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Background

• Large graphs are ubiquitous in a variety of diverse domains: biology, sociology,
operations research

• When one wishes to solve discrete optimization problems involving such data
sets, the scaling is often exponential in the size of the graph, typically thought of
as the number of nodes (n) and the number of edges (m) in the graph

Biological interaction graph, NIH



Background
• Theoretical results tell us that tree and branch decompositions provide a

framework for solving a wide variety of NP-hard problems on graphs in time that
is polynomial in graph size and exponential in the width of the decomposition

• This change in scaling seems to offer possibilities for solving problems on certain
types of graphs where n and m are very large

A graph with 124 nodes and 318 edges
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Background

A tour of 18512 German cities

• Despite a large amount of research into methods for
creating such decompositions, much less work into
utilizing them for large-scale computational
optimization problems
• Cook & Seymour use tour-merging algorithm based on

branch decompositions for large TSPLIB instances
• Fomin, et al, have examined memory-saving strategies in

dynamic programming
• Koster, et al, solved Frequency Assignment Problem
• Hicks has explored the utility of branch decompositions

• “As a rule of thumb, the typical border of practical
feasibility lies somewhere below a treewidth of 20 for
the underlying graph.” [Hüffner, Niedermeier, Wernicke
2007]

• How do actual implementations of optimization
algorithms scale in practice?

• Can they be used to solve large problems where
better-known techniques fail?



Outline of Talk

• Introduce tree decompositions

• Describe a dynamic programming algorithm for a well-known NP-hard problem

• Discuss specific implementation details

• Present computational results



Some Definitions

• We begin with a connected graph G = (V ,E) to be decomposed.

• A tree decomposition of G is a mapping of the vertices of V onto a tree T where
each node t ∈ T represents a subset or bag of vertices, denoted as Xt

• Each edge from E must appear in some Xt

• All bags containing some vertex v ∈ V must form a connected subtree in T

• The width of a tree decomposition is the size of the largest bag minus one



Constructing Tree Decompositions

• We use heuristics that share a link with numerical linear algebra where one often
wants to permute the rows/columns of a matrix before computing a factorization
so that the resulting factors are as sparse as possible

• This problem can be phrased as graph triangulation and the objective is to
minimize the number of fill edges (not max clique size)

• Numerous fast implementations are available (METIS - minimum degree
algorithm and nested node dissection, Approximate Minimum Degree (AMD),
etc.)

• The time and memory required to construct a tree decomposition is much smaller
than for a dynamic programming algorithm on the tree

• The treewidth of a graph G is the minimum width across all tree decompositions
of G

• Determining the treewidth of a graph is generally NP-hard



Using a tree decomposition for dynamic programming

• Arbitrarily root the tree and work upwards from the leaves to the root, analyzing
the bags of the parent and children in a problem-specific manner

• At a leaf node c with a bag of size |Xc |, you typically consider all possible
solutions (exponential in |Xc |)

• At a non-leaf node p, you must consider all partial solutions in the non-leaf
node’s bag and execute a dynamic programming step involving the solutions for
node p and the tables stored for the child nodes



An Example Dynamic Programming Algorithm

• We chose a simple, well-studied problem and developed a careful implementation
of

• Maximum weighted independent set: Given a connected, weighted graph,
determine the set of vertices with largest total weight such that no two
vertices are adjacent



Maximum Weighted Independent Set is Easy on Trees

• At each node q in a rooted tree, we consider the subgraph (subtree) rooted at q

• We keep track of two quantities:

• The weight of the MWIS in this subgraph that contains q
• The weight of the MWIS in this subgraph that does not contain q

• The optimal solution is found by considering each case at the root node
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Solving Maximum Weighted Independent Set

• A similar idea allows us to develop a dynamic programming algorithm using tree
decompositions

• For a leaf node, we record each independent set contained in the bag along with
its weight

• Given a non-leaf tree node t, consider an independent set S ⊆ Xt with weight
w(S)

• For each such S , record its value ft (S) in the table to be the weight of the
maximum independent set in the subgraph induced by the vertices beneath t in
the tree whose intersection with Xt is S

• If t has children tree nodes 1, 2, . . . , c, then ft (S) can be calculated via dynamic
programming:

ft (S) = w(S) +
c∑

i=1

max(fi (Ti )− w(Ti ∩ S)|Ti ∩ Xt = S ∩ Xi )



Some Implementation Details

• Extensive use of hash tables to look up ft (S) values in child tables

• We represent a subset S ∈ Xt as a bit vector composed of (potentially multiple)
64-bit words where a 1-bit in position i indicates that the i-th entry in Xt is in S

• The binary representation is convenient to rule out many of the 2|Xt | possibilities
in a single stroke

• Suppose the edge (7, 11) exists in G so that any set S containing both 7 and
11 is not independent

Xt 13 11 7 5 3 2 1
Mask 0 1 1 0 0 0 0

• Any mask of the form 011xxxx cannot represent an independent set and we
eliminate 24 possibilities at once

• This and other tricks typically allow us to skip many possibilities in a for loop
from 0 to 2|Xt |



Some Implementation Details
• We also developed some techniques for saving memory by limiting what is stored

in the dynamic programming tables
• Rather than storing all independent sets in each treenode’s table, we only store

information about the independent sets’ intersection with the parent’s bag since
that is all that matters in the recursion

• Instead of storing all dynamic programming tables in memory, we delete them as
we move up the tree

• Then we have some partial information about the optimal solution when we arrive
at the root node

• We use this information to refine the tree and decrease the width by removing
vertices from consideration
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• We also developed some techniques for saving memory by limiting what is stored
in the dynamic programming tables

• Rather than storing all independent sets in each node t’s table, we only worry
about the intersection of t’s bag with the parent bag

• Rather than store all dynamic programming tables in memory, we delete them as
we move up the tree

• Then we have some partial information about the optimal solution

• We use this information to refine the tree and decrease the width by removing
vertices from consideration



Comparison with other techniques

• One of the main goals of our project is to determine whether or not dynamic
programming using tree decomposition is competitive with other state-of-the-art
methods

• Gurobi: Commercial mixed integer programming solver using standard
integer programming formulation of MWIS (used Amazon EC2 AMI)

• IPM: Uses an Interior Point Method along with semi-definite programming
via branch-and-bound (Brian Borchers and Aaron Wilson, New Mexico State)

• BPM: Uses a Boundary Point Method along with Semi-Definite
Programming via branch-and-bound (Brian Borchers and Aaron Wilson, New
Mexico State)

• In the next set of slides, we compare the performance and scalability of these
approaches on a variety of graphs



The Importance of Width
• We generated a set of random partial k-trees with the same number of nodes and

roughly the same number of edges but varying k
• These graphs are useful for testing as we can control both n and m and maintain

a lower bound on the treewidth
• Goal is to confirm belief that the width of a graph is not an important parameter

for the performance of other methods
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The Importance of Width
• We generated a set of random partial k-trees with the same number of nodes and

roughly the same number of edges but varying k
• These graphs are useful for testing as we can control both the density and a lower

bound on the treewidth while keeping n and m roughly constant
• Goal is to confirm belief that the width of a graph is not an important parameter

for the performance of other methods
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Performance Comparison

• Partial k-trees with n ∈ {1000, 2000, 4000, 8000};
k ∈ {15, 30, 60, 90, 120}; p ∈ {20, 40, 60, 80}

• Number of edges up to 750, 000

# Completed Max time Max Memory
Gurobi 80 500 s. 1.2 GB

TD Free 62 2400 s. 17.5 GB
TD Keep 56 800 s. 24.2 GB

BPM 51 120 hours 0.9 GB
IPM 32 122 hours 16 GB

• Tree Decomposition approach fastest on 23/80 problems and is up to 5× faster
on some denser graphs with low widths. This gap widens as n grows larger

• Tree Decomposition approach requires more memory and more time on sparse
problems - reverse is true for other methods

• Freeing child tables offers memory savings of up to 8×
• Gurobi, BPM, and IPM can benefit from a good heuristic solution as it can

accelerate the branch-and-bound process, but we have not devised a way to take
advantage of good initial solution



Dynamic Programming Scalability

• To test scalability for larger, low-width graphs, we generated partial k-trees with
n ∈ {100K , 200K , 400K , 800K , 1.6M, 3.2M}, k = 10,
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HKBL

Partial 10-trees, n up to 3.2 million



Dynamic Programming Scalability

• To test scalability for larger, low-width graphs, we generated partial k-trees with
n ∈ {100K , 200K , 400K , 800K , 1.6M, 3.2M}, k = 10, p = .7

æ æ æ

æ

æ

æ

500 000 1.0 ´ 106 1.5 ´ 106 2.0 ´ 106 2.5 ´ 106 3.0 ´ 106 ð nodes

2

4

6

8

10

Running time

HhoursL

Partial 10-trees, n up to 3.2 million



Is it Sufficient to Focus on Width Alone?

• Conventional wisdom has held that due to the O(2w ) factor in the theoretical
complexity, low width is essential for this kind of dynamic programming to be
possible

• However, we have succeeded in generating optimal solutions to 10,000 node
graphs with widths as high as 700 and roughly 6 million edges
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Is it Sufficient to Focus on Width Alone?

• For maximum independent set, the density of the graph is critical to both the
running time and memory usage

• If we consider each bag of vertices as a random set of vertices from the graph,
then we can estimate the number of independent sets at each node in the tree

• For a tree node whose bag contains w vertices and where the induced subgraph
contains q edges, let ρ = 2q/

(w
2

)
:

E [#ind .sets] =
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)
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(
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• This estimate matches well with empirical data and provides a means to
accurately estimate memory usage since the relevant quantities are known prior
to running the dynamic programming
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Opportunities for Parallelization
• Computation of the tables for the leaf nodes is embarrassingly parallel - often

more than half the treenodes are leaves, especially for sparse graphs
• MPI implementation parallelizes work in computing solution table for single tree

node, useful for large width graphs, but limited scalability
• Communication patterns are very irregular and unpredictable
• Exploring possibility of using MADNESS (computational chemistry code) runtime

environment for parallelization and automated load-balancing



Conclusion
• Our project attempts to bridge the gap between theory and practice
• Large graphs with low width that are not too sparse seem to be the sweet spot

for our dynamic programming algorithm as we outperform other methods
• Scaling behavior very different from other branch-and-bound based methods, and

only computational operations are ANDs, ORs, shifts, memory reads and writes
• Memory consumption depends on both density and width. Conventional beliefs

regarding width are not always valid
• Opportunities for parallelism exist, but communication is irregular



Acknowledgements

• Thanks to Brian Borchers and Troy Hanson for help with their software

• This work was supported by a grant from the Applied Mathematics Program of
the US Department of Energy Office of Science.


