
Towards an Optimal Parallel Approximate Sparse
Factorization Algorithm Using Hierarchically

Semi-separable Structures

X. Sherry Li
Lawrence Berkeley National Laboratory

CACHE – Algorithms and Software for Communication Avoidance and
Communication Hiding at the Extreme Scale (Math/CS Institute)

Collaborators: Shen Wang, Jianlin Xia, Maarten V. de Hoop (Purdue
University)

DOE Applied Mathematics Program Meeting, Oct. 17-19, 2011

CACHE targets exascale computers & simulations

I Algorithm efficiency depends ...
I less on FLOPS, more on data movements (on-node memory

access, inter-node communication)

I Problems with 3D geometry

I Indefinite, ill-conditioned problems

The problem

I Solving sparse Ax = b by Gaussian elimination: A = LU

↑ Deliver reliable solution, error bounds, condition estimation,
efficient for many RHS, . . .

↓ Complexity wall ... far from linear
Serial [George ’73, Hoffman/Martin/Rose, Eisenstat, Schultz and

Sherman]

For model problems, Nested Dissection ordering gives optimal
complexity in exact arithmetic

I 3D (K 3 = N grids): O(N4/3) MEM, O(N2) FLOPS

Parallel: [Gupta/Karypis/Kumar ’97] (WSMP solver)
Subtree-subcube mapping, 2-dim. matrix partitioning

I 3D: O(N4/3/
√

P) COMM-Volume

I Flop-to-Byte ratio: O(N2/3
√

P
)

(c.f., ScaLAPACK dense LU: O(N√
P

))

Breaking the complexity wall

Exploit “data-sparseness” in dense submatrices

I data-sparse: matrix may be dense, but has a compressed
representation smaller than N2

What types of data-sparse representations?

I Fast multipole method [Greengard, Roklin, Starr, et al.]

I Hierarchical matrices: H-matrix, H2-matrix [Bebendorf, Borm,

Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]

I Semi-separable matrices, Quasi-separable matrices [Bini,

Chandrasekaran, Dewilde, Eidelman, Gohberg, Gemignani, Gohberg,

Gu, Kailath, Olshevsky, van der Veen, Van Barel, Vandebril, White,

et al.]

I Others . . .

GOAL: sparse structured factorization = sparse factorization +
internal rank structured factorization

Breaking the complexity wall

Exploit “data-sparseness” in dense submatrices

I data-sparse: matrix may be dense, but has a compressed
representation smaller than N2

What types of data-sparse representations?

I Fast multipole method [Greengard, Roklin, Starr, et al.]

I Hierarchical matrices: H-matrix, H2-matrix [Bebendorf, Borm,

Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, et al.]

I Semi-separable matrices, Quasi-separable matrices [Bini,

Chandrasekaran, Dewilde, Eidelman, Gohberg, Gemignani, Gohberg,

Gu, Kailath, Olshevsky, van der Veen, Van Barel, Vandebril, White,

et al.]

I Others . . .

GOAL: sparse structured factorization = sparse factorization +
internal rank structured factorization

(Hierarchically) Semi-Separable matrix

An HSS matrix is a dense matrix whose off-diagonal blocks are
low-rank

I Dense, 2x2 block → SVD compression:(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
I Recursion → Nested structure

A ≈

0BBBBB@

D1 U1B1V T
2

U2B2V T
1 D2

! „
U1R1
U2R2

«
B3

“
W T

4 V T
4 W T

5 V T
5

”
„

U4R4
U5R5

«
B6

“
W T

1 V T
1 W T

2 V T
2

”
D4 U4B4V T

5
U5B5V T

4 D5

!
1CCCCCA .

Recursive relation, HSS tree

Assume k leaves, 2k − 1 nodes, log2 k levels

D2k−1 = A, U2k−1 = ∅, V2k−1 = ∅,

Di = A|ti×ti ≈
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1

Dc2

)
,

Ui =

(
Uc1 0
0 Uc2

)(
Rc1

Rc2

)
, Vi =

(
Vc1 0
0 Vc2

)(
Wc1

Wc2

)
,

Previous work (serial): solving linear systems in HSS form

I HSS construction: O(r N2), r is the HSS rank
I Rank Revealing QR (RRQR) with column pivoting: AP = QR
I May use Modified Gram-Schmidt (MGS), or RR-TSQR

[Hoemmen et al.], or random sampling

I HSS ULV factorization [Chandrasekaran-Dewilde-Gu]: O(r2N)
I QL + LQ → ULV

I HSS solution: O(r N)

Xia, On the complexity of some Hierarchically structured matrix algorithms,

preprint, 2011.

Xia, Chandrasekaran, Gu, Li, Fast algorithms for hierarchically semiseparable

matrices, pp. 953-976, 2010.

New in CACHE: parallel HSS for sparse linear systems

I Parallel HSS construction, factorization, solution
I Analysis of communication

I Embedding parallel HSS in parallel sparse multifrontal
solver

Wang, Li, Xia, de Hoop, Efficient scalable algorithms for Hierarchically

Semi-separable matrices, submitted to SISC.

Parallelization strategy

I Work along the tree level by level, bottom up.
I more parallelism than postorder, slightly more flops in lower

order terms.
I 2D block-cyclic distribution at each tree node

(#Levels = log P)
I each Pi works on the bottom level leaf node i ,
I every 2 processors cooperate on a Level 2 node: 3, 6, 10 and

13,
I every 4 processors cooperate on a Level 3 node: 7 and 14

Parallel MGS-RRQR :
√

P ×
√

P cores
FM×N → Q(:, 1 : r) R(1 : r , 1 : r)

for j = 1:r
1. IN PARALLEL, search for the column fj with the maximum norm;

2. normalize fj to qj: qj = fj/‖fj‖, rjj = ‖fj‖;
3. BROADCAST qj within the context associated with the node i;
4. PBLAS2: rj = qT

j Fi;

5. rank one update: Fi = Fi − qj rj.
end

I Assume cost of broadcasting/reducing a message of n words:
comm = [#msg , vol] = [log P, n log P]

I Step 1: search of pivot column, comm = [log
√

P, N√
P

log
√

P]

I Step 3: broadcast pivot column among process row,
[log
√

P, M√
P

log
√

P]

I Total: RRQRcomm =
[
log
√

P, M+N√
P

log
√

P
]
· r

Parallel row compression

I Level 1 (local): Ti ,: = Ui T̃i ,: , Pi

owns the ith stripe. Bounds on
dimensions: Ui : m × r ,
T̃i ,: : r × (N −m)

I Level 2 (subgroups of 2-cores)
I Re-distribution: T̃i,: is

re-distributed among 2 cores.
pair-wise exchange :
0↔ 1, 2↔ 3, 4↔ 5, 6↔ 7
comm = [2, r N

2 2]

I RRQR (MGS):
comm = [log

√
2, 2r+N√

2
log
√

2] · r

Parallel row compression (cont)

I Level 3 (subgroups of 4-cores)
I Re-distribution: T̃i,: is

re-distributed among 4 cores (2D
block-cyclic).
pair-wise exchange:
0↔ 2, 1↔ 3, 4↔ 6, 5↔ 7.
comm = [2, r N

4 2]

I RRQR (MGS):
comm = [log

√
4, 2r+N√

4
log
√

4] · r

Communication in row compression:
#msg = O(r log2 P)
#words = O(r N log P)

Flop-to-Byte ratio: O(N
P log P)

(c.f. dense LU: O(N√
P

))

Parallel HSS ULV factorization

I Kernel operation: ULV factorization [Chandrasekaran et al.]

I (
D1 U1B1V

T
2

U2B2V
T
1 D2

)

I P0 assigned to first stripe, P1

assigned to second stripe.

Two steps: QL + LQ → ULV factorization. (can handle
unsymmetric matrix)

ULV (1): Parallel QL factorization of Ui

I QL factorization: Ui = Qi

(
0

Ũi

)
I Updating:(

QT
1 0

0 QT
2

)(
D1 U1B1V

T
2

U2B2V
T
1 D2

)

=

 D̂1

(
0

Ũ1B1V
T
2

)
(

0

Ũ2B2V
T
1

)
D̂2

I No communication.

ULV (2): Parallel LQ (transposed QR) of upper D̂i

I (partial) LQ factorization:

D̂i =

„
D̂i ; 1, 1 D̂i ; 1, 2

D̂i ; 2, 1 D̂i ; 2, 2

«
=

„
Li 0

Li ; 2, 1 eDi

«
qT
i

I Updating D̂i and Vi :(
D̂1

„
0

Ũ1B1V T
2

«
„

0

Ũ2B2V T
1

«
D̂2

)(
q1 0
0 q2

)
=

(„
L1 0

L1; 2, 1 eD1

« „
0eU1B1(qT
2 V2)T

«
„

0eU2B2(qT
1 V1)T

« „
L2 0

L2; 2, 1 eD2

«
)

I One level up: merge 4 residual blocks to the parent node.
two-one merge: 0↔ 1

→

At the highest level: direct LU factorization of Di

Parallel HSS solution

 QT
1 D1q1

(
0

Ũ1B1(qT
2 V2)T

)
(

0

Ũ2B2(qT
1 V1)T

)
QT

2 D2q2

qT
1 x11

qT
1 x12

qT
2 x21

qT
2 x22

 =

QT

1 b11

QT
1 b12

QT
2 b21

QT
2 b22

New in CACHE: parallel HSS for sparse linear systems

I Parallel HSS construction, factorization, solution
I Analysis of communication

I Embedding parallel HSS in parallel sparse multifrontal
solver

Parallel multifrontal sparse factorization

I Nested dissection ordering → Separator tree

I Top-down assignment of processors to subtrees

I Bottom-up elimination

Frontal and Update matrices

I Each separator corresp. to a dense submatrix (frontal &
update)

I often, off-diagonal blocks are low-rank

Fi,1,1

Fi,2,1

i Fi,1,2

Fi,2,2

Fi,1,1

Fi,2,1

Fi,1,2

Fi,2,2

Embedding HSS in multifrontal

All Frontal & Update matrices are approximated by HSS

Need following operations:

I frontal HSS factorization of Fi

I extend-add of two HSS update
matrices Ui and Uj

Final Cholesky factor: Classical vs HSS-embedded

MF + HSS: two types of tree-based parallelism

I Outer tree: separator tree for multifrontal factorization

I Inner tree: HSS tree at each internal separator node

Utilizing ScaLAPACK 2D block-cyclic distribution and
sub-communicator

Rank-relaxed complexity

I Serial sparse Cholesky [Xia ’11, Chandrasekaran et al. ’11]

I N = sparse matrix size
I K = frontal matrix size: 2D: K = N1/2, 3D: K = N1/3

Problem r = Max rank Mem. Fact. FLOPS Classical Mem. & FLOPS

2D Poisson O(1) O(N log log N) O(N log N) (N log N) O(N3/2)
2D Helmholtz O(log K)

3D Poisson O(K) O(N log N) O(N4/3) O(N4/3) O(N2)

3D Helmholtz O(K) O(N log N) O(N4/3 log N)

I Gaps in analysis of parallel algorithms
I Classical sparse Cholesky [Gupta et al. ’97]

I 3D: O(N4/3/
√

P) COMM-Volume

I HSS-embedded sparse factorization ??
I Communication lower bound ??

Rank-relaxed complexity

I Serial sparse Cholesky [Xia ’11, Chandrasekaran et al. ’11]

I N = sparse matrix size
I K = frontal matrix size: 2D: K = N1/2, 3D: K = N1/3

Problem r = Max rank Mem. Fact. FLOPS Classical Mem. & FLOPS

2D Poisson O(1) O(N log log N) O(N log N) (N log N) O(N3/2)
2D Helmholtz O(log K)

3D Poisson O(K) O(N log N) O(N4/3) O(N4/3) O(N2)

3D Helmholtz O(K) O(N log N) O(N4/3 log N)

I Gaps in analysis of parallel algorithms
I Classical sparse Cholesky [Gupta et al. ’97]

I 3D: O(N4/3/
√

P) COMM-Volume

I HSS-embedded sparse factorization ??
I Communication lower bound ??

Parallel performance

I Cray XE6 (hopper at NERSC)

I Example: Helmholtz equation with PML boundary(
−∆− ω2

v(x)2

)
u(x , ω) = s(x , ω), (1)

∆: Laplacian
ω: angular frequency
v(x): seismic velocity field
u(x , ω): time-harmonic wavefield solution

I FD discretized linear system:
I Complex, pattern-symmetric, non-Hermitian,

I Indefinite, ill-conditioned

Weak scaling test

I 2D mesh N × N: 5000, 10000, 20000, 40000, 80000
Processor counts: 16, 64, 256, 1024, 4096
Up to 6.4 billion unknowns

I 3x faster than classical multifrontal, needs 1/2 memory

HSS on topmost separator MF + HSS solver

3D test

I N = 3003 = 27M

I Topmost frontal matrix size K 2 = 90, 000,
Max rank = 1391 (τ = 10−4)

I P = 1024

Time (s) Gflops/s (peak%) Comm% Mem (GB)
MF 4206.4 2385.2 (27.7%) 32.6% 3143.7
MF+HSS 2171.3 2511.3 (29.2%) 41.2% 1104.4
HSS-compr 1388.5 15.3%

I MF+HSS worked for 4003, 5003, but pure MF failed

3D test

I N = 3003 = 27M

I Topmost frontal matrix size K 2 = 90, 000,
Max rank = 1391 (τ = 10−4)

I P = 1024

Time (s) Gflops/s (peak%) Comm% Mem (GB)
MF 4206.4 2385.2 (27.7%) 32.6% 3143.7
MF+HSS 2171.3 2511.3 (29.2%) 41.2% 1104.4
HSS-compr 1388.5 15.3%

I MF+HSS worked for 4003, 5003, but pure MF failed

Summary

STATUS

I First demonstration of parallel HSS-embedded sparse solver

I Removing “short-cut”: dense extend-add → HSS extend-add
(O(log N) reduction in FLOPS; communication ??)

I Extending to generalized multifrontal code [Artem Napov]

I Random sampling methods for HSS construction

LONG TERM RESEARCH

I Analyze communication bound, design communication
avoiding version

I General purpose preconditioner? (different from ILU)
I Apply to broader DOE simulation problems: acceleror, fusion,

etc.

I Precondition the CA-Krylov algorithms [with Demmel’s group]

I Analysis of wider problems that admit low rank

Summary

STATUS

I First demonstration of parallel HSS-embedded sparse solver

I Removing “short-cut”: dense extend-add → HSS extend-add
(O(log N) reduction in FLOPS; communication ??)

I Extending to generalized multifrontal code [Artem Napov]

I Random sampling methods for HSS construction

LONG TERM RESEARCH

I Analyze communication bound, design communication
avoiding version

I General purpose preconditioner? (different from ILU)
I Apply to broader DOE simulation problems: acceleror, fusion,

etc.

I Precondition the CA-Krylov algorithms [with Demmel’s group]

I Analysis of wider problems that admit low rank

