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(a) t = 25.0 µs (b) t = 50.0 µs

Figure 10: Contour plot of the density ρ with Ms = 4.46, λ = 3.6cm, a = 1cm at time (a) t = 25.0 µs, and
(b) t = 50.0 µs of the Richtmyer-Meshkov Instability as computed by the Hybrid scheme.
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(a) t = 52.0 µs (b) t = 100.0 µs

Figure 11: Contour plot of the density ρ with Ms = 8, λ = 3.6cm, a = 1cm at time (b) t = 52.0 µs, and (c)
t = 100.0 µs of the Richtmyer-Meshkov Instability as computed by the Hybrid scheme.
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A bit of motivation

Energy ad libitum

Laser induced fusion

NIF - National Ignition Facility

192 Lasers, delivering 4MJ in a 
few pico seconds 

50 l of water ~ 200,000 kwh



A bit of motivation

How does it work ?

Problems ? -- the real world is not ideal



Why is this a hard problem ?

✓ Strong shocks are present
✓ Considerable mixing after shock
✓ Very long time evolution
✓ Complex physics - multi physics, multi scale

This suggests that high-order accurate methods are 
suitable and likely required

Spectral methods 
perform very well for 
smooth problems

Fourier spectral methods have small
dispersion errors

2nd-order FD

Fourier Spectral



Problems !
Problem: Fourier series has poor convergence
at jumps

f (x) ⇡
NX

k=�N

f̂k exp
 
2⇡ikx

1

!

.. but has problems 
for shocks

What we need is a high-order method that can deal 
with shocks without introducing oscillations

Problem - such a scheme must be nonlinear, i.e., costly



WENO methods

The most popular and powerful way is through weighted 
essentially non-oscillatory methods (WENO)

Basic idea - never evaluate 
across a shock 

Numerical methods for scalar problems
ENO schemes in 1D

FV schemes in 2D/3D
Advancing in time

Finite di↵erence ENO schemes
Weighted finite di↵erence ENO schemes
Finite volume ENO schemes
Weighted finite volume ENO schemes

Non-conservative FD ENO scheme for ut + f (u)x = 0

Finite di↵erences d0
i = f (un

i ) dk
i = dk�1

i+1 � dk
i .

i i+1 i+2i−1i−2

Interpolation polynomial Pi (x):

1 k := 0

2 for r = 1 to p � 1 do:

3 if |d r
i+k�1| < |d r

i+k | then k := k � 1

4 Pi (x) interpolates fj for
j = i + k, ..., i + k + p � 1.

Non-conservative ENO scheme

un+1
i = un

i ��t (Pi (x))x .

Jǐŕı Fürst WENO Schemes for Transonic Flows

To update cell, there are 3 options

Numerical methods for scalar problems
ENO schemes in 1D

FV schemes in 2D/3D
Advancing in time

Finite di↵erence ENO schemes
Weighted finite di↵erence ENO schemes
Finite volume ENO schemes
Weighted finite volume ENO schemes

Conservative ENO schemes

Example (Third order ENO scheme (f 0 > 0) (Shu, Osher))
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Numerical methods for scalar problems
ENO schemes in 1D

FV schemes in 2D/3D
Advancing in time

Finite di↵erence ENO schemes
Weighted finite di↵erence ENO schemes
Finite volume ENO schemes
Weighted finite volume ENO schemes

Conservative ENO schemes

Conservative approximation: [Shu, Osher]

f (x) = 1
�x

R x+�x/2
x��x/2 h(⇠) d⇠, ) f (xi )x =

h(xi+1/2)�h(xi�1/2)
�x ,

H(x) =
R x
�1 h(⇠) d⇠, ) H(xi ) =

Pi
l=�1 f (ul)

Conservative ENO scheme

Pi+1/2(x) is ENO for H(xj) with initial k = 0 or 1,

fni+1/2 = H 0(xi ), and un+1
i = un

i � �t
�x (fni+1/2 � fni�1/2).
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Which one is preferred 
depends on smoothness



WENO methods

Observation - 
✓ENO scheme with 2p points is order p
✓Central scheme with 2p points is order 2p-1

This leads to the Weighted ENO schemes (Jiang/Shu’94)

Numerical methods for scalar problems
ENO schemes in 1D

FV schemes in 2D/3D
Advancing in time

Finite di↵erence ENO schemes
Weighted finite di↵erence ENO schemes
Finite volume ENO schemes
Weighted finite volume ENO schemes

Weighted FD ENO schemes

Example (Fifth order WENO scheme (Jiang, Shu))

fi+1/2 = !�2f
�2
i+1/2

+ !�1f
�1
i+1/2

+ !0f
0
i+1/2

.

where

IS�2 = 13/12(fi�2 � 2fi�1 + fi )
2 + 1/4(fi�2 � 4fi�1 + 3fi )

2

IS�1 = 13/12(fi�1 � 2fi + fi+1)
2 + 1/4(fi�1 � fi+1)

2

IS0 = 13/12(fi � 2fi+1 + fi+2)
2 + 1/4(3fi � 4fi+1 + fi+2)

2

↵k =
Ck

(✏ + ISk)2
, !k =

↵k

↵�2 + ↵�1 + ↵0
.

with C�2 = 1/10, C�1 = 6/10, C0 = 3/10 and ✏ = 10�6.
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WENO methods
To test the value of such methods consider

✓2D compressible Euler equations
✓Mix of SF6 and air
✓Mach 1.21 shock

WENO3 WENO5 WENO9

6 ms

7 ms

Figure 2: The density and vorticity fields at (top two rows) 6 ms (before reshock) and (bottom two rows) 7
ms from the third-, fifth- and ninth order WENO simulations.
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WENO methods
(a) 5 ms (b) 6 ms (c) 6.88 ms

Figure 3: Comparison of (bottom row) corrected PLIF images from the experiment of Collins and Jacobs[?]
with the density from the (top row) ninth-order WENO simulation at selected times (a) before reshock, (b)
after reshock and (c)later in time. The gases are air(acetone) (blue) and SF6 (red).
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(a) 5 ms (b) 6 ms (c) 6.88 ms

Figure 3: Comparison of (bottom row) corrected PLIF images from the experiment of Collins and Jacobs[?]
with the density from the (top row) ninth-order WENO simulation at selected times (a) before reshock, (b)
after reshock and (c)later in time. The gases are air(acetone) (blue) and SF6 (red).
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WENO9

Experiment
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2002



3D and Validation
Fig. 6. An illustration of the two-mode interface perturbation with noise for the Mach 1.5 air/SF6

Vetter-Sturtevant shock-tube experiment.

Fig. 7. The iso-surface of the density field at t = 4ms.

1.0.3 Papers

(1) R. Borges, M. Carmona, B. Costa & W. S. Don, An Improved Weighted Essentially
Non-Oscillatory Scheme for Hyperbolic Conservation Laws, Journal of Computational
Physics 227, 2008
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The$isosurface$of$the$density$and$vorticity$in$the$three$dimensional$simulation$of$
Rayleigh–$Taylor$instability$based$on$the$Navier9Stokes$equations$at$the$(Left)$early$
and$(Right)$late$time.$
&
&
Nonlinear&artificial&viscosity&techniques&for&Discontinuous&Galerkin&Methods&
We&have&developed&a&novel,&cell3local,&GPU3suited&shock&detector&for&use&with&
discontinuous&Galerkin&(DG)&methods.&The&output&of&this&detector&is&a&reliably&
scaled,&element3wise&smoothness&estimate,&which&is&suited&as&a&control&input&to&a&
shock&capture&mechanism.&Using&an&artificial&viscosity&in&the&latter&role,&we&have&
obtained&a&DG&scheme&for&the&numerical&solution&of&nonlinear&systems&of&
conservation&laws.&
&
The&motivation&for&the&construction&of&the&detector&lies&in&the&marked&gains&in&
execution&speed&of&DG&possible&through&the&use&of&graphics&processors&(GPUs)&that&
we&have&recently&demonstrated.&Building&on&previous&work&we&have&thoroughly&
justified&the&design&of&the&scheme&and&analyzed&its&performance&on&a&number&of&
synthetic&and&real3world&benchmarks.&&

&

&

A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

(a) Approximate numerical solution for density and pres-
sure of Lax’s problem for polynomial degree N = 5 in
K = 80 elements.

(b) Approximate numerical solution for density and pres-
sure of a shock-wave interaction problem for polynomial
degree N = 5 in K = 80 elements.

Figure 19: Solutions of classical test problems for the Euler equations using the artificial viscosity
scheme.

As a final validation of the detector’s design on the Euler equations, it is important to examine
whether it will recognize smooth solutions and leave them untouched, preserving high-order
accuracy. We have tested this using the smooth isentropic vortex test case of Zhou and Wei [62] with
the result that as soon as sufficient resolution is available, the detector does not activate anywhere at
any time during the solution process.

6.5 Initial Experience in Two Dimensions
One of the core goals in the design of the smoothness detector was to be seamlessly generalizable to
multiple dimensions. This is the case, however as discussed in Section 4.3, several ambiguities arise

Figure 20: Density contours (30 contours, equispaced over � � (0, 10]) of a problem involving a
forward-facing step in a Mach 3 wind tunnel [20, 59] at time states t = 0.15 and t = 0.38.

36

Approximate$solution$of$classic$shock9tube$problems$using$a$high9order$
discontinuous$Galerkin$methods$with$the$new$nonlinear$artificial$viscosity.$Note$
the$lack$of$Gibbs$oscillations$even$at$5th$order$accuracy.$$
&

Navier-Stokes extension



A hybrid method

What we seek is a method that 

✓ Uses WENO in regions with shocks and steep gradients
✓ Uses spectral methods in regions with smooth solutions 

A few problems to address to enable this

✓ What do we do in the smooth regions ?
✓ How do we decide ?
✓ How do we connect ?

WENO3 WENO5 WENO9

6 ms

7 ms

Figure 2: The density and vorticity fields at (top two rows) 6 ms (before reshock) and (bottom two rows) 7
ms from the third-, fifth- and ninth order WENO simulations.

5

✓Computational expense (nonlinearity, characteristics etc)
✓Limited order of accuracy in smooth regions

Problems



Element based hybrid

The foundation of the algorithm

✓ Split computational domain into elements
✓ In each element use WENO or spectral method
✓ Dynamically change WENO/Spectral approach 
         based on smoothness
✓Connection elements through overlaps

For periodic problems, the natural basis functions are the trigonometric polynomials of degree k, φk(x) =
eiπkx with weight function w(x) = 1 and x ∈ [−1, 1).

For non-periodic problems in a finite domain x ∈ [−1, 1], Chebyshev polynomials φk(x) = Tk(x) with
w(x) = (1 − x2)−

1

2 or, Legendre polynomials φk(x) = Lk(x) with w(x) = 1 are the most used bases.

The collocation version of spectral methods approximates a function f(x) by an interpolating polynomial
given by

INf(x) =
N

∑

k=0

akφk(x), ak =
N

∑

i=0

ωif(xi)φk(xi), (4)

where IN is the interpolation operator, xi and ωi are the Gauss-Lobatto quadrature nodes and weights
respectively (Gauss-Radau and Gauss nodes can also be used). Alternatively,

INf(x) =
N

∑

j=0

f(xj)gj(x), (5)

where gj(x) are the cardinal functions: Lagrangian interpolation polynomials of degree N such that gj(xi) =
δij .

The derivatives of f(x) at the collocation points xi can be computed via equations (??) or (??). The
former makes use of the fast cosine transform (CFT) algorithm and the latter uses a matrix-vector algorithm.

The approximation error in spectral methods depends only on the regularity of the approximated function.
A typical error estimate is of the form

|f(x) − PNf(x)| ≤ CN
1

2
−p

(
∫ 2π

0
|f (p)(ξ)|2dξ

)

1

2

, (6)

where C is a constant independent of N and f (p) denotes the p-th derivative of f . We see that the approxi-
mation error decays as O(N−p) for any Cp function and if the function is analytic then

|f(x) − PNf(x)| ≤ Ce−αN , (7)

for some α > 0, resulting in exponential convergence. Similar results hold for the pseudospectral (collocation)
formulation. However, in the case of piecewise smooth functions, the order of accuracy is reduced to O(1)
due to the well known Gibbs phenomenon.

Reconstruction techniques such as the direct and inverse Gegenbauer expansions (see [?, ?] and refer-
ences contained therein) have achieved some success as a postprocessing treatment to remove the Gibbs
oscillations. These techniques followed the achievement of relevant theoretical results demonstrating conver-
gence properties of spectral approximations of discontinuous solutions. For instance, Gottlieb and Tadmor
proved that, for linear problems, the moments of the numerical solution computed by spectral methods are
spectrally accurate. Lax had argued that high order information about the solution is contained in high
resolution schemes, even for nonlinear problems. Hence highly accurate essentially non-oscillatory solution
can be extracted from the seemingly oscillatory noisy data. Tadmor showed convergence of spectral methods
for nonlinear scalar equations. Nevertheless, the rapid growth rate of the Gegenbauer polynomials cause
several numerical problems which are difficult to overcome. Very often, the domain must be subdivided in
order to apply the Gegenbauer reconstruction when dealing with complex and localized flow structures.

2.2 WENO finite difference scheme

These numerical difficulties associated with the global spectral method are among the main reasons why local
nonlinear adaptive shock capturing finite differences have been the method of choice when dealing with non-
linear conservation laws. Among these, the most commonly used are the Essentially Non-Oscillatory schemes
(ENO). In order to avoid numerical oscillations, ENO schemes bias the local stencil, discarding interpolations
across discontinuities when computing the tendencies of the numerical solution. The Weighted Essentially
non-Oscillatory (WENO) method ([?]) is an improvement over the ENO method with the introduction of a

10

xj = � cos
�i

N

This is well known and well understood for smooth problems

We use spectral methods in the smooth domains



A hybrid method

The devil is always in the details

✓Connecting the regions - 
      through overlaps

(a)

(b)

(c)

| | | | |

| | | | |

| | | |

Figure 2: (a) An interval is divided into four domains: two boundary domains and two internal
domains with | signifying a domain boundary; (b) The grid points shown with square symbols
with N = 8 for each domain; (c) The stencils for computing derivatives using the FC method
for the left boundary domain and one of the interior domains.

for shock-entropy-wave-interaction problems. As we shall see, we demonstrate
in all cases substantial advantages over existing alternatives, both in terms of
accuracy and computational performance.

4.1. Advection equation

We first consider the advection equation, Eq. (18) with f(u(t, x)) = u(t, x),
in a periodic spatial domain [0, 2⇡] with a sinusoidal initial condition u =
sin(x). This problem is solved using three di↵erent methods: a fifth-order
Fourier continuation (FC5) method, a fifth-order central di↵erence (CD5) and
a sixth-order central di↵erence (CD6) method [30].

The results at the final time T = 100 are compared in Fig. 3, showing the
maximum error over all time as a function of the wave number . For the FC5
method we assume 10 points per wave length (PPW) and CD5 and CD6 have
20 and 15 PPW, respectively. It should be noted that even though the problem
is periodic, we still apply the full FC framework, i.e., we do not reduce the
computation to a pure Fourier spectral method.

While error grows linearly with increasing wave number for the central di↵er-
ence methods, the situation is quite di↵erent for the FC method—for which the
error remains constant at around 1%, see also [7]. This is in line with the classic
analysis for Fourier spectral methods [21] and illustrates the significant advan-
tage provided by the FC method over central di↵erence methods for multi-scale
problems with wide frequency spectra and long time integration.

We next study the rate of convergence of the FC5 method for solving the
advection equation in the periodic spatial domain [0, 2⇡] with the low-frequency
exact solution u(t, x) = exp(cos(x� t)). In Fig. 4 the maximum error over time
up to the total time T = 100 is plotted versus the grid spacing for the FC5
method and, for comparison, for the CD5 and CD6 methods as well. The FC5
method delivers fifth-order accuracy but with a constant that is about one to two
orders of magnitude smaller than that found for the central di↵erence scheme.
Hence, for a specific accuracy requirement, the FC5 requires considerably less
degrees of freedom, in particular when extending to multiple dimensions. Fur-
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✓Imposing boundary conditions - 
      through penalty terms

As we shall discuss in Sec. 4, the appearance of very small unstable eigenvalues
through the Fourier continuation may render this approach weakly unstable. To
remedy this, we apply a very weak exponential filter to damp out high-frequency
modes and thus stabilize the numerical method with minimal adverse impact
on accuracy [20]. Specifically, after computing the Fourier coe�cients â

j

(t) on
the extended domain, we compute the modified coe�cients ã

j

(t), as

ã

j

(t) = exp(��(j/N/2)2q)â
j

(t), (22)

leading to
@u

h

(t, x
k

)

@x

=
X

j2g(M)

2⇡ij

L

d

ã

j

(t)e(
2⇡i
Ld

xkj)
. (23)

In (22), we choose � such that the highest mode, ã

N/2(t), vanishes that is,
� = �log("

M

), where "

M

is the machine precision, typically 10�16. In this
work, the filter order, q, is typically chosen q ⇡ N/2 for N < 200. For larger
N > 200, the order of the filter is required to be lowered, q < N/2, to maintain
stability. The impact of such a weak filter is truly minimal, as is demonstrated
clearly by the numerical examples discussed later.

Following [33, 32] we impose Dirichlet boundary conditions weakly through
a penalty term, although strongly enforced boundary conditions are generally
also possible in this context, see [1, 6, 7]. However, in the particular formulation
introduced here the weak approach is a natural choice since the FC discretization
is based on a set of internal grid points, excluding the two end points of the
interval where boundary conditions are needed.

Assuming the given boundary value u(t, x = a) = g

D

(t) for Eq. (18), the
approximate solution U

h

(t, x) is recast as

U

h

(t, x) = u

h

(t, x) + (g
D

(t)� u

h

(t, x0))L0(x), (24)

where L0(x) is the first Lagrange Fourier interpolating polynomials ([34]) based
on the set of grid points on the extended domain, xe

k

= a+ kL

d

/N , with

L0(xe0) = 1 (25a)

L0(xek) = 0 k = 1, · · · , N � 1. (25b)

The resulting modified solution derivative is

@U

h

(t, x)

@x

=
@u

h

(t, x)

@x

+ (g
D

(t)� u

h

(t, x0))
@L0(x)

@x

. (26)

When extending to a system of equations, it is essential to apply boundary con-
ditions weakly using the characteristic compatibility method ([31]) ensuring that
outgoing characteristics are not restricted by unphysical boundary conditions.

Remark 4. For nonlinear problems, the use of an exponential filter serves
the additional purpose of removing energy accumulated at high frequencies, and
thus stabilizing the calculations at high frequencies due to the nonlinearity of
the governing equation [20].
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introduced here the weak approach is a natural choice since the FC discretization
is based on a set of internal grid points, excluding the two end points of the
interval where boundary conditions are needed.

Assuming the given boundary value u(t, x = a) = g
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@U

h

(t, x)

@x

=
@u

h

(t, x)

@x

+ (g
D

(t)� u

h

(t, x0))
@L0(x)

@x

. (26)

When extending to a system of equations, it is essential to apply boundary con-
ditions weakly using the characteristic compatibility method ([31]) ensuring that
outgoing characteristics are not restricted by unphysical boundary conditions.

Remark 4. For nonlinear problems, the use of an exponential filter serves
the additional purpose of removing energy accumulated at high frequencies, and
thus stabilizing the calculations at high frequencies due to the nonlinearity of
the governing equation [20].
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Detecting shocks through multi-resolution - 

3.3. Detecting the discontinuities
Detecting discontinuities in the solution or its derivatives is an essential

component and prerequisite for the hybrid strategy to be e↵ective. For systems
of nonlinear conservation laws like the Euler system of gas dynamics, the location
of the discontinuities, e.g. shocks, are not known a priori and may emerge
and propagate as the solution advances. We thus need to estimate the local
smoothness from the solution field at regular temporal intervals. To this end,
the multi-resolution (MR) analysis introduced by Harten [9] and later used in
the context of a hybrid spectral-WENO method by Costa and Don [10] has
proven to be e↵ective. We present a brief description of this approach in what
follows; a detailed account can be found in [9, 10].

Using the solution values f0
k

at equi-spaced grid points x0
k

(k = 1, · · · , 2N +
1) at which the approximate solutions are known, we construct the solution
averages f

1
k

at one level coarser grid points x

1
k

= (x0
2k�1 + x

0
2k+1)/2 with k =

1, · · · , N as

f

1
k

=
f

0
2k + f

0
2k+1

2
8k = 1, · · · , N. (33)

Let p

s

(x) denote the polynomial approximation of order s interpolating f

1
k

at
the coarser grid points x

1
k

. The approximation di↵erences, d
k

= f

0
k

� p

s

(x0
k

),
have the property that if f(x) has r � 1 continuous derivatives and a jump
discontinuity at rth derivative, then

d

k

=

⇢
�x

r[d
r
fk

dx

r ] s � r,

�x

s

d

s
fk

dx

s s < r,

(34)

where �x denotes the coarse grid spacing and where [·] denotes jumps across a
discontinuity. This implies that the higher degree of smoothness of the solution,
and the higher the order of the polynomial approximation on the coarser grid
(in the case of smooth function), the smaller the approximation di↵erences, d

k

.
We thus adopt a tolerance ✏, below which the function is assumed to be smooth
and otherwise identify it as non-smooth. Once we have found the approximate
locations of the discontinuities by this method, the domains containing smooth
solutions are treated by the FC method and those with non-smooth solutions
are treated by the WENO scheme. This simple strategy works well except
for situations in which a discontinuity is very close to a boundary of a sub-
domain, within a few grid points. In this case, the neighboring domain is also
marked as a WENO domain to ensure conservative and non-oscillatory transfer
of the discontinuity between neighboring domains. This strategy is similar to
the strategy adopted in [10]. In our implementation, detection of a discontinuity
within two grid points away from a sub-domain boundary is used to dictate the
WENO treatment of the sub-domain.

Remark 9. Note that for low resolution (i.e., for representations of the solu-
tion using a small number of spatial grid points) the multi-resolution analysis
may fail to distinguish between a discontinuity and a large smooth solution gra-
dient. An illustration of this fact is presented below in the case of the Euler
system. In such regions, the algorithm marks the solution as being non-smooth.
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Figure 2: (a) An interval is divided into four domains: two boundary domains and two internal
domains with | signifying a domain boundary; (b) The grid points shown with square symbols
with N = 8 for each domain; (c) The stencils for computing derivatives using the FC method
for the left boundary domain and one of the interior domains.

for shock-entropy-wave-interaction problems. As we shall see, we demonstrate
in all cases substantial advantages over existing alternatives, both in terms of
accuracy and computational performance.

4.1. Advection equation

We first consider the advection equation, Eq. (18) with f(u(t, x)) = u(t, x),
in a periodic spatial domain [0, 2⇡] with a sinusoidal initial condition u =
sin(x). This problem is solved using three di↵erent methods: a fifth-order
Fourier continuation (FC5) method, a fifth-order central di↵erence (CD5) and
a sixth-order central di↵erence (CD6) method [30].

The results at the final time T = 100 are compared in Fig. 3, showing the
maximum error over all time as a function of the wave number . For the FC5
method we assume 10 points per wave length (PPW) and CD5 and CD6 have
20 and 15 PPW, respectively. It should be noted that even though the problem
is periodic, we still apply the full FC framework, i.e., we do not reduce the
computation to a pure Fourier spectral method.

While error grows linearly with increasing wave number for the central di↵er-
ence methods, the situation is quite di↵erent for the FC method—for which the
error remains constant at around 1%, see also [7]. This is in line with the classic
analysis for Fourier spectral methods [21] and illustrates the significant advan-
tage provided by the FC method over central di↵erence methods for multi-scale
problems with wide frequency spectra and long time integration.

We next study the rate of convergence of the FC5 method for solving the
advection equation in the periodic spatial domain [0, 2⇡] with the low-frequency
exact solution u(t, x) = exp(cos(x� t)). In Fig. 4 the maximum error over time
up to the total time T = 100 is plotted versus the grid spacing for the FC5
method and, for comparison, for the CD5 and CD6 methods as well. The FC5
method delivers fifth-order accuracy but with a constant that is about one to two
orders of magnitude smaller than that found for the central di↵erence scheme.
Hence, for a specific accuracy requirement, the FC5 requires considerably less
degrees of freedom, in particular when extending to multiple dimensions. Fur-
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A hybrid method

convex combination of all the available stencils. WENO achieves optimal order of accuracy at smooth parts
of the solution with the same stencil size of ENO. Nevertheless, the intrinsic numerical dissipation of WENO
schemes, although necessary to properly capture shock waves, damps relevant small scales, even when these
are smooth components of the solution. The numerical dissipation can be reduced by increasing the number
of points, as well as the order of the WENO scheme which, however, would make the scheme expensive to
apply. This would also means waste of computational effort since it would not change the situation of well
resolved structures at the smooth regions of the solution. Moreover, the fixed order of the finite differences
does not provide the exponential resolution of spectral schemes.

For a system of conservation laws such as the Euler equations, the eigenvectors and eigenvalues of the
Jacobian of the flux are computed via the Roe Average method. Global Lax-Friedrichs flux splitting is used
to split the flux into its positive and negative components. Artificial dissipation based on the modulus of the
eigenvalues is added in order to obtain a smoother flux. The resulting positive and negative flux components
are then projected into the characteristic fields using the left eigenvectors to form the positive and negative
characteristic flux variables at each grid cell center. Then, high-order WENO polynomial reconstruction, as
described above, is used to obtain these characteristic flux variables components at the grid cell boundaries,
which, after summation, are finally projected back to physical space via the right eigenvectors. The details of
this algorithm can be found in [?]. These characteristic flux variables projections are the expensive part of the
WENO scheme when applied to systems of equations. They are necessary because high order approximation
is not achieved within the framework of the conservative variables.

2.3 Hybrid methods

The main idea of the Hybrid scheme is straightforward:

Partition the physical domain into equal sized subdomains, avoid Gibbs phenomenon by treating dis-
continuities with essentially non-oscillatory shock capturing WENO methods and increase the numerical
efficiency by treating the smooth parts of the solution with spectral methods.

Hence, Shocks and high gradients are kept at WENO subdomains, while complex, but still smooth,
details of the solution are treated within spectral subdomains.

The main advantages of the Hybrid methods are

Increase numerical efficiency with respect to the classical spectral and characteristic-based WENO
finite difference methods,

Avoid the deployment of postprocessing techniques of the spectral method approach of high order
shocks reconstruction [?, ?] since no Gibbs phenomenon will occur, and

Decrease the need of an expensive characteristic decompositions and projections of the WENO method
in the smooth parts of the solution [?, ?, ?, ?, ?, ?].

2.4 Multi-Resolution Algorithm

The main issues that have been resolved in the construction of the Hybrid method are the smoothness
measurement of the solution and the subdomains types switching algorithm.

We employ the high order multi-resolution algorithm by Ami Harten [?] to build a local classification
of the solution into smooth and rough. Originally built to decrease the work of the fluxes computations of
Conservation Laws, Harten’s Algorithm proposes to use information from coarser grids when the solution is
locally over-represented.

The detection capability of the Multi-Resolution analysis is best shown in the Figure PAF. The left and
right figures of Figure ?? show the piecewise analytic function

f(x) =







10 + x3 −1 ≤ x < −0.5
x3 −0.5 ≤ x < 0

sin(2πx) 0 ≤ x ≤ 1
, (8)
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and the density (ρ) of the Mach 3 Shock-Entropy wave interaction problem [?] as computed by the classical
fifth order WENO finite difference scheme, respectively.

x

M
R
C
oe
ffi
ci
en
td

f(x
)

-0.5 0 0.510-12

10-10

10-8

10-6

10-4

10-2

100

-2

0

2

4

6

8

10

12
MR 3rd Order
MR 8th Order
f(x)

x

M
R
C
oe
ffi
ci
en
td
(x
)

f(x
)

-4 -2 0 2 410-10

10-8

10-6

10-4

10-2

100

0

1

2

3

4

5
f(x)
3rd Order
5th Order
7th Order

Figure 6: (Left) The third and eighth order MR coefficients di of the piecewise analytic function. (Right)
The third, fifth and seventh order MR coefficients di of the density f(x) = ρ of the Mach 3 Shock-Entropy
wave interaction problem.

The test function (??) has a jump discontinuity at x = −0.5 and a discontinuity at its first derivative
at x = 0. One can see that at each grid point the differences di decay exponentially to zero inside the
analytical pieces of the function when the order of interpolation increases from nMR = 3 to nMR = 8. At the
discontinuity x = 0.5, the measured differences di are O(1) and remain unchanged despite the increase of
the interpolation order. Similar behavior is exhibited at the derivative discontinuity at x = 0 with a smaller
amplitude.

Also, in the right figure of Figure ??, the density of the Mach 3 Shock-Entropy wave interaction problem
and the corresponding MR coefficients di are shown for the third, fifth and seventh order Multi-Resolution
analysis. The location of the main shock is at x ≈ 2.73 and the shocklets behind the main shock are well
captured. The high frequencies behind the main shock are much better distinguished with the higher orders.

Armed with the high order information about the solution at every given time step, distinct numerical
methodologies can be applied to the different structures of the solution allowing the conjugation of the higher
resolution and high efficiency of the spectral method with the non-oscillatory high order shock-capturing
capability of the WENO method.

Furthermore, the multi-resolution analysis is used to trigger the switching algorithm to change the sub-
domains spatial discretizations if shocks start to develop at a spectral subdomain, or if the solution becomes
smooth at a WENO one. Moving discontinuities are similarly treated by changing to (or maintaining as)
WENO the subdomains on their paths and switching to (or maintaining as) spectral the subdomains that
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optimal convergence rate.

WENO segments of the scheme.

4.3. The Euler system

The one-dimensional Euler equations are given as

@u

@t

+
@f(u)

@x

= 0, (35)

where u = [⇢, ⇢v, ⇢E] and f(u) = [⇢v, ⇢v2 + p, (⇢E + p)v]. Here, ⇢, v, E and
p, represent, respectively, the density, the velocity, the total energy and the
pressure, and are subjected to appropriate initial and boundary conditions.

We consider two test problems, both featuring the interaction of a Mach
3 shock with an entropy wave. The first problem, comprising a shock/small-
entropy-wave interaction case, features a small amplitude entropy wave, and
allows for a quantitative comparison of our computed solutions with analyti-
cal results obtained using a linear analysis of the Euler equations. The second
problem involves a shock/entropy-wave interaction configuration with an en-
tropy wave with finite amplitude, leading to strongly nonlinear behavior of the
solutions. No exact solution is known for this case.
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of the Burgers’ equation in [�1, 1] with initial condition u(0, x) = (1+sin(⇡x))/2. Results are
obtained at the final time T = 0.25 for both multi-domain and single domain formulations.
For the single-domain method, the number of points is NP = 20, 40, 80, and 160, while for
the multi-domain NP = 20 is fixed and the number of domains ND = 1, 2, 4, and 8. For each
data set, the best curve fit and its slope are also shown.

4.3.1. Shock/small-entropy-wave interaction test
To quantify the performance of the hybrid FC-WENO methods we consider

a right-moving Mach 3 shock interacting with a very small entropy wave. The
spatial domain is [�10, 10] and the initial and boundary conditions are given by

(⇢, v, p)(0, x) =

8
<

:

(3.857143, 2.629369, 10.33333) x  �9.5,
(1.0, 0.0, 1.0) � 9.5  x  �8.85,

(exp(�0.01 sin(13(x� 8.85))), 0, 1.0) x > �8.85,
(36)

The e↵ect produced by a strong shock as it passes through a very small entropy
wave is characterized by a sudden rise in the wave frequency and a sudden decline
in the wave amplitude. For su�ciently small entropy waves, these discontinuous
changes in the frequency and amplitude, both of which are functions of the mean
flow Mach number, can be obtained accurately through analysis of the linearized
Euler equations [22]—thus allowing a quantitative assessment of the accuracy
of our hybrid method.

We first consider results for solutions of the Euler system with the above
initial conditions at the final time T = 5.0, and for three di↵erent settings.
Considering first a high-resolution (fine) calculation using the pure ninth-order
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Figure 11: Density profile for the strong shock-entropy wave interaction. (a) T = 0.0013; (b)
T = 1.25; (c) T = 2.5; (d) T = 3.75. The solid line represents the WENO5-z solution with
1280 grid points, the symbols shows FC5-WENO5-z solution with 40 domains, each of 32 grid
points; 4 for the WENO domains and ⇤ for the FC domains. The location of the vertical
dotted lines signify domain boundaries in the hybrid method.

We solve the Euler system using both WENO5-z and FC5-WENO5-z solvers and
consider the density profiles obtained for a total number of 1280 grid points, or
40 domains, each with 32 points each, and �t = 8.8⇥ 10�4. In Figs. 11(a)-(d),
we show the solution at di↵erent times T = 0, 1.25, 2.5, and 3.75, respectively.
As is clear from Fig. 11(a), on the onset (T = 0), the multi-resolution smooth-
ness indicator correctly identifies both the shock discontinuities at x = �9.5 and
the discontinuities in the density derivative at x = �8.85. Similarly, for the later
times (Figs. 11(c)-(d)), the scheme successfully identifies all discontinuities and
adapts the hybrid scheme appropriately.

As discussed previously, the smoothness indicator may mistakenly identify
large but smooth gradients as discontinuities in cases where these gradients are
insu�ciently resolved. This is evident in the case of the shock/entropy-wave
interaction for long integration times, for instance at T = 5, Fig. 12(a), where
it is clear that the smooth structures in [4.0, 6.0] are mistakenly identified as
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Euler equations

and 8 Richtmyer-Meshkov instabilities.

2.5 Shock-Entropy Wave Interaction

Consider the one dimensional Mach 3 shock-entropy wave interaction, specified by the following initial
conditions:

(ρ, u, P ) =

{

( 3.857143, 2.629369, 10.33333 ) −5 ≤ x < −4
( 1 + ε sin(kx), 0, 1 ) −4 ≤ x ≤ 15

, (9)

where x ∈ [−5, 15] , ε = 0.2 and k = 5. The solution of this problem consists of shocklets and fine scales
structures which are located behind a right-going main shock.
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Figure 7: The density profile of the Mach 3 Shock-Entropy wave interaction at times (a) t = 0, (b) t = 1.5,
(c) t = 3.2 and (d) t = 4.5 with 40 subdomains, as indicated by the vertical lines. NS = 16, NW = 50 and
εMR = 5 × 10−3. Spectral (!); WENO (%); The solid line is the solution computed with the fifth order
WENO scheme with 2000 grid points. The spectral subdomains are labeled with S. The WENO subdomains
are labeled with W.

Figure ?? shows that the hybrid method is able to capture all the smooth high frequency waves behind
the main shock with spectral discretizations. Note that the WENO subdomains are located only at the main
shock and at the steep gradients of the N-waves. The hybrid method uses 40 subdomains, with NS = 16
and NW = 50. The solid black line is the solution computed with the fifth order WENO scheme with 2000
grid points. Figure ??(d) also shows that even with the great complexity of the solution, less than 30% of
the total number of subdomains are of the WENO type.
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shock and at the steep gradients of the N-waves. The hybrid method uses 40 subdomains, with NS = 16
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grid points. Figure ??(d) also shows that even with the great complexity of the solution, less than 30% of
the total number of subdomains are of the WENO type.
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Figure ?? shows that the hybrid method is able to capture all the smooth high frequency waves behind
the main shock with spectral discretizations. Note that the WENO subdomains are located only at the main
shock and at the steep gradients of the N-waves. The hybrid method uses 40 subdomains, with NS = 16
and NW = 50. The solid black line is the solution computed with the fifth order WENO scheme with 2000
grid points. Figure ??(d) also shows that even with the great complexity of the solution, less than 30% of
the total number of subdomains are of the WENO type.
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Euler equations

Shock-Wave Problem Blast Wave Problem

Extension to 2D ? -- fairly straightforward
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Main goal was acceleration
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Figure 9: Density ρ of the Shock-Vortex interaction with Mach number Ms = 6 and Γ = 0.25 at time (a)
t = 0.3 and (b) t = 0.4 as computed by the Hybrid method.

Number of subdomains Grid size Hybrid S12W20 WENO5 Speedup
10x10 200x200 265 282 1.06
20x20 400x400 2009 2762 1.37
40x40 800x800 14410 26090 1.81
80x80 1600x1600 112900 253996 2.24

Table I: CPU timing in seconds and speedup factor for the Shock-Vortex problem at time t = 0.6 as computed
by the Hybrid (with constant εMR = 5 × 10−2) and the WENO5 methods.

2.7 Mach 4.46 and Mach 8 Richtmyer-Meshkov Instability

We also demonstrate here that the same methodology of the Hybrid scheme can also work very well for shock
accelerated interfacial mixing problem such as the well-known Richtmyer-Meshkov instabilities. Figures ??
and ?? show the Mach 4.46 and Mach 8 RMI simulations as computed by the Hybrid scheme. It should be
noted that the Mach 8 case has a very long integration time and the Hybrid scheme is performing very well
in such cases. As with the Shock-Vortex interaction, the shock and high gradients are tracked and captured
using the high order WENO method while the non-shock fine scale structures are well represented by the
spectral methods.

3 Planned Tasks for year 2007-2009

In the project years, the following tasks related to the Hybrid methods and the study of the Richtmyer-
Meshkov instability in conjunction with Dr. Oleg Schilling at Lawrence Livermore National Laboratory are
proposed. They are

1. We will continuous on the development of the multi-domain multi-dimensional hybrid Spectral-WENO
finite difference methods for hyperbolic conservation laws (Hybrid), we will study the hybridization
of the high order central finite difference scheme with the WENO finite difference scheme of fifth and
higher orders to further enhance the resolution and efficiency of the hybridized scheme for problems in
material science.
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Main goal was acceleration
Two main reasons - 2D subdomain partitions
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A Fourier based hybrid method

If we can use a Fourier spectral method in the ‘smooth 
domains’ we obtained two things
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A Fourier Continuation Method
Based on smooth polynomial continuation
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Euler’s equations
the pure WENO method and improved agreement with the result of the hybrid
scheme. It also suggests that even at this high resolution the accuracy of the
computed results dominated by the WENO scheme and not the FC parts of the
hybrid scheme.
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Figure 9: Entropy profiles for shock-small-entropy-wave-interaction test at the final time
T = 5.0; (a) The pure WENO9 result with 10240 grid points, considered as the exact solution,
and two coarse results obtained using a pure WENO5-z with 2560 grid points and the hybrid
FC5-WENO5-z with NP = 32 and ND = 80; (b) close-up view of the same results. (c) close-
up view of the entropy profiles obtained using the same setting as in (a) except replacing the
fifth-order WENO a ninth-order scheme; (d) even a closer view than in (c).

We next o↵er a detailed quantitative comparison of the results produced by
our hybrid FC-WENO solver and results obtained from the WENO method for
the entropy amplification at two di↵erent Mach numbers. Tables 1 and 2 present
results for Mach three and Table 3 for Mach six. In the upper half of Table 1, the
error in entropy amplification at two locations near to and far from the shock
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Table 1: Error in entropy amplification, Mach = 3.0, T = 5.0, ND = 80, NP = 32, �t =
4.4⇥ 10�4

Method Error near shock Error far from shock CPU time(s)
WENO5 22.1% 56.2% 99.0
WENO5-z 10.5% 22.6% 99.0

FC5-WENO5-z 10.4% 10.2% 32.0
WENO9 4.4% 4.0% 188.0

FC5-WENO9 4.4% 4.1% 35.0

(x ⇡ 4.0 and x ⇡ 8.0, respectively) and the total CPU times (seconds) are
given for the WENO5 ([13]), WENO5-z ([19]) and the hybrid FC5-WENO5-
z. In the lower half the same quantities are listed for the WENO9 and the
hybrid FC5-WENO9 method. For the hybrid method, we chose ND = 80 and
NP = 32, and for the WENO methods we use the equivalent total number of
points NP = 2560. The error calculations are based on the analytical entropy
amplification factors obtained using linear analysis, which are 0.841037 and
0.68485 for Mach numbers three and six, respectively (see [22], Eq. (7)).

Several points should be noted in connection with Table 1. First, the ninth-
order WENO method yields a lower error than the fifth-order WENO version,
as expected. Second, the hybrid FC-WENO schemes are faster than the cor-
responding pure WENO schemes, with a threefold advantage in the fifth-order
case and a sixfold in the ninth-order case. Third, using WENO9 instead of
WENO5 in a hybrid scheme significantly improves the accuracy with a minor
increase in total cost. This confirms that, indeed, it is highly advantageous to
exploit the fact that only a small percentage of domains need to be treated by
the WENO method in the hybrid scheme since the overall error is dominated
by the WENO schemes, even at this this high resolution.

Table 2 reports data similar to that in Table 1, but with an additional level
in the resolution: ND = 160. As is clear from the table, the increased resolution
yields increased accuracy, with errors in the WENO9 and FC-WENO9 results
decreasing below one percent. Similar to the previous case, the hybrid approach
is several-fold faster than the pure WENO method even for this relatively simply
one-dimensional test case. Table 3, finally, presents data for a Mach six case,
demonstrating similar trends as for the lower Mach number data. In this case,
the error values are uniformly larger than those presented in Table 2 as is to be
expected since higher Mach numbers give rise to larger solution gradients, and
hence require higher resolution for the same level of accuracy.

For comparison, we also considered a di↵erent hybrid scheme in which a six-
order central di↵erence (CD6) method is combined with the WENO9 method
([11]). We consider the same test problem of a shock/small-entropy-wave in-
teraction but with a lower Mach number of 1.25, and a larger computational
domain [�10, 30]. This results in a much slower moving shock and the need
to accurately model wave propagation over long physical distances since the
solution features subsonic flow behind the shock with a very small amplitude
acoustic wave traveling upstream, see Fig. 10 (a). The simulations are done
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Euler’s equations

Table 2: Error in entropy amplification, Mach = 3.0, T = 5.0, ND = 160, NP = 33, �t =
2.2⇥ 10�4

Method Error near shock Error far from shock CPU time(s)
WENO5 4.8% 6.8% 396.0
WENO5-z 3.1% 3.1% 396.0

FC5-WENO5-z 3.4% 3.3% 119.0
WENO9 0.7% 0.61% 753.0

FC5-WENO9 0.7% 0.6% 126.0

Table 3: Error in entropy amplification, Mach = 6.0, T = 2.5, ND = 160, NP = 32, �t =
1.1⇥ 10�4

Method Error near shock Error far from shock CPU time(s)
WENO5-z 6.5% 7.7% 325.0

FC5-WENO5-z 7.3% 7.2% 98.0
WENO9 1.8% 1.7% 618.0

FC5-WENO9 1.8% 1.8% 106.0

using FC5-WENO9, CD6-WENO9 for the final time of T = 23 using two res-
olutions for each method: fixed number of points per domain NP = 96 with
number of domains being ND = 20 or 40.

Figure 10 (a) depicts the density profile behind the shock and Figs. 10 (b)
and (c) show a zoomed-in view of the “entropy” and “acoustic” wave regions,
respectively. We refer to the “acoustic” wave region as the region far upstream of
the shock with only a left moving characteristic wave, and to the “entropy” wave
region as the remainder of the domain in the neighborhood of the shock, with
both left and right moving characteristic waves. In Figs. 10 (b) and (c), results
using FC5-WENO9 with ND = 20 and CD6-WENO9 with two resolutions of
ND = 20 and ND = 40 are shown. While the three density profiles in the
“entropy” region display no discernible di↵erences (Fig. 10 (b)), the density
profile computed using the coarse CD6-WENO9 di↵ers significantly from that
of the FC5-WENO9, Fig. 10 (c). This is due to the much larger dispersion error
of the finite di↵erence method compared to the Fourier continuation method,
highlighting that even though the formal order of the FC and the CD scheme
are comparable, the former behaves much more like a spectral method in the
interior of the domains. As is also clear from Fig. 10 (c), the CD6-WENO9
scheme requires twice as many grid points to recover a density profile with
similar accuracy at the FC6-WENO9 solution. Keeping in mind that these
results are all for one-dimensional tests, the potential for substantial savings in
multiple dimensional tests is clear.

To quantify these observations, the errors in the entropy amplification be-
hind the shock and the in computed density in acoustic wave, along with total
CPU time for the two hybrid solvers are shown in Table 4. The error in the
acoustic wave is computed using the fine solution of the FC-WENO solver con-
sidered the “exact” solution. Both hybrid methods yield comparable accuracy
in the computed entropy amplification for the same resolution and total CPU
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About 6 times faster - 1D
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Figure 11: Density profile for the strong shock-entropy wave interaction. (a) T = 0.0013; (b)
T = 1.25; (c) T = 2.5; (d) T = 3.75. The solid line represents the WENO5-z solution with
1280 grid points, the symbols shows FC5-WENO5-z solution with 40 domains, each of 32 grid
points; 4 for the WENO domains and ⇤ for the FC domains. The location of the vertical
dotted lines signify domain boundaries in the hybrid method.

We solve the Euler system using both WENO5-z and FC5-WENO5-z solvers and
consider the density profiles obtained for a total number of 1280 grid points, or
40 domains, each with 32 points each, and �t = 8.8⇥ 10�4. In Figs. 11(a)-(d),
we show the solution at di↵erent times T = 0, 1.25, 2.5, and 3.75, respectively.
As is clear from Fig. 11(a), on the onset (T = 0), the multi-resolution smooth-
ness indicator correctly identifies both the shock discontinuities at x = �9.5 and
the discontinuities in the density derivative at x = �8.85. Similarly, for the later
times (Figs. 11(c)-(d)), the scheme successfully identifies all discontinuities and
adapts the hybrid scheme appropriately.

As discussed previously, the smoothness indicator may mistakenly identify
large but smooth gradients as discontinuities in cases where these gradients are
insu�ciently resolved. This is evident in the case of the shock/entropy-wave
interaction for long integration times, for instance at T = 5, Fig. 12(a), where
it is clear that the smooth structures in [4.0, 6.0] are mistakenly identified as
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Figure 11: Density profile for the strong shock-entropy wave interaction. (a) T = 0.0013; (b)
T = 1.25; (c) T = 2.5; (d) T = 3.75. The solid line represents the WENO5-z solution with
1280 grid points, the symbols shows FC5-WENO5-z solution with 40 domains, each of 32 grid
points; 4 for the WENO domains and ⇤ for the FC domains. The location of the vertical
dotted lines signify domain boundaries in the hybrid method.

We solve the Euler system using both WENO5-z and FC5-WENO5-z solvers and
consider the density profiles obtained for a total number of 1280 grid points, or
40 domains, each with 32 points each, and �t = 8.8⇥ 10�4. In Figs. 11(a)-(d),
we show the solution at di↵erent times T = 0, 1.25, 2.5, and 3.75, respectively.
As is clear from Fig. 11(a), on the onset (T = 0), the multi-resolution smooth-
ness indicator correctly identifies both the shock discontinuities at x = �9.5 and
the discontinuities in the density derivative at x = �8.85. Similarly, for the later
times (Figs. 11(c)-(d)), the scheme successfully identifies all discontinuities and
adapts the hybrid scheme appropriately.

As discussed previously, the smoothness indicator may mistakenly identify
large but smooth gradients as discontinuities in cases where these gradients are
insu�ciently resolved. This is evident in the case of the shock/entropy-wave
interaction for long integration times, for instance at T = 5, Fig. 12(a), where
it is clear that the smooth structures in [4.0, 6.0] are mistakenly identified as
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A 2D case

45 deg small amplitude entropy wave

Post shock pressure 
wave at 46.6 deg

Post shock entropy 
wave at 14.5 deg

Agrees with linear theory (McKenzie and Westphal, 1969)



What about GPU’s ?

Why should GPU’s be of interest here ?

✓ High arithmetic complexity of high-order methods
✓ Typically lots of work/degree of freedom
✓ Need for large and complex simulations

What makes performance complicated ?

✓ Dynamic nature of algorithm
✓ Essential differences in how elements are treated
✓ To use FFT’s or not - tradeoff between
         Long vectors decrease cost - O(NlogN)
         Short vectors decreases WENO parts



GPU acceleration

Assume FFT’s in all domains for sanity check

FFT-stragety for hybrid solver on GPU xueyu zhu

1.2 Performance consideration using CUFFT

Up to now, we have several problems by using block-wise FFT:

• The FFT kernel based on Volkov’s[2] idea needs to be hard-coded for di↵erent NP (number
of points per domain), it lacks the flexibility.

• Since we want to use the data locality, all relevant data are store in the shared memory and
registers. This won’t work if we extend to multidimensional problems, where the size of the
problem can easiliy exceed the limit of shared memory and registers. Therefore, we might
need to change our stragety based on global memory.

These two reasons leads to us to consider CUFFT(run-time library released by Nvidia), because
it provides high performance FFT routine for arbitrary size of FFT and it is based on global
memory. The only drawback is that we need to call it from the host side(CPU). The framework
we came up with would be the following:

• Prepare the data for computing derivatively

• Fit the pre-processed data into CUFFT

• Filter the coe↵cients

• Perform the backward FFT for computing derivatives

• Identify WENO subdomain and recompute the derivatives

• Update the field variables

1.2.1 Performance of Pure Fourier methods for multidomain formulation

In this section, we tested the new framework but all subdomains are Fourier domains.

• If we ignore the data transfer between CPU and GPU first, the best speedup we can achieve
now is around 8.5 times faster than the CPU code based on FFTW shown in Fig.2 and
Table.7. If we look at the documented performance of CUFFT and FFTW in Fig.8, we are
in the regime marked by the red circle. If we pick NP = 256, it can be seen that CUFFT is
around 2 times better than FFTW with 4 threads, which indicates that CUFFT is around
8 times faster than FFTW with single thread. Therefore, the performance we get based on
CUFFT is reasonable. Notice that the clock rate for our CPU is 2.53 GHz and the clock
rate for the CPU in the documented performance is 2.63 GHz.

• Note that the boost performance compared to previous section is also related with the fact
that we take advantage of the fact that the input vector for CUFFT is real; in addition, based
on [3], turning o↵ Error-Correcting Codes (ECC) on GPU, we can expect performance boost,
however we didn’t see any significant improvement.

Table 7: Performance of Pure Fourier method for multidomain on GPU and CPU (milli seconds)
for di↵erent number of domains with NP=64,256,512 on each domain

ND/NP 64 CPU 256 CPU 512 CPU
16 254 80 1822 2880 3750 12910
64 1018 1300 7873 46990 26891 211370
128 2049 5160 24088 187210 109084 851610
256 4900 20680 104405 750190 399708 3380060

4

Strategy for hybrid

✓Prepare all data and compute everywhere using CUFTT
✓Filter and modify expansion coefficients
✓Compute inverse FFT
✓Identify WENO domains and recompute derivatives
✓Update field values

5-10 times is realistic - 
for large problems



GPU acceleration

Considerations when going 2D/3D - 

✓Line-by-line or domain by domain ?
✓Size of shared memory

WENO behaves

An implementation for Multi-domain emthods for Conservation Laws on GPU xueyu zhu
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Figure 1: Speedup vs number of grid points in multidomian; note: two dimension has the same
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GPU acceleration

FFT-stragety for hybrid solver on GPU xueyu zhu
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Figure 4: Performance comparision of Fourier-WENO method based on CUFFTfor number of
pioints per domain NP = 128 with di↵erent amounts of WENO domains.
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More work is better - good for 2D/3D



Putting it all together 

Marked blocks are WENO blocks ~ 30%



GPU acceleration

An implementation for Multi-domain emthods for Conservation Laws on GPU xueyu zhu
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Good behavior translates from CPU to GPU



Concluding remarks

On the algorithmic part

✓Significant potential in hybrid FC-WENO schemes for 
complex multi-scale problems.
✓Most core elements have been demonstrated.
✓General geometries and increased physical complexity 
remains next challenge

Reasonable GPU acceleration is possible despite dynamic 
nature of method



ICERM

Institute for Computational and Experimental 
Research in Mathematics 

✓The newest NSF National Mathematics Institute
✓Located at Brown University, Providence, RI
✓Fully operational this semester

Encourage and enable research and education at the 
interface between mathematics and computing



ICERM

Program activities include

Fall 2011: Kinetic theory and computation
Spring 2012: Complex and arithmetic dynamics
Fall 2012: Computational challenges in probability

Winter  2011: Syncronization- and communication- 
reducing algorithms and programming models

Interested:   icerm.brown.edu

... or come see me

Spring 2013: Automorphic forms and multiple 
Dirichlet series


