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Challenges in Future Power Grid Operations

» Grid Evolution —
stochastic & dynamic

m Generation: intermittent
renewable energy,
distributed generation,

m Demand: smart loads,
plug-in hybrids,
m Other: storage, new
market design/incentives
» Information Revolution 4”;. — s.m\
— data rich but
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Mitigate Intermittency of Renewable Energy

BPA Balancing Authority — Total Wind Generation and Wind Basepoint
Feb. 26-March 4, 2010
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Balancing Authority Load Wind Generation
Scheduling wind power to track closely to nature's changes in wind speed is a challenge. Blue line is
actual generation, red is wind power scheduled in BPA's balancing authority.
Source: BPA Fact Sheet, “BPA’'s wind power efforts surge forward”, March 2010 Pacific Northwest
NATIONAL LABORATORY
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Enable Real-time Rating for Better Asset Utilization

Transfer Capacity Example — California Oregon Intertie (COIl)

Path Ratings U75, U90 and U(Limit)
Thermal rating
(N-0 = 10,500 MW)
(N-1 = 6000 MW) U75 - % of time flow
exceeds 75% of OTC (3,600
MW for COl)
WECC
Stability Rating U0 - % of time flow
<« exceeds 90% of OTC
dé (4,320 MW for COI)
_ =
= D = sl L) 5 U(Limit) - % of time
WECC/NERC Criteria 32 flow reaches 100% of
<«— OTC (4,800 MW for
COl)
75% 90% 100%
% of OTC —» \%/
Source : Western interconnection 2006 congestion management study Pacific Northwest
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Dynamic Paradigm of Power Grid Operations

» National Driver: Clean and Efficient Power Grid as well as being affordable,
reliable, and secure =» Operation: static & slow to dynamic & fast.

» Technical Approach: combine model prediction and measurement
observations to determine where we are, where we are going, and what-ifs.
m Fuse models and data with nonlinearity, discontinuity, model deficiency, and data
sparsity.
m Develop Advanced Kalman Filter and HPC codes to estimate states and models

m Solve a large number of ODE systems to predict future states and alternative
states.
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Advanced Kalman Filter for Complex Systems
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Advances from Standard Ensemble Kalman Filter

Optimal sensor placement Correction

Z, =h(X,,0)- mean(h(Xk‘,O))

= = -

minP) r, ~ normal(0, R,

Adaptive tuning Z =lzo+n zo4r, oo zo4n ]
Sk=HP;HT + R PoHT =2 (X, HPHT =z (z, )
. —1 N-1 N -1
Ty = RS;'R |

Measurement selection
Q=T CTHBP-H'C
Re=1(T) 2, < C'z,, maxtri — -k, _
¢ |CT(HP,HT +R)C
Prediction _ —
Parameter calibration Sequential estimation
X =[x ] P~ =U-D-U"
I —
Gi ~ normal(O, Qk) = H;g /2 2 /2
~ A~ A~ ~ Hll H21 H31 Hml T
— . r = [ e ]
X [Xk—l +¢4 X t0; Xy T 0y ] Ri1 Ros Rss  Rom
Xi =X+ F(X 1Yy, 0)At Select top z, per r ranking

X, =X, —mean(X,)
Multi-step prediction
Repeat prediction steps X, =X, + Kk(zk - h(Xk‘,O))

K, = (R H)JHPH] +R )

Note: equations simplified for illustration purposes.



Estimation Performance — estimation accuracy

» Excellent tracking with realistic evaluation conditions

m 3% measurement noise; 40 ms measurement cycle; 10 ms model
prediction cycle; 20% parameter errors; unknown topology
change; unknown initial states.
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Estimation Performance — measurement handling

» Measurement selection
m Pseudo inverse test: 1000 measurements, 50 states

No selection With selection

Measurements | 1000 100 50 25 12 6
Time 7.82 sec 1.31sec |0.60sec |0.52sec 0.53sec 0.58 sec
Rel Accuracy 100% 100% 100% 59% 32% 17%
» Sequential estimation . | | |
m Trade-off between ol ol o |

0.955 = = = estimated IVI using LoDiM

s {12 |V

computation time and
number of measurements

m Sequential estimation
maximizes estimation
guality with available
computing resources

m Choose measurements with
most “value” — largest 0.925}
sensitivity-to-uncertainty o | | |
ratio T4 45 5 55 6

9 time in seconds
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Computational Performance — scalability

» Current codes scale to ~1000 cores

» Rate-limiting step is some dense matrix multiplies and a Cholesky
decomposition

» A peta-scale problem
m Western US power grid: 16072 Buses, 2361 Generators =1.7*1013 flops
m To complete each step in 0.03 sec - 0.6 Petaflops/sec (ideal)
m Data movement limits efficiency to <10% - >6 PF
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Synergetic Work — look-ahead dynamic simulation

» ODEs: achieved 14x speed-up for a 400 machine system.

» Speed-up performance is expected to be better with
larger system sizes (e.g. WECC has 3000 generator).

» Promising for look-ahead capabillities.
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Synergetic Work — dynamic contingency analysis

» A large set of ODEs

» Computational challenge is load balancing — dynamic
load balancing vs. static load balancing

» Results on steady-state contingency analysis shows a
promising path forward
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» Within the current project:
m Refine the Advanced Kalman Filter algorithm and mathematics
m Scale to 10,000-100,000 cores
m Demonstrate value with integrated testing of developed algorithms

» Remaining challenges — beyond the current project :
m Develop real-time HPC platform: hardware and software stacks
m Solve a large set of high-dimension ODEs in real time
» Look-ahead dynamic simulation
» Dynamic contingency analysis

m Integrate technical elements for the dynamic grid operation
paradigm

o
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» Grid operations: from static & slow to dynamic & fast €
grid evolution meeting information revolution.

m Enabling technologies are computation advancement and data
development

» Advanced Kalman Filter has been developed to fuse
models and data to determine where we are — foundation
for a dynamic paradigm of grid operation

» Excellent estimation accuracy and computational
performance have been demonstrated with tests using
power grid models and data.

» An integrated platform and software package are being
developed for the dynamic operation paradigm — where
we are, where we are going, and what-ifs. %
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Questions?

o
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