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Motivation

We are interested in solving variety of PDEs
(Laplace, elasticity, Darcy, Maxwell, Brinkman - combination of
Darcy and Stokes, ...).
Our goal is two-fold:
We want to discretize the PDE on a general unstructured fine
mesh that resolves the PDE coefficients, and then to come up with
hierarchy of discretization problems that can be used, both

I to build scalable multigrid solver, and/or

I as coarse discretization (upscaling) tool
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Motivation, continued

To achieve this goal we develop specialized “element-based”
algebraic multigrid (AMGe).
We extend previous result:
Pasciak, J., Vassilevski, P. “Exact de Rham Sequences of Spaces
Defined on Macro-elements in Two and Three Spatial
Dimensions”, 2007
such that now, our coarse space have “guaranteed”
“approximation properties”.
This is ensured by incorporating enough functions (e.g., vector
constants) into the coarse spaces.
In this presentation, we consider applications to Darcy equation
and outline an approach for Maxwell equations.
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Problem setup

I 3-dimensional polyhedral domain Ω

I Unstructured tetrahedral mesh (extension to hexahedral
elements seems possible)

I Sequence of spaces: lowest order Nedelec
∇×−−→ lowest order

Raviart-Thomas
∇·−→ discontinuous piecewise-constant

functions

I Notation (same sequence re-written using symbols):

Q̃h
∇×−−→ R̃h

∇·−→ M̃h → 0

I If the domain Ω is homeomorphic to a sphere, then the
sequence above is exact, that is Null(∇·) = Range(∇×) and
M̃h = Range(∇·)

I On each tetrahedral element the Nedelec and Raviart-Thomas
spaces locally interpolate (contain) vector constants
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Problem setup, continued

I The Nedelec and Raviart-Thomas spaces approximate the
smooth vector functions with the error linear in mesh
parameter h (in H(curl) and H(div) norms, respectively)

I We seek to construct the “coarse” subspaces Q̃H ⊂ Q̃h,

R̃H ⊂ R̃h, and M̃H ⊂ M̃h, such that:

I The sequence Q̃H
∇×−−→ R̃H

∇·−→ M̃H → 0 is exact
I The vector constants (or other suitable functions) are still

interpolated “locally” in some sense

I We expect the resulting coarse subspaces to inherit, at least
partially, the good approximation properties of the fine-grid
spaces
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Element agglomeration and coarse topology

I We group fine elements into non-overlapping agglomerates
(we use METIS for partitioning, other approaches are possible)

I Agglomerates play the role of coarse elements

I We build coarse faces as unions of fine faces (triangles). The
fine faces which are incident to the same two agglomerates
form a coarse face.

I We build coarse edges as unions of fine edges (segments).
The fine edges which are incident to the same set of coarse
faces (the set must contain two or more coarse faces) form
the coarse edge.
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Requirements on coarse topology

I We require the coarse elements and coarse faces to be
“connected” in certain sense

I This can be easily ensured by splitting each coarse element
and then each coarse face into connected components

I In our tests, the splitting did not increase the number of
coarse elements or faces substantially (increased by at most
10%)
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Coarse elements—illustration
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Constructing the right-most space, M̃H

M̃H is defined to consist of functions which are constant on each
agglomerate
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Constructing the coarse Raviart-Thomas space, R̃H

I For each coarse face F consider the restrictions of 3 vector
constants ei to F

I e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T

I “Restriction” means we evaluate fine degrees of freedom
associated with F on each vector constant and form the
|F | × 3 matrix

I We eliminate linearly dependent columns (e.g., if the coarse
face is flat, there will be only one linearly independent column)

I Each remaining column defines a coarse shape function
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Constructing the coarse Raviart-Thomas space, R̃H ,
continued

I Coarse shape functions are obtained by solving local mixed
system on each agglomerate:

(r,φ)T + (p,∇ · φ)T = 0, ∀φ ∈ Rh(T )
(∇ · r, θ)T = 0, ∀θ ∈ Mh(T )

r · n is given on ∂T .

I Rh(T ) is the restriction of R̃h to the agglomerate T with the
additional constraint that for each r ∈ Rh(T ) r · n = 0 on ∂T

I Mh(T ) is the restriction of M̃h to the agglomerate T with the
additional constraint that each q ∈ Mh(T ) has zero average
on T

I In other words, we are locally solving the mixed formulation of
the Laplacian with constant source function and pure-flux
boundary conditions
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Properties of coarse Raviart-Thomas space R̃H

I Divergence of R̃H coincides with M̃H (M̃H is the space of
functions which are constant on each agglomerate)

I Technically, an assumption is required that each coarse face
has non-zero “average normal”

I This condition can be easily and cheaply ensured (e.g. by
splitting the offending coarse faces)

I Vector constants are interpolated exactly on each coarse
element

I If coarse elements are tetrahedrons, we exactly recover the
standard Raviart-Thomas space
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A variation of R̃H construction for flows in porous media

I Consider mixed formulation of Darcy flow in Ω, using R̃h and
M̃h as discretization spaces: find u ∈ R̃h and p ∈ M̃h such
that

(Ku, v)Ω + (p,∇ · v)Ω = 0, ∀v ∈ R̃h

(∇ · u, θ)Ω = (f , θ)Ω, ∀θ ∈ M̃h

I K may have jumps of several orders of magnitude

I The fluxes that one wants to approximate may not locally
resemble a vector constant
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A variation of R̃H construction for flows in porous media,
continued

I Incorporate the inverse permeability field K into local mixed
systems:

(K r,φ)T + (p,∇ · φ)T = 0, ∀φ ∈ Rh(T )
(∇ · r, θ)T = 0, ∀θ ∈ Mh(T )

r · n is given on ∂T .

I To define coarse shape functions on coarse faces, solve three
Darcy flow problems Ku = ∇p, ∇ · u = 0 in some
neighborhood OF of each coarse face F with 3 different
pressure boundary conditions: p|∂OF

= x , y , z

I Restrict the flux parts of the three solutions to F , then
proceed as before

I Note that if K = I then the flux parts of the three solutions
will be the three vector constants ei
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Construction of the coarse Nedelec space, Q̃H

I We associate up to three degrees of freedom with each coarse
edge (by restricting 3 vector constants)

I We additionally associate up to three degrees with each coarse
face (as described on following slides)

I Two extension steps: “edge-to-face” and “face-to-interior”
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Construction of the coarse Nedelec space: edge-to-face
extension

For each coarse face F ...

I We decompose the space of traces of coarse Raviart-Thomas
shape functions into the average normal nf and remaining
orthogonal directions si , i = 1, 2.

I Each si has the property that
∫
F si · n dA = 0

I Each si gives rise to a coarse shape function with the trace on
F defined as a solution of the following mixed system:

qf · τ = 0 on ∂F

∃p ∈Mh : (Zqf,φ) + (∇⊥ · φ, p) = 0 ∀φ ∈ Kh(F )

∇⊥ · qf = si
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Construction of the coarse Nedelec space, continued

For each coarse face F ...

I Each coarse shape function associated with coarse edge is
extended to each adjacent coarse face by solving the following
mixed system:

q̃f · τ |∂F is given

∃p ∈Mh(F ) : (Z q̃f,φ) + (∇⊥ · φ, p) = 0 ∀φ ∈ Kh(F )

∇⊥ · q̃f = nf

∫
∂F q̃f · τ dL∫
F nf · ndA

I For non-planar faces with planar boundary, we associate one
extra degree of freedom with the coarse face (average normal)

I Final step is face-to-interior extension (done similar to the
Raviart-Thomas case)
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Numerical results for coarse Raviart-Thomas space
I Unstructured mesh on box-plus-cylinder domain
I Permeability tensor K = (1 + 10(x2 + y2 + z2))−1I
I Exact solution p = sin(πx) sin(πy) sin(πz)
I METIS agglomeration, approximately 80 fine elements per

agglomerate
I Consider fine and coarse mixed systems:[

A BT

B 0

] [
u
p

]
=

[
0
f

]
[
PT
u APu PT

u BTPp

PT
p BPu 0

] [
uc
pc

]
=

[
0

PT
p f

]
I We solve coarse mixed system, interpolate solutions (flux and

pressure) to the fine grid and measure errors as compared to
the exact solutions

I We observe how errors diminish as we refine the original mesh
(this increases number of agglomerates)
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Numerical results for coarse Raviart-Thomas space

# of flux L2 flux H(div) pressure
refinements error error L2 error

0 0.73 0.78 0.81

1 0.46 0.57 0.62

2 0.23 0.33 0.37

3 0.099 0.19 0.21

The finest mesh has 354304 elements and 720192 faces.
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Numerical results for SPE10 data set

I Rectangular grid, 60× 220× 85 cells (1122000 cells total)

I Permeabilities along three coordinate axes are given for each
cell

I Permeabilities range from 10−4 to 107

I We run 2-level method

I Overlapping Schwarz is used as a smoother

I After first iteration, flux error is divergence-free (i.e. we are
effectively solving linear system with SPD matrix)

I We coarsen uniformly in x- and y- directions (not in
z-direction)

I We achieve asymptotic convergence rate (for stationary
iteration) around 0.68
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SPE10 data set – graph of permeability in Z-direction
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Conclusions and future work

Our spaces have better approximation properties than the earlier
work, specifically:

I We have built coarse versions of Raviart-Thomas spaces
(right-most part of the de Rham sequence)

I We have proposed the construction of coarse Nedelec space
(middle of the de Rham sequence)

I The coarse sequence retains the exactness of the fine one

Work in progress:

I Complete the de Rham sequence (i.e., build coarse version of
H1-conforming space)

I Extend to next-to-lowest order space and higher

I Apply the algorithm recursively for multilevel coarsening
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