Multiscale model reduction for flows in heterogeneous porous media

Yalchin Efendiev Texas A&M University Collaborators: J. Galvis (TAMU), E. Gildin (TAMU), F. Thomines (ENPC), P. Vassilevski (LLNL), X.H. Wu (ExxonMobil)

Introduction

• Natural porous formations have multiple length scales, complex heterogeneities, high contrast, and uncertainties

Acknowledgements: K. Sternlof, A. Ahmadov,

http://www.geoexpro.com/country_profile/mali/

- It is prohibitively expensive to resolve all scales and uncertainties. Some types of reduced models are needed.
- Objective: development of systematic reduced models for deterministic and stochastic problems

Coarse (reduced) modeling concepts

Reduced/coarse models

methods

G

 \mathbf{O}

В

Α

POD, Reduced Basis, BT, ... using global snapshots

Need for reduced models

 Forward problems are solved multiple times for different source terms boundary conditions

mobilities (in multi-phase flow)

- In "uncertainty quantification", forward problem is solved for different realizations of permeability field (not necessarily log-Gaussian)
 - E.g., in MCMC, new realization is proposed and we need rapidly

- screen the new permeability and compute solution
- It needs ensemble level multiscale model reduction, ensemble level preconditioners, solvers,

Multiscale FEM methods.

• We look for a reduced approximation of fine-scale solution $u = \sum_{i=1}^{j_{i}} u_{i} \phi_{i}$

Multiscale FEM methods.

• $u = \sum_{i} u_i \Phi_i$, where u_i are found by a "Galerkin substitution" (Babuska et al. 1984, Hou and Wu, 1997), $\left\langle L\left(\sum_{i} u_i \Phi_i\right), \Phi_j\right\rangle = \left\langle f, \Phi_j \right\rangle.$

• Integrals can be approximated for scale separation case.

Some advantages of multiscale methods: (1) access to fine-scale information; (2) unstructured coarse gridding; (3) taking into account limited global information; (4) *systematic enrichment*

Literature (coarse-grid multiscale methods)

- Classical upscaling or numerical homogenization.
- Multiscale finite element methods (J. Aarnes, Z. Cai, Y. Efendiev, V. Ginting, T. Hou, H. Owhadi, X. Wu....)
- Mixed multiscale finite element methods (Z. Chen, J. Aarnes, T. Arbogast, K.A. Lie, S. Krogstad,...)
- MsFV (P. Jenny, H. Tchelepi, S.H. Lee, Iliev,)
- Mortar multiscale methods (T. Arbogast, M. Peszynska, M. Wheeler, I. Yotov,...)
- Subgrid modeling and stabilization (by T. Arbogast, I. Babuska, F. Brezzi, T. Hughes, ...)
- Heterogeneous multiscale methods (E, Engquist, Abdulle, M. Ohlberger, ...)
- Numerical homogenization (NH) using two-scale convergence (C. Schwab, V.H. Hoang, M. Ohlberger, ...)
- NH (Bourgeat, Allaire, Gloria, Blanc, Le Bris, Madureira, Sarkis, Versieux, Cao, ...)
- Component mode synthesis techniques (Lehoucq, Hetmaniuk)
- AMG coarsening (P. Vassilevski)
- Multiscale multilevel mimetic (Moulton, Lipnikov, Svyatskiy...)
- High-contast homogenization (G. Papanicolaou, L. Borcea, L. Berlyand, ...)

Boundary conditions

• Local boundary conditions need to contain "correct" structure of small-scale heterogeneities. Otherwise, this can lead to large errors.

• Piecewise linear boundary conditions result to large discrepancies near the edges of coarse blocks (e.g., the solution is $u \approx u_0 + \varepsilon u_1(x, x/\varepsilon)$ along the coarse edge while MsFE solution is linear).

Error $\propto \frac{\varepsilon}{H}$, where ε is a physical scale and H is the coarse mesh size, $H \gg \varepsilon$. Improving boundary conditions: Oversampling (Hou, Wu, Efendiev,...), local-global (Durlofsky, Efendiev, Ginting,), limited global information (Owhadi, Zhang, Berlyand...), ...

Questions: (1) How to find these basis functions? How to define boundary conditions for basis functions? (2) How to systematically enrich the space ?

Systematic enrichment and initial multiscale

space

- One basis per node is not sufficient.
- Many features can be localized, while some features need to be represented on a coarse grid.
- Initial basis functions are used to capture "localizable features" and construct a spectral problem that identifies "next" important features.
- Initial basis functions are important. Without a good choice of initial space, the coarse space can become very large.

Local model reduction.

Denote by Φ_k initial multiscale basis functions. Basis functions for MsFEM are formed - $\Phi_i \cdot \psi_k$ It can be shown that

$$\int_{D} k |\nabla(u - u_{ms})|^{2} \leq \sum_{i} \int_{\omega_{i}} k \Phi_{i}^{2} |\nabla(u - u_{0})|^{2} + \sum_{i} \int_{\omega_{i}} k |\nabla \Phi_{i}|^{2} (u - u_{0})^{2},$$

where u_0 is local coarse-grid approximation in Span(ψ_k), ω_i are coarse blocks sharing a vertex.

POD-type-reduction of snapshots can lead to large spaces.

Coarse space construction. Methodology

- Start with initial basis functions Φ_i and compute $k = \sum_i k \nabla \Phi_i \cdot \nabla \Phi_i$.
- For each ω_i , solve local spectral problem $div(k\nabla \psi_i) = \lambda_i k \psi_i$ with zero Neumann bc and choose "small" eigenvalues and corresponding eigenvectors.

Systematic enrichment

• If Φ_i are bilinear functions, then $k \propto k$ (the same high-cond. regions)

 $k = \sum_{i} k \nabla \Phi_{i} \cdot \nabla \Phi_{i}$

- $div(k\nabla \psi_i) = \lambda_i k \psi_i$ with zero Neumann bc
- Identify $\lambda_1 = 0 \le \lambda_2 \le ... \le \lambda_n$.
- There are 6 small (inversely \propto to high-contrast) eigenvalues.
- Eigenfunctions represent piecewise smooth functions in high-conductivity regions
- "Gap" in the spectrum --- $\frac{\int k |\nabla \psi|^2}{\int k \psi^2}$.
- $div(k\nabla \psi_i) = \lambda_i \psi_i$ too many contrast-dependent eigenvalues.

Systematic enrichment

• If there are many inclusions, we may have many basis functions. We know "many isolated inclusion domain" can be homogenized (one basis per node).

• What features can be localized? Channels vs. inclusions.

Coarse grid with isolated inclusions and channels

Coarse grid without isolated inclusions

Systematic enrichment

- Φ_i are multiscale FEM functions $k = \sum_i k \nabla \Phi_i \cdot \nabla \Phi_i$
- $div(k\nabla \psi_i) = \lambda_i k \psi_i$ with zero Neumann bc
- Identify $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$.
- There are 2 small (inversely \propto to high-contrast) eigenvalue
- Eigenfunctions represent piecewise smooth functions in high-conductivity channels
- "Gap" in the spectrum --- $\frac{\int k |\nabla \psi|^2}{\int k \psi^2}$.

Coarse space construction

• Coarse space: $V_0 = Span \{ \Phi_i \psi_l^{\omega_i} \}$

Coarse grid approximation

 $\int k |\nabla(u - u_{Ms})|^2 \le C \frac{H^{\gamma}}{\Lambda}$ (YE, Galvis, Wu, 2010), where Λ is the smallest eigenvalue that

the corresponding eigenvector is not included in the coarse space.

Larger spaces give same convergence rate.

Dimension reduction

- Without appropriate initial multiscale space, the dimension of the coarse space can be large.
- Dimension reduction for channels (channels need to be included in the coarse space).

Applications to preconditioners

Permeability

contras	st Initial MS space	Enriched (w. incl)	Enriched (opt.)
10^{4}	98(2490.75)	27(6.19)	28(7.34)
10^{5}	123(24866.24)	28(6.19)	29(7.35)
10^{6}	144(248621.33)	29(6.19)	29(7.35)
10^{7}	174(2486172.35)	29(6.19)	30(7.35)
Dim	49	102	69

We show that $cond(B^{-1}A) \leq \frac{1}{\Lambda}$ (Galvis and YE, 2010), where Λ is (rescaled) smallest eigenvalue that the corresponding eigenvector is not included in the coarse space. For optimality, all eigenvectors corresponding to asymptotically small eigenvalues need to be included. Here B^{-1} is two-level additive Schwarz preconditioner ($B^{-1} = R_0^T A_0 R_0 + \sum_i R_i^T A_i^{-1} R_i$)

• Multilevel methods (YE, Galvis, Vassilevski, 2010).

Local-global model reduction

- "Multiscale methods" are typically designed to provide approximations for arbitrary coarselevel inputs
- How can we take an advantage if inputs belong to a smaller dimensional spaces?

Local-global model reduction

- Multiscale methods are typically designed to provide approximations for arbitrary coarselevel inputs
- How can we take an advantage if inputs belong to a smaller dimensional spaces?

• We use balanced truncation approach to select reduced global modes. We consider $\frac{dp}{dt} = Ap + Bu, \ q = Cp, \text{ where } u \text{ is input, } q \text{ is observed quantity.}$

• "Balanced truncation" allows obtaining reduced models; however, it is very expensive and involves solving Lyapunov equation $AP + PA^T + BB^T = 0$, $A^TQ + QA + C^TC = 0$.

We choose an appropriate local coarse-scale model given a tolerance and combine it to a
global model reduction and guarantee a smallest dimensional reduced model.

 Approach: Apply Balanced Truncation (BT) on a coarse grid with a careful choice of MS (red – BT with 10 SV, black – BT with 3 SV).

• $\left\| q - q_o^r \right\| \leq \left\| q - q_o \right\| + \left\| q_0 - q_o^r \right\|$, where q_o is coarse approx., and q_o^r is a reduced coarse approx. $\left\| q - q_0^r \right\| \leq \left\| C \right\|_A \frac{H^{\gamma}}{\lambda_{L+1}^*} + \sum_{i=l+1}^{r} \sigma_i^0.$

MS Dim	MS Error	BT Error	Total Error
69	0.12(<mark>0.12</mark>)	0.23(<mark>0.04</mark>)	0.29(<mark>0.12</mark>)
150	0.08(<mark>0.08</mark>)	0.25(<mark>0.06</mark>)	0.29(<mark>0.11</mark>)
231	0.06(<mark>0.06</mark>)	0.26(<mark>0.06</mark>)	0.29(<mark>0.09</mark>)

Stochastic (parameter-dependent) problems

- Permeability fields are usually stochastic (variogram-based, channelized permeability,...). Uncertainties are typically parameterized
- Basis (subgrid representation) computations can be expensive if performed realization-by-realization. Can we construct "ensemble" level approaches?
- Fast ensemble-level multiscale methods (ensemble level preconditioners) are needed for many Monte Carlo simulations.
 E.g., Markov chain Monte Carlo for uncertainty quantification in inverse problems,...

Ensemble level multiscale methods

- Objective is to construct coarse spaces for "an ensemble (Aarnes and YE, 2008)
- Construct basis functions by selecting a few realizations in the ensemble

Ensemble level multiscale

- Ensemble level multiscale spaces for coarse-grid approximation and preconditioning.
- For channelized permeability fields, we propose using largest channels within coarse-grid block and constructing multiscale basis functions based on it.
- These multiscale spaces are used in preconditioning for each proposal of the ensemble (joint work with J. Galvis , P. Vassilevski, J. Wei)

contrast	Ms-no enrich	Ms spectral
1e+3	2.76e+2	1.06e+1
1e+6	2.61e+5	1.24e+1
1e+9	2.6e+8	1.24e+1

 How to generalize this method? The main idea is to construct a small dimensional local problems offline that can be used for each online parameter.

Reduced Basis (RB) Multiscale FEM Approach

• S. Boyoval, A. Cohen, R. DeVore, , C. LeBris, Y. Maday, A. Pattera,...

 $-\operatorname{div}(k(x;\mu)\nabla p) = f, \quad \mu \in \Lambda, \quad k(x;\mu) = \sum_{i} k_q(x)\Theta_q(\mu)$

- Reduced basis discretizes the manifold Ω =Span{ $p(x; \mu), \mu \in \Lambda$ } via $\Omega_N = \text{Span}\{p(x; \mu_i), i \leq N\}, \text{ for small } N.$
- RB uses snapshots of global solutions (offline) to construct a reduced model for solving the global system for an online value of μ
- Aposteriori error estimates are used to find snapshots with greedy algorithm
- Affine form of k(x; μ) is needed to compute bilinear forms offline and make online computations fast
- Extensions to corrector problems Boyoval et al., 2009,...

 $k = \mu k_0 + (1 - \mu)k_1$

	True	Nrb=1	Nrb=2	Nrb=3	Nrb=4
LSM+0	13.6 (44)	39.3(36)	39.3(36)	13.6(44)	13.6(44)
LSM+1	4.01 (80)	39.2(72)	38.6(72)	4.01(80)	4.01(80)
LSM+2	3.93(116)	39.18(108)	26.5(108)	3.93(116)	3.93(116)

Eta	MS	True	Nrb=1	Nrb=2	Nrb=3
1e+5	47(1.4e+4)	27(8.8)	42(2e+4)	45(1.8e+4)	26(9.34)
1e+5	57(1.4e+6)	31(7.8)	52(2e+6)	53(2e+6)	28(9.34)
Dim	16	24	16	16	24

Mu=0

1.5

0.5

1.5

0.5

	Lin. Init. Basis	Ms. Init. Basis
LSM+0	9.9 (300)	10.36 (120)
LSM+1	6.28 (415)	2.45 (201)

Computational cost

• RB-MsFEM CPU gain is due to the fact that many features are eliminated at the coarsegrid level before involving a global solve

Conclusions

- Local multiscale methods.
- Systematic enrichment. A choice of initial multiscale basis functions.
- Local-global approaches
- Parameter-dependent problems.