_2^T D_2 q_2 \\
\end{bmatrix}
\begin{bmatrix}
q_1^T x_{11} \\
q_1^T x_{12} \\
q_2^T x_{21} \\
q_2^T x_{22} \\
\end{bmatrix}
=
\begin{bmatrix}
Q_1^T b_{11} \\
Q_1^T b_{12} \\
Q_2^T b_{21} \\
Q_2^T b_{22} \\
\end{bmatrix}
\]
New in CACHE: parallel HSS for sparse linear systems

- Parallel HSS construction, factorization, solution
 - Analysis of communication

- Embedding parallel HSS in parallel sparse multifrontal solver
Parallel multifrontal sparse factorization

- Nested dissection ordering → Separator tree
- Top-down assignment of processors to subtrees
- Bottom-up elimination
Frontal and Update matrices

- Each separator corresponds to a dense submatrix (frontal & update)
 - often, off-diagonal blocks are low-rank
Embedding HSS in multifrontal

All **Frontal** & **Update** matrices are approximated by HSS

Need following operations:

- frontal HSS factorization of F_i
- extend-add of two HSS update matrices U_i and U_j

Final Cholesky factor: Classical vs HSS-embedded
MF + HSS: two types of tree-based parallelism

- **Outer tree**: separator tree for multifrontal factorization
- **Inner tree**: HSS tree at each internal separator node

Utilizing ScaLAPACK 2D block-cyclic distribution and sub-communicator
Rank-relaxed complexity

- Serial sparse Cholesky [Xia ’11, Chandrasekaran et al. ’11]
 - \(N \) = sparse matrix size
 - \(K \) = frontal matrix size: 2D: \(K = N^{1/2} \), 3D: \(K = N^{1/3} \)

<table>
<thead>
<tr>
<th>Problem</th>
<th>(r = \text{Max rank})</th>
<th>Mem.</th>
<th>Fact. FLOPS</th>
<th>Classical Mem. & FLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Poisson</td>
<td>(\mathcal{O}(1))</td>
<td>(\mathcal{O}(N \log \log N))</td>
<td>(\mathcal{O}(N \log N))</td>
<td>((N \log N)) (\mathcal{O}(N^{3/2}))</td>
</tr>
<tr>
<td>2D Helmholtz</td>
<td>(\mathcal{O}(\log K))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Poisson</td>
<td>(\mathcal{O}(K))</td>
<td>(\mathcal{O}(N \log N))</td>
<td>(\mathcal{O}(N^{4/3}))</td>
<td>(\mathcal{O}(N^{4/3})) (\mathcal{O}(N^2))</td>
</tr>
<tr>
<td>3D Helmholtz</td>
<td>(\mathcal{O}(K))</td>
<td>(\mathcal{O}(N \log N))</td>
<td>(\mathcal{O}(N^{4/3} \log N))</td>
<td></td>
</tr>
</tbody>
</table>
Rank-relaxed complexity

- Serial sparse Cholesky [Xia ’11, Chandrasekaran et al. ’11]
 - $N = \text{sparse matrix size}$
 - $K = \text{frontal matrix size: 2D: } K = N^{1/2}, \text{ 3D: } K = N^{1/3}$

<table>
<thead>
<tr>
<th>Problem</th>
<th>$r = \text{Max rank}$</th>
<th>Mem.</th>
<th>Fact. FLOPS</th>
<th>Classical Mem. & FLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Poisson</td>
<td>$O(1)$</td>
<td>$O(N \log \log N)$</td>
<td>$O(N \log N)$</td>
<td>$(N \log N) \quad O(N^{3/2})$</td>
</tr>
<tr>
<td>2D Helmholtz</td>
<td>$O(\log K)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Poisson</td>
<td>$O(K)$</td>
<td>$O(N \log N)$</td>
<td>$O(N^{4/3})$</td>
<td>$O(N^{4/3}) \quad O(N^2)$</td>
</tr>
<tr>
<td>3D Helmholtz</td>
<td>$O(K)$</td>
<td>$O(N \log N)$</td>
<td>$O(N^{4/3} \log N)$</td>
<td></td>
</tr>
</tbody>
</table>

- Gaps in analysis of parallel algorithms
 - Classical sparse Cholesky [Gupta et al. ’97]
 - 3D: $O(N^{4/3} / \sqrt{P})$ COMM-Volume
 - HSS-embedded sparse factorization ??
 - Communication lower bound ??
Parallel performance

- Cray XE6 (hopper at NERSC)
- Example: Helmholtz equation with PML boundary

\[
\left(-\Delta - \frac{\omega^2}{v(x)^2}\right) u(x, \omega) = s(x, \omega),
\]

\(\Delta\): Laplacian
\(\omega\): angular frequency
\(v(x)\): seismic velocity field
\(u(x, \omega)\): time-harmonic wavefield solution

- FD discretized linear system:
 - Complex, pattern-symmetric, non-Hermitian,
 - Indefinite, ill-conditioned
Weak scaling test

- 2D mesh $N \times N$: 5000, 10000, 20000, 40000, 80000

 Processor counts: 16, 64, 256, 1024, 4096

 Up to 6.4 billion unknowns

- 3x faster than classical multifrontal, needs 1/2 memory

HSS on topmost separator

MF + HSS solver
3D test

- $N = 300^3 = 27M$
- Topmost frontal matrix size $K^2 = 90,000$, Max rank = 1391 ($\tau = 10^{-4}$)
- $P = 1024$

<table>
<thead>
<tr>
<th></th>
<th>Time (s)</th>
<th>Gflops/s (peak%)</th>
<th>Comm%</th>
<th>Mem (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>4206.4</td>
<td>2385.2 (27.7%)</td>
<td>32.6%</td>
<td>3143.7</td>
</tr>
<tr>
<td>MF+HSS</td>
<td>2171.3</td>
<td>2511.3 (29.2%)</td>
<td>41.2%</td>
<td>1104.4</td>
</tr>
<tr>
<td>HSS-compr</td>
<td>1388.5</td>
<td>15.3%</td>
<td></td>
<td>1104.4</td>
</tr>
</tbody>
</table>
3D test

- $N = 300^3 = 27M$
- Topmost frontal matrix size $K^2 = 90,000$
 Max rank = 1391 ($\tau = 10^{-4}$)
- $P = 1024$

<table>
<thead>
<tr>
<th></th>
<th>Time (s)</th>
<th>Gflops/s (peak%)</th>
<th>Comm%</th>
<th>Mem (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>4206.4</td>
<td>2385.2 (27.7%)</td>
<td>32.6%</td>
<td>3143.7</td>
</tr>
<tr>
<td>MF+HSS</td>
<td>2171.3</td>
<td>2511.3 (29.2%)</td>
<td>41.2%</td>
<td>1104.4</td>
</tr>
<tr>
<td>HSS-compr</td>
<td>1388.5</td>
<td>15.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- MF+HSS worked for 400^3, 500^3, but pure MF failed
Summary

STATUS

- First demonstration of parallel HSS-embedded sparse solver
- Removing “short-cut”: dense extend-add \rightarrow HSS extend-add ($O(\log N)$ reduction in FLOPS; communication ??)
- Extending to generalized multifrontal code [Artem Napov]
 - Random sampling methods for HSS construction

LONG TERM RESEARCH

- Analyze communication bound, design communication avoiding version
- General purpose preconditioner? (different from ILU)
- Apply to broader DOE simulation problems: acceleror, fusion, etc.
- Precondition the CA-Krylov algorithms [with Demmel's group]
- Analysis of wider problems that admit low rank
Summary

STATUS

- First demonstration of parallel HSS-embedded sparse solver
- Removing “short-cut”: dense extend-add → HSS extend-add ($\mathcal{O} (\log N)$ reduction in FLOPS; communication ??)
- Extending to generalized multifrontal code [Artem Napov]
 - Random sampling methods for HSS construction

LONG TERM RESEARCH

- Analyze communication bound, design communication avoiding version
- General purpose preconditioner? (different from ILU)
 - Apply to broader DOE simulation problems: acceleror, fusion, etc.
- Precondition the CA-Krylov algorithms [with Demmel’s group]
- Analysis of wider problems that admit low rank