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Introduction  
• Natural porous formations have multiple length scales, 

complex heterogeneities, high contrast, and uncertainties  

http://www.geoexpro.com/country_profile/mali/ 

• It is prohibitively expensive to resolve all scales and 
uncertainties. Some types of reduced models are needed. 

• Objective: development of systematic reduced models for 
deterministic and stochastic problems 



Coarse (reduced) modeling concepts 
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Reduced/coarse models 
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Solve L(u)=0 over local region for coarse scale k* 
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• Numerical upscaling/homogenization 

• Multiscale (on a coarse grid) 
methods 

• POD, Reduced Basis, BT, … using global snapshots 
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Need for reduced models 

• Forward problems are solved multiple times for different  
              source terms 
              boundary conditions 
              mobilities (in multi-phase flow) 
              …. 
• In “uncertainty quantification”, forward problem is solved for 

different realizations of permeability field (not necessarily log-
Gaussian) 

          - E.g., in MCMC, new realization  
          is proposed and we need rapidly 
          screen the new permeability and compute solution 
          - It needs ensemble level multiscale model reduction, 
               ensemble level preconditioners, solvers, …. 
   



Multiscale FEM methods.  
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Multiscale FEM methods.  
i ,  where u  are found by a "Galerkin substitution" (Babuska et al. 1984, Hou and Wu, 1997),  

               , , . 

 Integrals can be approximated for scale separation case.
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From Aarnes et al., 

Some advantages of multiscale methods: (1) access to fine-scale 
information; (2) unstructured coarse gridding; (3) taking into account 
limited global information; (4) systematic enrichment 



Literature (coarse-grid multiscale 
methods) 

• Classical upscaling or numerical homogenization. 

• Multiscale finite element methods (J. Aarnes, Z. Cai, Y. Efendiev, V. Ginting, T. Hou, H. Owhadi, X. Wu....) 

• Mixed multiscale finite element methods (Z. Chen, J. Aarnes, T. Arbogast, K.A. Lie,  S. Krogstad,...) 

• MsFV (P. Jenny,  H. Tchelepi, S.H. Lee,  Iliev, ....) 

• Mortar multiscale methods (T. Arbogast, M. Peszynska, M. Wheeler, I. Yotov,...)  

• Subgrid modeling and stabilization (by T. Arbogast, I. Babuska, F. Brezzi, T. Hughes, ...) 

• Heterogeneous multiscale methods (E, Engquist, Abdulle, M. Ohlberger,  ...) 

• Numerical homogenization (NH) using two-scale convergence (C. Schwab, V.H. Hoang, M. Ohlberger, ...) 

• NH  (Bourgeat, Allaire, Gloria, Blanc, Le Bris, Madureira, Sarkis, Versieux, Cao, ...)  

• Component mode synthesis  techniques (Lehoucq, Hetmaniuk) 

• AMG coarsening (P. Vassilevski) 

• Multiscale multilevel mimetic  (Moulton, Lipnikov, Svyatskiy…) 

• High-contast homogenization (G. Papanicolaou, L. Borcea, L. Berlyand, …) 
 



Boundary conditions 
• Local boundary conditions need to contain “correct” structure of small-scale 

heterogeneities. Otherwise, this can lead to large errors. 



• Piecewise linear boundary conditions result to large discrepancies near the edges 
of coarse blocks (e.g., the solution is                             along the coarse edge while 
MsFE solution is linear).  

     Error  
Improving boundary conditions: Oversampling (Hou, Wu, Efendiev,…), local-global 
(Durlofsky, Efendiev, Ginting, ….), limited global information (Owhadi, Zhang, 
Berlyand…), … 
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,  where  is a physical scale and  is the coarse mesh size, .H H
H
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Questions: (1) How to find these basis functions?  How to define boundary conditions for 
basis functions? (2) How to systematically enrich the space ?  



Systematic enrichment and initial multiscale 
space 

• One basis per node is not sufficient. 
• Many features can be localized, while some features need to be represented 

on a coarse grid. 
• Initial basis functions are used to capture “localizable features” and construct 

a spectral problem that identifies “next” important features. 
• Initial basis functions are important. Without a good choice of initial space, 

the coarse space can become very large. 
 

Coarse block 

Localizable features 

Non-localizable features 



Local model reduction.  
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kid approximation in Span( ),  are coarse blocks sharing a vertex. i 

1 2 NAssume ,  ,...,   are local snapshots. How to generate local basis 

functions? 
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POD-type-reduction of snapshots can lead to large spaces. 



Coarse space construction. 
Methodology 

i

 Start with initial basis functions  and compute  .

 For each ,  solve local spectral problem - ( )  with zero Neumann bc and

  choose "small" eigenvalues and corresponding ei
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Systematic enrichment 
i

1 2

 If  are bilinear functions, then   (the same high-cond. regions) 

 

 - ( )  with zero Neumann bc

 Identify =0 ... .
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Systematic enrichment 
 If there are many inclusions, we may have many basis functions. We

    know "many isolated inclusion domain" can be homogenized (one basis per node).



 What features can be localized? Channels vs. inclusions.



Systematic enrichment 

i

1 2

  are multiscale FEM functions -  

 - ( )  with zero Neumann bc

 Identify =0 ... .

  There are 2 small (inversely  to high-contrast) eigenvalues.
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Coarse space construction 
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Coarse grid approximation 

Fine-scale solution 

Fine solution 

MSwith initial space, error=90% MS with systematically enriched space, error=6% 

H=1/10 H=1/20 

+0 0.2 (Λ=0.2) 0.12 (Λ=0.11) 

+1 0.036 (Λ=0.95) 0.034 (Λ=0.9) 

+2 0.03 (Λ=1.46) 0.02 (Λ=1.54) 

+3 0.027 (Λ=3.15) 0.01 (Λ=1.9) 

2| ( ) |  (YE, Galvis, Wu, 2010),  where  is the smallest eigenvalue that

 the corresponding eigenvector is not included in the coarse space. 

Larger spaces give same convergence rate.
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Dimension reduction 

Coarse block 

Localizable features 

Non-localizable features 

• Without appropriate initial multiscale space, the dimension of the coarse 
space can be large. 

• Dimension reduction for channels (channels need to be included in the 
coarse space). 
 



Applications to preconditioners 

Permeability 
Initial MS space Enriched (w. incl) Enriched 

(opt.) 

1 1
We show that ( )  (Galvis and YE, 2010),  where  is (rescaled) smallest 

eigenvalue that the corresponding eigenvector is not included in the coarse space. For

optimality, all eigenvectors corr
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• Multilevel methods (YE, Galvis, Vassilevski, 2010). 

contrast 



Local-global model reduction 

Fine-scale system 

• “Multiscale methods” are typically designed to provide approximations for arbitrary coarse-
level inputs 

• How can we take an advantage if inputs belong to a smaller dimensional spaces? 

input output 



Local-global model reduction 

Appropriate coarse-
scale system based 
on error tolerance 

• Multiscale methods are typically designed to provide approximations for arbitrary coarse-
level inputs  

• How can we take an advantage if inputs belong to a smaller dimensional spaces?  

input output 

• We choose an appropriate local coarse-scale model given a tolerance and combine it to a 
global model reduction and guarantee a smallest dimensional reduced model. 

 We use balanced truncation approach to select reduced global modes. We consider

      ,  ,  where  is input, q is observed quantity. 

 "Balanced truncation" allows obtaining reduced mode

dp
Ap Bu q Cp u

dt



  

 ls; however, it is very expensive 

and involves solving Lyapunov equation  0,  0.T T T TAP PA BB A Q QA C C     



Numerical results 

• Approach: Apply Balanced Truncation (BT) on a coarse grid with a careful choice of MS (red 
– BT with 10 SV, black – BT with 3 SV).  

 

MS Dim MS Error BT Error Total Error 

69 0.12(0.12) 0.23(0.04) 0.29(0.12) 

150 0.08(0.08) 0.25(0.06) 0.29(0.11) 

231 0.06(0.06) 0.26(0.06) 0.29(0.09) 

0

0

0 *
11

 - - - ,  where  is coarse approx., and  is a reduced coarse approx.
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Stochastic (parameter-dependent) 
problems  

• Permeability fields are  usually stochastic (variogram-based, 
channelized permeability,…). Uncertainties are typically 
parameterized 

• Basis (subgrid representation) computations can be expensive if 
performed realization-by-realization. Can we construct 
“ensemble” level approaches? 

• Fast ensemble-level multiscale methods (ensemble level 
preconditioners) are needed for many Monte Carlo simulations. 
E.g., Markov chain Monte Carlo for uncertainty quantification in 
inverse problems,… 

 

 

 

 

 

 
 

 

 



Ensemble level multiscale methods 
• Objective is to construct coarse spaces for “an ensemble (Aarnes and YE, 

2008) 

• Construct basis functions by selecting a few realizations in the ensemble  

 



Ensemble level multiscale 
• Ensemble level multiscale spaces for coarse-grid approximation and preconditioning. 
• For channelized permeability fields, we propose using largest channels within coarse-grid 
      block and constructing multiscale basis functions based on it. 
• These multiscale spaces are used in preconditioning for each proposal of  
       the ensemble (joint work with J. Galvis , P. Vassilevski, J. Wei) 

contrast Ms-no enrich Ms spectral 

1e+3 2.76e+2 1.06e+1 

1e+6 2.61e+5 1.24e+1 

1e+9 2.6e+8 1.24e+1 
Permeability used 
constucting multiscale 
casis functions 

Permeability 
Realization from 
ensemble 

• How to generalize this method? The main idea 
is to  construct a small dimensional local 
problems offline that can be used  for each 
online parameter. 



Reduced Basis (RB) Multiscale FEM 
Approach 

N
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 Reduced basis discretizes the manifold =Span{ ( ; ),  } via 
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ffline) to construct a reduced model for

    solving the global system for an online value of 

 Aposteriori error estimates are used to find snapshots with greedy algorithm

 Affine form of ( ; ) is nk x







 eeded to compute bilinear forms offline and make

   online computations fast

 Extensions to corrector problems Boyoval et al., 2009,...

• S. Boyoval, A. Cohen, R. DeVore, , C. LeBris ,  Y. Maday , A. Pattera,…  



Reduced basis MsFEM 
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Reduced basis MsFEM 
div( ( ; ) ) ,    ,   ( ; ) ( ) ( )q q
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Numerical results 

True Nrb=1 Nrb=2 Nrb=3 Nrb=4 

LSM+0 13.6 (44) 39.3(36) 39.3(36) 13.6(44) 13.6(44) 

LSM+1 4.01 (80) 39.2(72) 38.6(72) 4.01(80) 4.01(80) 

LSM+2 3.93(116) 39.18(108) 26.5(108) 3.93(116) 3.93(116) 

Mu=0 Mu=1/2 
Mu=1 

Eta MS True Nrb=1 Nrb=2 Nrb=3 

1e+5 47(1.4e+4) 27(8.8) 42(2e+4) 45(1.8e+4) 26(9.34) 

1e+5 57(1.4e+6) 31(7.8) 52(2e+6) 53(2e+6) 28(9.34) 

Dim 16 24 16 16 24 

0 1(1 )k k k   



Numerical results 



Numerical results 

Lin. Init. Basis Ms. Init. Basis 

LSM+0 9.9 (300) 10.36 (120) 

LSM+1 6.28 (415) 2.45 (201) 

Mu=0 Mu=1 



Computational cost 

• RB-MsFEM CPU gain is due to the fact that 
many features are eliminated at the coarse-
grid level before involving a global solve 

 



Conclusions 

• Local multiscale methods. 

• Systematic enrichment. A choice of initial 
multiscale basis functions. 

• Local-global approaches 

• Parameter-dependent problems. 


