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A bit of motivation

Laser induced fusion

NIF - National Ignition Facility

192 Lasers, delivering 4M] in a
few pico seconds

1. Target factory
To produce many low-cost targets.

2. Driver Q

To heat and compress the H
target to fusion Ignition. '

3. Fusion chamber
To recover the fuslon energy
pulses from the targets.

4. Steam or helium driven turbine-generator
To convert fusion heat Into electricity.

Many Focusing
beams element

50 | of water ~ 200,000 kwh

Energy ad libitum



A bit of motivation

How does it work ?

== Radiation *» Blowoff =» Inward transported thermal energy

3 mélon Klometers
DiStancd, maCiOomaters



Why is this a hard problem ?

V' Strong shocks are present

v/ Considerable mixing after shock

v Very long time evolution

v/ Complex physics - multi physics, multi scale

This suggests that high-order accurate methods are
suitable and likely required

Spectral methods
perform very well for

smooth problems NW\A/\A/\/\

Fourier Spectral

2"_order FD




Problems !

.. but has problems
for shocks

What we need is a high-order method that can deal
with shocks without introducing oscillations

Problem - such a scheme must be nonlinear; i.e., costly




WENO methods

The most popular and powerful way is through weighted
essentially non-oscillatory methods (WENO)

Basic idea - never evaluate

across a shock //\
o
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WENO methods

Observation -
v ENO scheme with 2p points is order p
v Central scheme with 2p points is order 2p-|

This leads to the Weighted ENO schemes (Jiang/Shu’94)
fl—|—1/2 — W— 2f i+1/2 + W 1f 11/ + w0f1+1/2
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WENO methods

To test the value of such methods consider

v 2D compressible Euler equations
Vv Mix of SF6 and air

v'Mach 1.21 shock Density
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WENO methods

Experiment

3| Collins/Jacobs,
2002

S5ms é6ms 6.88ms



3D and Validation

Amplitude vs Time
Aleshin et al. Shot 630B
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A hybrid method

Problems

v/ Computational expense (nonlinearity, characteristics etc)
v Limited order of accuracy in smooth regions

What we seek is a method that

V' Uses WENO in regions with shocks and steep gradients
V' Uses spectral methods in regions with smooth solutions

A few problems to address to enable this

v What do we do in the smooth regions ?
v' How do we decide ?
V' How do we connect ?




Element based hybrid

The foundation of the algorithm

v Split computational domain into elements

V' In each element use WENO or spectral method

v/ Dynamically change WENO/Spectral approach
based on smoothness

v Connection elements through overlaps

We use spectral methods in the smooth domains

N .

T
§:f379 99 Xj = —COS —
— N
7=0

This is well known and well understood for smooth problems



A hybrid method

The devil is always in the details

v Connecting the regions -
through overlaps

v Imposing boundary conditions -
through penalty terms

Un(t,z) = un(t, ) + (gp(t) — un(t, z0))Lo(x)

OU(t,x)  Oup(t,x)
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(‘Mo (m)

ox



A hybrid method

Detecting shocks through multi-resolution -

| —1 —1 —1 —1 —1 —1 —1 —1 —1 —1 E

Define

Compute d;. = fl(c) — D (ZE%)

One can show (Harten’94)

d” 'L
dy — Af[@ff] S 2T, Small ‘d’ - smooth
Aazs% s <,



A hybrid method
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f(z) =4 > —05<2<0
sin(27x) 0<z<1

—c—— MR 3rd Order
=——o——m MR 8th Order
— f(X)

------
_____

.................
........

.........

o

12

10

f(x)

Mach 3 density for Shock-
Density problem

3rd Ord ]

10° |- 5th Order ]

7th Order |

_10%F ]

5 ]

o] _

- —

B ;4 ]

:§ 1 O — .

= _

(] _

o

0 -6

m 1 0 - _

= |

10° ’ |

1 0-1 0 I [ I T N I T SR RN R | 1

f(x)



Euler’s equations

Closer to reality f(u) = [pv, pv® + p, (pE + p)v]

6’u|6’f(u)_0
o  Or

u = [p, pv, pE]
Osher-Shu shock entropy problem
(3.857143,2.629369,10.33333) < —9.5,

(p,v,p)(0,2) = (1.0,0.0,1.0) — 9.5 <z < —8.85,
(exp(—0.01sin(13(x — 8.85))), 0, 1.0) r > —8.85,

Classic test case that combined
shocks with mixing

A b b b b b b
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Euler equations

Rho

Rho

1T=0.0
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Rho

Euler equations

Shock-Wave Problem Blast VWave Problem
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Extension to 2D ! -- fairly straightforward




2D RMI tests

15F
Ma =125
d I
B 175
- 163
0.5 - 151
[Initial Condition | - 138
L 1.14
=> 0fF 102
. 0329
L 077
sk 055
1 :.
-1.5 -l 1 " N l 1 Ll L l I l L Ll Ll l I l I l Ll Ll l
1] 0.5 1 1.5 2 25 3 3.5 4
X
1 =
WENO Subdomains 05 -
1 1 1 1 I 1L 1 ™~
4 -
== D-
05
Ma = 3.00 ;
R
C 1 1
0 1 2 3



Main goal was acceleration

Foe 1.0el 0% 30x10% & 0e 10 7,061 D RODx 1D

Brp= 0 Time= OCOCOE-+DO)

Ma = 4.46

Number of subdomains | Grid size | Hybrid S12W20 | WENOS5 | Speedup
10x10 200x200 2065 282 1.06
20x20 400x400 2009 2762 [
40x40 800x800 14410 26090 e
80x80 1600x1600 112900 253996 U, !




Main goal was acceleration

Two main reasons -

Different block meshes
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A Fourier based hybrid method

If we can use a Fourier spectral method in the ‘smooth
domains’ we obtained two things

Simpler connection Comparable timestep
between elements

At o« —
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A Fourier Continuation Method

Based on smooth polynomial continuation

Original function Copy

VYNV,

Extension M/\/\/’M/\/\
Extension M/\/J\f\/\/\/\/



A Fourier Continuation Method

Based on smooth polynomial continuation

Original function Copy

N NS

Add WW/

<« >

Periodically extended function



Euler’s equations
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Table 1: Error in entropy amplification, Mach = 3.0, T' = 5.0, ND = 80, NP = 32, At =
4.4 x 10~4
Method Error near shock | Error far from shock /|| CPU time(s)
WENOS5H 22.1% 56.2% 99.0
WENQOb5-z 10.5% 22.6% 99.0
FC5-WENQOb5-z 10.4% 10.2% 32.0
WENO9 4.4% 4.0% 188.0
FC5-WENO9 4.4% 4.1% S




Euler’s equations &

Table 3: Error in entropy amplification, Mach = 6.0, T' = 2.5, ND = 160, NP = 32, At =
1.1 x 10—4

Method Error near shock | Error far from shock || CPU time(s)
WENOb5-z 6.5% 7.7% 325.0
FC5-WENO5-z 7.3% 7.2% 98.0
WENQO9 1.8% 1.7% 618.0
FC5-WENQO9 1.8% 1.8% 106.0

About 6 times faster - |D




A 2D case

45 deg small amplitude entropy wave

\\ Contour
Var: ENTROPY
0.4600
0.452
0.

. X 5.5 6.0 4.0 4.5 5.0 X
Post shock pressure Post shock entropy
wave at 46.6 deg wave at 14.5 deg

Agrees with linear theory (McKenzie and Westphal, 1969)



What about GPU’s ?
Why should GPU’s be of interest here ?

v High arithmetic complexity of high-order methods
v Typically lots of work/degree of freedom
V' Need for large and complex simulations

What makes performance complicated !

v/ Dynamic nature of algorithm
V' Essential differences in how elements are treated
Vv To use FFT’s or not - tradeoff between
Long vectors decrease cost - O(NlogN)
Short vectors decreases VWENO parts



GPU acceleration %

Assume FFT’s in all domains for sanity check

ND/NP | 64 CPU | 256 CPU 512 CPU
16 204 | 80 1322 2880 3750 12910
64 | 1018 | 1300 | 7873 46990 | 26891 | 211370 | )
128 2049 | 5160 | 24088 | 187210 | 109084 | 851610
256 4900 | 20680 | 104405 | 750190 | 399708 | 3330060
. J

5-10 times is realistic -

Strategy for hybrid for large problems

v Prepare all data and compute everywhere using CUFTT
Vv Filter and modify expansion coefficients
v Compute inverse FFT

v Identify WENO domains and recompute derivatives
v Update field values



GPU acceleration @@

Considerations when going 2D/3D -

v Line-by-line or domain by domain ?
V' Size of shared memory

speedup vs N for 2D puer WENO

for different number of domians ND

WENO behaves

8 & ND=4
= = ND=1
3 - ND=256
8 ¥ ND=16
“ s A ND=64

A

0 50 100 150 200 250 300 350

N(number of points per domain)



GPU acceleration

NP=128

M 25% WENO
domain

Q 6

3 B 50% WENO

3 domain

TR 1 75% WENO
domain

2
| -:
0

16

ND

More work is better - good for 2D/3D



Putting it all together

Marked blocks are WENO blocks ~ 30%



GPU acceleration

Good behavior translates from CPU to GPU

WENO vs hybrid

0.6
0.5
04 B hybrid/weno(on CPU)
M hybrid/weno(on GPU)
0.3
| . .
0.1
0
40 160 640 2560
ND

ratio




Concluding remarks

On the algorithmic part

Vv Significant potential in hybrid FC-WENO schemes for
complex multi-scale problems.
v Most core elements have been demonstrated.

v General geometries and increased physical complexity
remains next challenge

Reasonable GPU acceleration is possible despite dynamic
nature of method



ICERM

Institute for Computational and Experimental
Research in Mathematics

~
© ILETT

v The newest NSF National Mathematics Institute
v Located at Brown University, Providence, R
v Fully operational this semester

Encourage and enable research and education at the
interface between mathematics and computing

Microsoft:

Google Research Z===




ICERM

Program activities include

Fall 201 |: Kinetic theory and computation
Spring 2012: Complex and arithmetic dynamics

Fall 2012: Computational challenges in probability

Spring 201 3: Automorphic forms and multiple
Dirichlet series

Winter 201 |: Syncronization- and communication-
reducing algorithms and programming models

Interested: icerm.brown.edu
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