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We are developing a new interface projection methodology to eliminate added
mass instabilities in partitioned schemes

e Traditional partitioned FSI algorithms
1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)

- This approach suffers instability for light solids (added mass instability)
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We are developing a new interface projection methodology to eliminate added
mass instabilities in partitioned schemes

e Traditional partitioned FSI algorithms
1. advance fluid (using interface velocity/position from the solid)

2. advance solid (apply fluid forces to the solid)

- This approach suffers instability for light solids (added mass instability)

e \We are developing a new interface projection approach
1. advance fluid

2. advance solid

3. project solution at interface

- This approach can be proven to be stable for all ratios of fluid and solid masses
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Deforming Composite Grids (DCGs) are an efficient way to discretize PDEs in

deforming and/or moving geometry

* Overlapping grids are the foundation of DCGs
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Deforming Composite Grids (DCGs) are an efficient way to discretize PDEs in
deforming and/or moving geometry

* Overlapping grids are the foundation of DCGs
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deforming interfaces

e Benefits of this approach include:
- Local and rapid grid generation (hyperbolic grid generator)
- High quality grids even under large displacements and rotations
- High efficiency through the use of structured and Cartesian grids
- Grid construction that supports high-order discretizations

* \We use the Overture and CG software packages
- www.lInl.gov/CASC/Overture
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http://www.llnl.gov/CASC/Overture
http://www.llnl.gov/CASC/Overture

In previous work we have used moving, overlapping grids to couple rigid body
motion with high-speed compressible flows

e Example: Mach-2 shock impacting rigid sticks

 WDH, D. W. Schwendeman, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed and
Nonreactive Flow, J. Comput. Phys. 216 (2005)
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In previous work we have used moving, overlapping grids to couple rigid body
motion with high-speed compressible flows

e Example: Mach-2 shock impacting rigid sticks

« WDH, D. W. Schwendeman, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed and
Nonreactive Flow, J. Comput. Phys. 216 (2005)
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Goal: perform coupled simulations of compressible fluids and deforming solids

e Mixed Eulerian-Lagrangian approach
- Fluids: general moving coordinate system with deforming composite grids
- Solids: fixed reference frame with overlapping grids
- Boundary fitted deforming grids for fluid-solid interfaces
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Goal: perform coupled simulations of compressible fluids and deforming solids

e Mixed Eulerian-Lagrangian approach
- Fluids: general moving coordinate system with deforming composite grids
- Solids: fixed reference frame with overlapping grids
- Boundary fitted deforming grids for fluid-solid interfaces
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We pursue a partitioned approach for maximal efficiency and flexibility

* Fluid solver: we solve the inviscid Euler equations with a second-order extension

of Godunov’'s method (cgcns)

- WDH, D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using Overlapping Grids
with Adaptive Mesh Refinement, J. Comput. Phys. 227 (2008)

- WDH, D. W. Schwendeman, An Adaptive Numerical Scheme for High-Speed Reactive Flow on
Overlapping Grids, J. Comput. Phys. 191 (2003)

e Solid solver: we solve the elastic wave equations as a first-order system with a

second-order upwind scheme (cgsm)

- D. Appelo, JWB, WDH, D. W. Schwendeman, Numerical Methods for Solid Mechanics on Overlapping
Grids: Linear Elasticity, LLNL-JRNL-422223, submitted

e Multidomain coupler: we use an interface projection scheme which is stable

across the entire range of material parameters, including for light solids (cgmp)
- JWB, WDH, D. W. Schwendeman, Deforming Composite Grids for Solving Fluid Structure Problems,
LLNL-JRNL-493791, submitted
- JWB, B. Sjogreen, A normal mode stability analysis of numerical interface conditions for fluid-structure
interaction, Commun. Comput. Phys., 10 (2011)
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WVe pursue a partitioned approach for maximal efficiency and flexibility

e Multidomain coupler: we use an interface projection scheme which is stable

across the entire range of material parameters, including for light solids (cgmp)
- JWB, WDH, D. W. Schwendeman, Deforming Composite Grids for Solving Fluid Structure Problems,

LLNL-JRNL-493791, submitted
- JWB, B. Sjogreen, A normal mode stability analysis of numerical interface conditions for fluid-structure
interaction, Commun. Comput. Phys., 10 (2011)
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WVe find it useful to investigate a model FS| problem in I D, the elastic piston
problem

solid fluid
Linear Elasticity Euler Equations
O — =0 Op+ O0x(pv) =0
00,0 — 036 = 0 Oy (pv) + Ox(pv? 4+ p) =0
04 — pctzv = 0 Or(pE) + 0z (pEv + pv) = 0

Interface Coupling Conditions

(

(z,t) = v(x,t),
(jvt) — 0($,t) = —p(il?,t) T De

~{

QI

\
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WVe find it useful to investigate a model FS| problem in I D, the elastic piston
problem

solid fluid

e For our purposes, exact solutions are obtained in two ways
- Given initial conditions, solve for F(t)
- Given F(t), solve for initial conditions
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The interface projection scheme can be motivated by investigating the fluid-

structure Riemann problem (FSRP)

solid

fluid

= (v"+a*)t
x = 5t

x = (vg + ap)t

Po
Vo

Po

fluid

* This is a specific case of the elastic piston problem

- Constant states in fluid and solid

e Exact solutions to the linear and nonlinear problem are easily found
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The solution to the linearized (FSRP) can be obtained using characteristics

* The characteristic forms of the linearized equations are

S
du /dt

-0 = ZUg =

N
-y
||

olid
= v, on dx/dt =0,
- g, on dz/dt = *c,,
(
4 agp + o = agpo -
20 F 0 = 2Ug 7

on dx/dt = vy,

on dx/dt = vg 4

— Ao,
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The solution to the linearized (FSRP) can be obtained using characteristics

* The characteristic forms of the linearized equations are

Solid
du/dt = v, on dx/dt =0,

-0 = ZUg F 09, on dx/dt =

N
-y
|

Cp,

Fluid

( acp+ o = aipo + 0o, on dx/dt = vy,

20 F 0 = 2vg F 09, on dx/dt = vy % ag,

* Using the interface conditions gives the solution

«  —x  <~Ug T 2V | 0o — 00
VvV =V = — | _
—+ z zZ+ z
__1_ L _1 R~
O'* _ 5_* _ 2 00 2 00 | Vo Vo
— — — - —

* Here 2 = pcp and 2 = ppag are acoustic impedances
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The time stepping procedure for the FSI-DCG scheme

solid fluid

1 Y14 N n
Wy Wy Wy W_,

X | | : | : :

wl, ow] w! wl ... X
The FSI-DCG time stepping algorithm
Stage Condition Type Assigns
Interior(a) Predict grid and grid velocity extrapolation GP, GP
Interior(b) Advance wi', wl', i =0,1,2,... PDE interior, interface
Interface(a) Compute |vy, o7, pr] from FSRP projection vr, 01, PI
Interface(b) | Set pf = pr, pi = p1, vo = V) = v, G = 07 projection w(, W
Interface(c) Correct u(, grid and grid velocity projection uy, G*, G"
Ghost(a) w' = Efl) wi, W = gf’l) w{, extrapolation w’, why
Ghost(b) Compute vg = (1/p) Doy, . .. PDE Vo, 00, Vo, 00
Ghost(c) Compute vy, 07 projection U1, O
Ghost(d) Set (1/p)Dgal = vp, ... compatibility | a_1, 0"y, p"q, V™4
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The solution at the interface is defined in terms of solutions to the FSRP

» Along the interface, the solution is projected using solutions to local FSRPs

Friday, October 21, 2011



The solution at the interface is defined in terms of solutions to the FSRP

e Along the interface, the solution is projected using solutions to local FSRPs

e The traditional FSI coupling is the large impedance (mass) limit z> z
- velocity from solid v = vg
- stress from fluid o071 =00 = —po + Pe

e The traditional scheme is unstable for light solids

 The new scheme is stable for any ratio of masses and impedances
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The solution at the interface is defined in terms of solutions to the FSRP

e Along the interface, the solution is projected using solutions to local FSRPs

e The traditional FSI coupling is the large impedance (mass) limit z> z
- velocity from solid v = vg
- stress from fluid o7 = 00 = —po + Pe

e The traditional scheme is unstable for light solids

 The new scheme is stable for any ratio of masses and impedances

e For proofs see JWB, B. Sjégreen, A normal mode stability analysis of numerical interface conditions for
fluid-structure interaction, Commun. Comput. Phys., 10 (2011)

* Note: for some difficult problems there are advantages to using the nonlinear FSRP
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We derive a smooth solution to the elastic piston problem for verification

e We pick an interface motion F(t) and determine initial conditions to produce it
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We derive a smooth solution to the elastic piston problem for verification

X =
X —

0
F(1)

e We pick an interface motion F(t) and determine initial conditions to produce it

Fq _ . .
e Choose F'(t) = —?tq and a constant initial state in the fluid

 No shocks form in the fluid because ' < (0 and F < 0
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We derive a smooth solution to the elastic piston problem for verification

X =
X —

0
F(1)

e \We pick an interface motion F(t) and determine initial conditions to produce it
Fq . . .

e Choose F'(t) = —?tq and a constant initial state in the fluid

 No shocks form in the fluid because ' < (0 and F < 0

e |Initial conditions for the solid which yield this motion are then determined

uo(Z) = — 1o /0 {1 St 1F(—s/cp)}27/(7_1) ds

5 2
PoCy

F(_i’/cp)

4
o
VN

S|
N—r

|
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Our DCG-FDI scheme is verified to be second-order accurate in the max

norm for very light, and very heavy solid cases

e Choose ¢q =4 and F, =1

very light solid

Fluid Solid
grid | N 0 r v T P T U T v T o T
G1 20 | 2.7e-03 2.1e-03 1.3e-03 3.9e-04 1.2e-04 1.6e-04
Go 40 | 6.1e-04 | 4.5 | 5.2e-04 | 4.1 | 3.1e-04 | 4.2 | 9.7e-05 | 4.1 | 3.4e-05 | 3.6 | 3.2e-05 | 5.2
G 80 | 1.4e-04 | 4.2 | 1.1e-04 | 4.5 | 7.9e-05 | 3.9 | 2.4e-05 | 4.1 | 8.5e-06 | 4.0 | 6.9e-06 | 4.6
Gy 160 | 3.5e-05 | 4.2 | 3.0e-05 | 3.9 | 2.0e-05 | 4.0 | 5.9¢-06 | 4.0 | 2.1e-06 | 4.0 | 1.6e-06 | 4.3
rate 2.10 2.06 2.01 2.02 1.95 2.23

p=1x10""2/2=1.7x10""*
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Our DCG-FDI scheme is verified to be second-order accurate in the max

norm for very light, and very heavy solid cases

e Choose ¢q =4 and F, =1

very light solid

Fluid Solid
grid | N 0 r v T P T U T v T o T
G 20 | 2.7e-03 2.1e-03 1.3e-03 3.9e-04 1.2e-04 1.6e-04
G 40 | 6.1e-04 | 4.5 | 5.2e-04 | 4.1 | 3.1e-04 | 4.2 | 9.7e-05 | 4.1 | 3.4e-05 | 3.6 | 3.2e-05 | 5.2
Gs 80 | 1.4e-04 | 4.2 | 1.1e-04 | 4.5 | 7.9e-05 | 3.9 | 2.4e-05 | 4.1 | 8.5e-06 | 4.0 | 6.9e-06 | 4.6
Gy | 160 | 3.5e-05 | 4.2 | 3.0e-05 | 3.9 | 2.0e-05 | 4.0 | 5.9e-06 | 4.0 | 2.1e-06 | 4.0 | 1.6e-06 | 4.3
rate 2.10 2.06 2.01 2.02 1.95 2.23

p=1x10""2/2=1.7x10""*
very heavy solid

Fluid Solid
grid | N Iy r v T P r U T v r o r
G 20 | 1.6e-03 1.3e-03 1.1e-03 2.4e-04 1.7e-05 1.6e-05
Go 40 | 3.2e-04 | 4.9 | 2.8e-04 | 4.8 | 2.2e-04 | 5.2 | 5.9e-05 | 4.0 | 4.0e-06 | 4.3 | 3.7e-06 | 4.3
G 80 | 6.7e-05 | 4.8 | 5.0e-05 | 5.6 | 4.6e-05 | 4.7 | 1.4e-05 | 4.1 | 9.4e-07 | 4.2 | 9.0e-07 | 4.1
Gy | 160 | 1.7e-05 | 4.0 | 1.2e-05 | 4.1 | 1.1e-05 | 4.0 | 3.6e-06 | 4.0 | 2.3e-07 | 4.1 | 2.3e-07 | 3.9
rate 2.19 2.28 2.22 2.02 2.07 2.03

p=1x10°z/z = 1.7 x 10°
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The deforming diffuser solution can be used to investigate convergence in 2D

(xa, ya)

(Oa‘yb) supersonic inflow
2
O
k= S
= e,
S =
S| — fluid domain €2 3
:
3 T /8
interface o
(0, 7(0)) 4 g
— Y =F(x) ’
: (1L.F(1))
o _
& solid domain 2 -
Q)
! f
(0, ¥a) displacement BC 5

* A coupled semi-analytic smooth solution is determined:
- Fluid: Prandtl-Meyer analytic solution as a function of F(x)
- Solid: steady elasticity equations are solved on a very fine grid

- The coupled exact solution and F(x) are determined by iteration
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The deforming diffuser solution can be used to investigate convergence in 2D

(Td,ya)

.057 1.0

Ae riees H olf s
T v "
09 4~ (0, 7(0)) O.OI 0
= (1, 7(1)) (ze.u.)
Solid Fluid
Grid | € | v [ X e | [ X | | e ] | X ] s
G | 1.604 2.8e-4 2.96-2 3.46-2 2.16-2 7.00-3
GW 1 33e5 |48 | 1led | 26| 89e3]33]86e3]|39]63e3]34]1.9e3] 38
G® | 5.6e6] 59| 285 |39 1.83 | 50| 223 38| 2.1e3 | 3.0 | 5.9¢4 | 3.2
G 1946759 | 6806 | 4.1 | 3504 | 5.0 | 5804 | 3.8 | 4.7e-4 | 4.4 | 1.30-4 | 4.4
rate | 2.48 1.81 2.14 1.95 1.81 1.88

 Max norm convergence verifies second-order accuracy
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The superseismic shock problem is used to demonstrate convergence for
problems with discontinuities

Y, shock

interface

p-wave
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The superseismic shock problem is used to demonstrate convergence for
problems with discontinuities

Y, shock

interface

p-wave

t=0

...................
EEEESEEE R
interpolation

I
LB
Sy
/l interface
E(0)
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The superseismic shock problem is used to demonstrate convergence for

problems with discontinuities

Solid Fluid
Grid | & | v | Y | W e | e | | e e | &Y |y
D1 8.9¢-4 6.40-3 .8¢-2 5.9¢-3 3.80-2 1.2¢-2
&) 13242839316 1.1e2| 1629320/ 1.7e-2 |22 | 6.7-3 | 1.8
U6V 14e-d4 | 24 | 2463 | 1.7 | 6.7e-3 | 1.7 | 1.6e-3 | 1.9 | 8.6e-3 | 2.0 | 3.7e-3 | 1.8
82 1 6765 | 20| 1.4e-3 | 1.6 | 4.1e-3 | 1.6 | 82e-4 | 1.9 | 4.3e-3 | 2.0 | 1.9¢-3 | 1.9
rate | 1.24 0.72 0.72 0.94 1.03 0.88
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Self-convergence is measured for a difficult problem of a fluid cylinder impacted

by a solid compression wave

2.5
solid
—— p-wave shock x i
—2.5
—2.5 2.5
* L-1 norm convergence results demonstrate expected behavior
Solid Fluid
Grid | & | v | VY | W e | eM | | e | gD |y
G | 1.7e-4 1.1e-3 1.3¢-3 4.1e-3 2.3¢-3 4.2¢-3
Qc(li) 7.9e-5 | 2.1 | 69e4 | 1.6 | 79e-4 | 1.6 | 2.2e-3 | 1.8 | 1.3e-3 | 1.8 | 2.3e-3 | 1.8
Q(fl) 8.3e-6 | 9.5 | 1.be-4 | 4.5 | 1.8e-4 | 4.3 | 3.6e-4 | 6.3 | 2.1e-4 | 6.1 | 3.7e-4 | 6.2
rate 1.08 0.72 0.71 0.88 0.87 0.88
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Stability for a variety of fluid/solid ratios is demonstrated

.074 = 1.07

0.0 B .997

49 7 1.258

0.0 B 992

light solid
p=0.1

medium solid
5=1.0

heavy solid
5=10.0
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As a final illustration, we return to the deforming sticks example to show the

efficacy of the DCG approach for problems with large displacements
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coarse grid

(.8 million points)

X I0.88

medium grid

(3.3 million points)

fine grid

(13.2 million points) " |:' .
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Summary

* The deforming composite grid approach was developed for coupling high-speed
compressible fluids to elastic solids

e Stability was achieved for light and heavy solids using an interface projection technique
which is motivated by the solution to a fluid-solid Riemann problem

e Second-order convergence in the max-norm was verified for smooth flows in both one and
two space dimensions

e Convergence of the L-1 norm for more difficult problems involving shocks was shown to
agree with predicted theory

Future work

e Continue development of DCGs to include AMR

 Move to more general solid models (nonlinear solids, beams, plates, etc ...)
e Extend analysis and methodology to incompressible fluids

e Extend analysis and methodology to light rigid bodies

e Move to three dimensions
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