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Comparison of Galerkin and Collocation Methods
for Spatial Component of Stochastic Galerkin
ased Multigrid for Stochastic Galerkin
Collocation Methods
Experimental Comparison

Problem Statement and Assumptions

Solution Algorithms for Stochastic Galerkin/Collocation Discretization

Diffusion equation —V - (a(x,w)Vu) = f on D C RY,
with suitable boundary conditions

Initial Assumptions

Coercivity: O0<ay <a<ay <oo = well posed
Finite expansion:  a(x,€) = ao + 0 >, a,(x)€,
Independence: {& = & (w)} uncorrelated with density functions p,(&,),

joint density p(&) = p1(&1)p2(82) - -~ pr(&r)

Stochastic Galerkin: FEM/FD in space,
Polynomial chaos of total degree p in £
— Requirement: Solve one large algebraic system Au = f

A:G0®AO+ZT:1Gr®Ar

Stochastic collocation: “level-p”
— Solve multiple systems of standard structure
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Solution Algorithms for Stochastic Galerkin/Collocation Discretization Eul:;:l'ilzi:r?;fE:)frGS:I:t'il:Ing;r:pi‘::;iiﬂ;}ogtmi:‘s:irfGalevkin
1. Mean-Based Multigrid for Stochastic Galerkin
Collocation Methods
Experimental Comparison

Multigrid Methods for the Stochastic Problems

I. Apply multigrid across spatial component (E. & Furnival)
Solving Au=f, A=Gy® A(h) +37.6® A
(A ]Jk*fp xX)Vpr(x)- vd)J( dx, [G]lq*fr frwq (&)vi(&)p(€)d

)
Ah) A£ ) spatial discretization parameter h
(2

Fine grid operators:
h) spatial discretization parameter 2h

Course grid operators: AP, A

One multigrid (two-grid) step:

forj=1:k
uh) — (1 — QTAM) M) 1 Q=1f(h K smoothing steps
end
rh) = R(f(h — Al (h)y Restriction
Solve AN c(2h) — ((2h) Coarse grid correction R =/ ® R
uh — y(h) 4 pch Prolongation P = I ® P
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Collocation Methods
ponent of Stochastic Galerkin
d for Stochastic Galerkin

Solution Algorithms for Stochastic Galerkin/Collocation Discretization

Experimental Comparison
Sketch of convergence analysis: Use “standard” approach
(1) = [(A) =1 _ p(ACD)=IR][AN) (] — Q=1 AM)K] &)
Establish for all y
Approximation property ||[(A®)~! — P(AC) IRy || i) < Iyl
Smoothing property AN (1 = Q7LAMYky || < llyll am

For approximation property: Introduce semi-discrete space H}(D) ® 7(P)
T(P) = discrete stochastic space
Weak formulation: a(u(P), v(P)) = (f, v(P)) for all v(P) € H}(D)® T()

Then:  [[[(AM) = — P(ACD) IRy [ ) = uPP — PP,
< Hu(”f’) — yP) o+ Hu(p) — u(2"”’)|\a

< cllyllam

Last step: from standard arguments based on approximability,
regularity for every realization in the semi-discrete space
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Solution Algorithms for Stochastic Galerkin/Collocation Discretization o - Spatial g;ld"i‘?‘ll‘?‘ijél'ogtmit:‘;isGﬂg'km
II Mean-Based Multigrid for Stochastic Galerkin
Collocation Methods
Experimental Comparison

Mean-Based Multigrid

Il. Apply multigrid to mean as preconditioner
Solving Au = f

Preconditioner for use with CG (Kruger, Pellisetti, Ghanem):
Mean Q = Gy ® Ag
Ao ~ f,Dao Vd)k( ) ngj(x)dx, Go =1

Further refinement (Le Maitre et al.)

Use multigrid to approximate action of Q71:
Que =1 © Ay ve
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Comparison of Galerkin and Collocation Methods

I. Multigrid for Spatial Component of Stochastic Galerkin
Il. Mean-Based Multigrid for Stochastic Galerkin
Collocation Methods

Experimental Comparison

Solution Algorithms for Stochastic Galerkin/Collocation Discretization

Convergence analysis (E. & Powell):

Coefficient: a(x,&) =ap+0 > a(x)é,
Coefficient matrix: A=GRA+> 1, G RA
Mean-based preconditioner: Q@ = Gy ® Ag

Multigrid preconditioner: Quc = Go ® Ao,mc

Theorem: For ag = p constant,

B (w,Aw)
1-7< w.aw) <l+r7

where 7= (/1) c(p) Ty VA larlco-

If in addition the MG approximation satisfies 3; < ((""70"") < (35, then

w, Qucw)

(wAW)  _ (wAw) (w,Qw) _ (m) (@)
(w,Quew) (w,Qw) (w,Quew) — \1—-7 B
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. . . . . . - Comparison of Galel and Collocation Methods
Solution Algorithms for Stochastic Galerkin/Collocation Discretization I Ot Ty Gt Qe @ S e e @

Il. Mean-Based Multigrid for Stochastic Galerkin
Collocation Methods
Experimental Comparison

Comments

o Establishes textbook convergence of multigrid, rate independent of
spatial discretization parameter h

@ Minimal dependence on stochastic parameter p.
@ Applies to any basis for stochastic space
@ Second method: simpler but more dependent on # terms m
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. . . . . . - Comparison of Galerkin and Collocation Methods
Solution Algorithms for Stochastic Galerkin/Collocation Discretization ey Gl Qamrerents @ SooE £ e @
ased Multigrid for Stochastic Galerkin
Collocation Methods

Experimental Comparison

Alternative: Collocation Methods

Monte-Carlo (sampling) method: find u € HE(D) s.t.

/ a(x,€,)Vu-Vvdx forall v € HE (D)
D
for a collection of samples {&,} € L?(T)

Collocation (Xiu, Hesthaven, Babuska, Nobile, Tempone, Webster)

Choose {£,} in a special way (sparse grids), then
construct discrete solution u("?)(x,¢) € SF @ T(P

to interpolate {un(x,&,)}

Advantages (vs. stochastic Galerkin):
- decouples algebraic system (like MC)
- applies in a straightforward way to nonlinear random terms

Disadvantage: dimensionality ~ 2P x (Galerkin) for comparable
accuracy
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Solution Algorithms for Stochastic Galerkin/Collocation Discretization

Experimental Comparison

Comparison of Galerkin and Collocation Methods
Component of Stochastic Galerkin

1. Mean-Based Multigrid for Stochastic Galerkin

Collocation Methods

Experimental Comparison

E., Miller, Phipps, Tuminaro
To the right: Accuracy

p = polynomial degree for Galerkin

level for collocation

Gaussian abscissas with linear
growth

Errors are comparable

Below: Performance

10
—+— Galerkin
& ¢— Collocation
Sy —4- = Galerkin: Model
10°] B R —6&-— Collocation: Model
-~
10
>
10
uniform p=1
densit:
Yy Error

—&— Galerkin

—— Collocation

10’ \ _ J
w p=3

N
5 \
1wt m=4 \\P =4
uniform
L density p=5 ]
" Degrees of freedom
10 2 :
' 1 10° w0 10
10
= —*— Galerkin
\ —e— Collocation
e X & —#— Galerkin: Model
W‘ \9\\ —@& — Collocation: Model

time (non-dimensional)

m=5
uniform
density
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in and Collocation Methods
Component of Stochastic Galerkin
Itigrid for Stochastic Galerkin

Solution Algorithms for Stochastic Galerkin/Collocation Discretization

Experimental Comparison

Experimental Results: CPU Times

Performed on a serial machine with C code and
CG/AMG code from Trilinos
Truncated Gaussian density

Observation: Galerkin faster, more so as number of
stochastic variables (KL terms) grows

Galerkin Collocation
m=5 m=10 m=12 | m=5 m=10 m=12
.058 147 .263 .069 .163 218

.269 1.20 2.00 .532 2.13 3.17

1.20 13.14 24.50 241 16.99 29.31
3.50 53.79 121.61 8.31 102.60  200.94
6.51 117.73 2456 515.74

o~ 0N T
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. . . . e arison of Galerkin and Collocation Method
Solution Algorithms for Stochastic Galerkin/Collocation Discretization Comparison of Galerkin and Colloca fon - SHoas 5
Component of Stochastic Galerkin

1. Mean-Based Multigrid for Stochastic Galerkin

Collocation Methods
Experimental Comparison

Discussion
Shows Galerkin formulation is tractable

In these circumstances, cheaper than collocation
But: intrusive

Requirements:
- Linear dependence on stochastic parameters

- Knowledge of joint density function for parameters
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies
Experimental Results

e Special Treatment of Lognormal Distribution
@ Problem Statement: Lognormal Diffusion Coefficient
@ Transformation, Matrix Structure
@ Preconditioning strategies
@ Experimental Results
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies

Experimental Results

Problem Statement

Diffusion equation —V - (c(x,w)Vu)=f on D C R,
with suitable boundary conditions
Diffusion coefficient c(x,w) is a log-normal random field
k(x,w) = exp(a(x,w))

30(X) +o Zﬁzl \/mam(x)fm(w)
a0(%) + & Yoy VAm am(X)ém(w)

a(x,w) = log k(x,w)

Q

Will use finite-term expression in sequelt

Complication: Galerkin much less straightforward when coefficient is
nonlinear in &.

TFor simplicity, we will also take {£x} to have truncated Gaussian distributions.
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformati rix Structure

Preconditioning egi

Experimental Results

New Approach: Convection-Diffusion Formulation

E., Ernst & Ullmann
Diffusion equation -V -(e*Vu)="f

Expand using product rule:
e’ (-V?u—Va -Vu)=f
— Convection-diffusion problem

—V?u+w-Vu=e?f, w=-Va

N.B. This connection is long known, e.g., Varga et al., 1966
Presented in other direction: existence of velocity potential enables
recasting of convection-diffusion equation as diffusion equation

Key point:
w=—(Vap + UZZII VAm Van(x)ém) s linear in €
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies
Experimental Results

Matrix structure

Extended weak formulation

M
// Vu-Vv—// Vaov—UZ\/Am// Vamv:// e fv
rJo rJo — rJo rJo

Generalized polynomial chaos discretization — coefficient matrix:

M
C=1@(L+No)+ > G @ Ny

m=1

L discrete diffusion operator
No  convection term from mean Vaq
N, convection terms from terms Va,, in expansion of Va

Advantage: matrix is sparse
Slight disadvantage: matrix is nonsymmetric
For iterative solution: use preconditioned GMRES
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies

Experimental Results

Solution Algorithms for Convection-Diffusion Form

Linear system for stochastic Aglalerkin Cu="f
C=1®(L+No)+ > Gn® N
m=1
Right-oriented preconditioning:
Solve [CP~1]& = f using GMRES, u = P70

Options for preconditioning
o Diffusion preconditioner: P =1 ® L, n¢ decoupled diffusion
operators

@ Mean-based preconditioner: P =1 ® (L+ Np), ne decoupled
convection-diffusion operators (provided Vag is nonzero)

o Refinement: Action of P~1: approximated using multigrid
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Problem Statemel Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies

Experimental Results

Representative Analysis

Diffusion preconditioner P = | ® L:
Consider (generalized) field of values

FOV(C, P) = {m s v e CHe v#O}.

Theorem
For the diffusion preconditioner, FOV(C, P) is contained in the circle

M
{zeC:|z-1<2cpa}, a=|Valwtovpir Py VAnlVamlls,
m=1

’

where ||Vapm||oo = supyep |Vam(x)
Vp+1 = largest root of orthonormal Rys polynomial of degree p + 1,

cp > 0 is a constant independent of h, o and p.
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure

Preconditioning strategies

Experimental Results

Experimental Results

Benchmark problems

v a = log k(x, &) constructed from
ag = 1+ 10x? (Vap # 0)
u=1 u=0 Cov(x,y)= o exp (—(lx — yll2/)?)
Problem 1: £ =1, M =5 term truncated KL exp
Problem 2: ¢ = .5, M = 10-term truncated KL exp
=0 Both: capture 95% of total variance
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Problem State gnormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transforma Structure
Preconditioning strategies

Experimental Results

[teration Mean-based Diffusion
Counts P=I®(L+N) > P=lalL
n o |p=1 2 3 4 || p=1 2 3 4
32 01| 6] 6| 6] 6 23] 25|25 25
64 - 6| 6| 6| 6| 23|24 |24/ 24
broblem 1 128 - 5 5| 5| 5 2122|221 22
' © lem 32 10| 8] 9| 910 26| 29 | 31 | 32
Vs 64 - 7| 8| 9| of 25|28 | 30] 30
128 - 7| 8| 8| 9of 23|26 | 28] 29
32 20| 10 | 12 | 14 | 15 || 28 | 33 | 36 | 38
64 - 9|11 | 13| 14| 27| 31|34 36
128 - 9|11 | 12| 13| 25|20 | 32 34
n o | p=1 2 3 4 || p=1 2 3 4
32 01| 6] 6| 6] 6 24| 25|26 25
64 - 6| 6| 6| 6| 23| 24|25/ 24
broblem 2 128 - 6| 6| 5| 6| 21|23 |23] 22
i 32 10| 10 | 12 | 13 | 14 || 28 | 32 | 34 | 32
M= 10 64 - 9|12 | 13| 14| 26|30 32] 30
128 - 9|11 | 12| 13| 25|20 | 30| 29
32 20| 13 | 19 | 24 | 28 || 30 | 37 | 41 | 46
64 - | 12|18 | 23|27 || 20| 35 | 30 | 44
128 - | 12|17 |21 |26 | 2833|3741
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Problem Statement: Lognormal Diffusion Coefficient
Special Treatment of Lognormal Distribution Transformation, Matrix Structure
Preconditioning strategies

Experimental Results

Discussion

o Again: establishes textbook MG convergence wrt spatial mesh

@ Overcomes difficulties associated with nonlinearity of lognormal
coefficients
@ One caveat: for series approximation to Va
Require a to be mean-square continuously differentiable
(Am, am): eigenpairs derived from covariance of a, Cov(x,y)
OK:  c(x,y) = exp (—(llx — yll2/¢)?)
Not: c(x,y) = exp (=[x —yll1/¢)

Efficient Solution Algorithms for Partial Differential Equations with Randol



Restrictions for Ideas Above
Adaptive Sparse Grid Collocation

Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation
Experimental Results

e Adaptive Collocation with Kernel Density Estimation
@ Restrictions for Ideas Above
@ Adaptive Sparse Grid Collocation
@ Kernel Density Estimation
@ Experimental Results
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation
Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation
Experimental Results

Restrictions for Ideas Above

Some restrictions of the approaches just discussed:

@ Generally do not have joint pdf for diffusion coefficient
o Ignored in part | above
o Worked around in part Il (with some limitations)

@ Some issues for collocation

o Simpler than Galerkin (non-intrusive), but not cheaper
o Requires regularity in &

To address these (E & Miller):
@ For pdf: use kernel density estimation methods

@ For costs of collocation: use adaptive sparse grid collocation

Efficient Solution Algorithms for Partial Differential Equations with Randol



Restrictions for Ideas Above
Adaptive Sparse Grid Collocation
Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation

Experimental Results

Adaptive Sparse Grid Collocation

Collocation based on interpolation

Consider function u(¢) at left

piecewise linear interpolant u;(€)
&, = child, node at next level uniform grid
w(&.) = interpolation error at &,:

Ma & Zabaras: If u;(€) is represented using
hierarchical basis (left), then
" w(&,) = coefficient of basis function

o in interpolant on refined grid

Strategy: Refine grid using child &,
iff [w(&.)|> tolerance
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation
Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation

Experimental Results

Adaptive Sparse Grid Collocation

Collocation based on interpolation

Consider function u(¢) at left

piecewise linear interpolant u;(€)
&, = child, node at next level uniform grid
w(&.) = interpolation error at &,:

Ma & Zabaras: If u;(€) is represented using
hierarchical basis (left), then
" w(&,) = coefficient of basis function

o in interpolant on refined grid

Strategy: Refine grid using child &,
iff [w(&.)|> tolerance
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation

Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation
Experimental Results

Algorithm: Adaptive interpolation with hierarchical basis functions

Set Ao(u)(§) =0

Set k=1
Set Aeadaptlve =0
repeat
Ae;(c;:]p-wtlve = @
for fAk € Aeadapi.‘lve
WJ" u(ERK) — Ax—1(u)(€8%) Augment interpolant at
if ||w/|| > 7 then refined grid nodes only
AO{;‘EJUW = Aﬂfiaitive U chi/d(ﬁjAk) where interpolation
endif error is too large
endfor
Set Ax(u)(§) = 2,71 > ’1/}’( ) Interpolant = sum(levels)
k=k+1 all level-k basis functions

until max(||wk RS
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation

Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation
Experimental Results

To Use this Idea with Diffusion Equation —V - (a(x,&)Vu) = f

I | | | | | | | |
I T T T T T T T !
Levels 2 1 2 0 2 1 2

o Start with £©, compute solution u(x,§0)
Determines interpolant [.A() u](x, &)

o Identify children {£/"} of 5()

0)
Compute solutions {u(x, &™)}, add {51(-1)} to set of collocation
points according to adaptive strategy with tolerance test

W lloop(€5%) > 7
Determines interpolant [A®M) u](x, &)

@ Repeat: identify children of “level-1" points, compute solutions, etc.

Result: Collocation solution A®K)y

Approximate moments, distributions of u using A u
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Restrictions for Ideas Above
Adaptive Sparse Grid Collocation

Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation
Experimental Results

Kernel Density Estimation

Given N samples of &, estimate density function by

ZC NhMZ ( 50)

For bandwidth h, use maximum likelihood cross-validation: maximize

N
CV(h) = % > log(p-i(€"))
i=1
where N
1 _ ¢(k)
p-i(§) = NAM K (5 /f >
k=1,k#i

For K(&), use Epanechnikov kernel
3\ MM
k©=(3) TIa- &

i=1
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Restrictions for Ideas Above

Adaptive Sparse Grid Collocation
Adaptive Collocation with Kernel Density Estimation Kernel Density Estimation

Experimental Results

Experimental Results

Test problem: —Zay(x,€)Lu(x,£)=1 Vxe(0,1)
u(0,€) = u(1,€) =0
am =p+ Z,’f’:/g_l Ac(Eaxcos(2mkx) + Erpr15in(2mkx))
=3, A = exp(—k)
&k uniformly distributed on [0, 1]
Experiment: Generate N samples of &

Use them to generate estimate p(&)
Use j to generate adaptive collocation solution Au

Compare with:
Use the same N samples to perform Monte-Carlo simulation

Efficient Solution Algorithms for Partial Differential Equations with Randol



Adaptive Collocation with Kernel Density Estimation

Representative Results: M = 10 parameters

Restrictions for Ideas Above
Adaptive Sparse Grid Collocation
Kernel Density Estimation
Experimental Results

p
N 5 x 10 2 1x10°3 5x 107 1x10 7 5x 10 °
100 7.66 x 1073 | 886 x 10~ % | 441 x10"* | 448x10°° | 828 x10°°
9.08 x 102 (76) (1026) (1655) (5026) (8111)
500 713x1073 | 6.08x10°% | 336 x 10 % | 234x10°° | 1.01 x 1075
4.06 x 1072 (92) (1170) (1189) (5773) (9404)
1000 9.19x 1073 | 6.03x10 % | 265 x 10~ % | 1.95x 10" ° | 1.77 x 10~ °
2.87 x 1072 (59) (1216) (1989) (5996) (9664)
5000 716 x 1073 | 6.62x10~% | 3.03x10~* | 2.04 x10°° | 1.02x 10~°
1.28 x 102 (93) (1120) (2041) (6095) (9787)
20000 725x 1073 | 627 x10°% | 266 x 10 % | 1.96 x 10~° | 5.67 x 10~ ©
6.42 x 1073 (93) (1187) (2127) (6050) (9942)
Monte-Carlo Collocation error

error

I M ulx, €90) = Au)(x, €0)ll ()

Parens: Number of DE solves needed for collocation
Green: This number is smaller than N and yields smaller error
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Conclusions

Concluding Remarks

Various Useful Approaches to Handle Diffusion Problem
with Stochastic Coefficient

@ Stochastic Galerkin equations with linear dependence on parameters
are solvable using multigrid

e Diffusion equation with lognormal coefficent can be handled by
transformation to convection-diffusion form

@ Adaptive collocation with KDE is general and effective
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