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Motivation – Predictive simulation of engineering systems 	


•  Data-driven representation of uncertainty	

•  Model parameters or structure	


•  Propagation of uncertainties 	

•  Model Verification and Validation (V&V)	


•  Certification and uncertainty management	
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Challenges for complex systems	


Lithium-ion battery cell 	


•  Multiple physics	


•  Multiple length/time scales	


•  Limited and noisy data	


•  sub-scale model calibration	


•  Large number of uncertain variables	

•  uncertainty propagation	


•  Expensive forward solves	


•  Verification	


• … 	




From deterministic to stochastic PDEs	


Probabilistic approach:	


•   Define an abstract probability space	


•   Represent data using random variables	

•  model parameters/structure, initial conditions, boundary conditions, …   

•  Solution is also stochastic:	


Stochastic PDEs:	


B.C. :	

I.C.  :	




Finite dimensional uncertainty:	


From stochastic to parametric solution	


independent with known distribution functions	


Parametric solution:	


•  A parametric problem in higher dimensions	


•  Challenge is when     is large	


•  Many ideas from high-dimensional function approximation apply	




A wish list for complex systems	


An ideal approach:	


•  Sampling-based (non-intrusive)	

•  Legacy codes	


•  Fewest possible simulations	


•  Fast convergence	

•  …	


•  Exploit solution structures 	

•  Anisotropy	


•  Low-rank	

•  Sparsity in some basis	


•  …	


Key to success:	


PDE	

Solver	


Complex	

PDE System

Random output	
Random inputs	




Multi-dimensional spectral approximation of finite-variance        : 	


Polynomial chaos approximation	

[Ghanem & Spanos 91, Xiu & Karniadakis 02, …]	


Number of basis:	


Ortho-normal basis:	


Chaos coefficients:	


as	


uniform                            Legendre polynomials	


Gaussian                           Hermite polynomials	


Askey scheme:	


Tensor-product basis:	




•  Intrusive (Galerkin projection) approaches	


•  Non-intrusive (sampling) approaches	


Curse-of-dimensionality: Exponential growth of computational complexity	


A bottleneck: Curse-of-dimensionality	


Fast convergence:	


Number of unknown coefficients:	


+	


-	


If        is sufficiently smooth w.r.t.  	


Exponential in 	




Random sampling: Monte Carlo	


Sample     randomly	 	 	 
Random sampling	


Deterministic	

PDE Solver Deterministic	


PDE Solver Deterministic	

PDE Solver

•   Slow convergence	


•   “No” curse-of-dimensionality+	


-	




•  Curse of dimensionality remains	


Sample    on sparse grids	 	 	 

Deterministic	

PDE Solver Deterministic	


PDE Solver Deterministic	

PDE Solver

Tensor grid	
 Sparse grid	


•  Reduces curse-of-dimensionality	

  compare to tensor-product grids	


Pseudo-spectral on sparse grids – Stochastic collocation 	


Question: What if many of the PC coefficients are negligible? 	


exact interpolation	


[Xiu & Hesthaven 05, Babuska et al. 07, Ganapathysubramanian & Zabaras 07, …]	


+	


-	




Index of chaos coefficient (i)	
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Sparsity of solution w.r.t. PC basis	


        is sparse if it has a PC expansion with small number of important coefficients:	


A sparse solution can be approximated using                     samples!  	


The surprise:	




Random heat flux	
Hot streak	


Example – Heat transfer in a complex geometry	


Reynolds-averaged Navier-Stokes:	
 Sources of uncertainty:	


•  Heat flux on the cylinder wall (14 r.v’s)	


•  Location of the hot streak at inflow (1 r.v.)	


c.o.v = %14.43	


c.o.v = %57.74	


Random B.C.’s	




Legendre PC expansion of temperature is sparse	


Error in variance:	
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Chaos coefficients of temperature at the outflow midpoint  	


Index of chaos basis	


largest coefficient 	




A compressive sampling/sensing approach	


•  Geophysics	

•  Signal processing	

•  Imaging	

•  Statistics	

•  …	


Compressive sampling/sensing	


Our effort parallels works of:	


•  Claerbout	

•  Logan 	

•  Donoho	

•  Candes 	

•  Romberg	

•  Tao 	

•  DeVore	

•  …	




Problem setup – What are we after?	


Given            random samples (non-adapted):	


reconstruct the    -sparse Legendre polynomial chaos expansion 	


Investigate approximation property:	


•  As                   stability/convergence? 	


System	


PDE	

Solver	


Complex	

PDE System



Discrete representation: A matrix formulation	

An underdetermined linear system:	


•  This is an ill-posed problem	

•  It has infinitely many solutions	

•  Requires further constrains on solution	


Some observations:	


But we know that     is sparse!	


•   	


truncation error	


•      has to be estimated (e.g. statistically) 	




       -minimization – Sparsest approximation	


•  The solution is not always unique (for         )!	

•  It is an NP-hard problem!	


Main idea:    Among all possible solutions find the one	


                    with minimum number of non-zeros:  	


where	


•  Convex relaxation via    -minimization: Basis Pursuit Denoising (BPDN)	


A heuristic: 	




    -minimization/Basis Pursuit Denoising (BPDN)	


Main idea:  Use the convex relaxation	


where	


•  For sufficiently sparse coefficients and with some conditions on    :     	


•           and          share the same solution (for         )	

•  The solution is unique (for         )	


•   Quadratic programming solvers:	


•  Techniques such as: active set, projected gradient, interior-point continuation, etc. 	

•  In this work: SPGL1 with complexity	




minimum     -norm solution	
minimum     -norm solution	


non-sparse solution	

sparse solution	


    ball	
     ball	


Why     -norm promotes sparsity? 	

A geometric interpretation	




Example – Elliptic stochastic differential equation	


Uncertain diffusion:	


Solution is sparse in Legendre chaos if:	


•  Covariance is piecewise analytic [Bieri & Schwab 09]	

•  Smooth eigenfunctions 	

•  Fast decaying eigenvalues 	

•  e.g. Gaussian kernel	


Number of random variables: 	




   -minimization (BPDN)	
 Reference solution	
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Approximation of chaos coefficients	


Chaos coefficients of solution at the midpoint	

   -minimization (BPDN)	
 Reference solution	
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At 	


Index of chaos basis	




Convergence of solution statistics	


Number of samples N	
 Number of samples N	


Relative error in Mean	
 Relative error in Standard Deviation	


Monte Carlo	


Sparse-grid collocation (Clenshaw-Curtis) 	


    -minimization (BPDN)	


At 	




Random heat flux	
Hot streak	


Example – Heat transfer in a complex geometry	


Reynolds-averaged Navier-Stokes:	
 Sources of uncertainty:	


•  Heat flux on the cylinder wall (14 r.v’s)	


•  Location of the hot streak at inflow (1 r.v.)	


c.o.v = %14.43	


c.o.v = %57.74	


Random B.C.’s	




Reference solution	


Chaos coefficients of temperature at the outflow midpoint  	


Index of chaos basis	
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    -minimization N=80	




Temperature variance	


Convergence of the outflow temperature variance	


Monte Carlo  N=80	


Sparse-grid (CC) N=481 	


Reference solution	


    -minimization N=80	




Ingredients of a successful compressive sampling	


     When columns of      are “nearly” orthogonal = small mutual coherence:	
1	

[Donoho et al. 06] 	


This is a pessimistic bound! 	


[Donoho et al. 06] 	
2	
     When coefficient vector is “sufficiently” sparse:	




Bound on mutual coherence - Legendre PC basis	


Theorem:  	

As a result of the concentration of measure phenomenon on empirical	

correlation of PC basis:  	


Doostan & Owhadi, 11]	
[Doostan et al., 09;	




   -minimization is stable for Legendre PC expansion	


 Theorem (General stability of BPDN): [Doostan & Owhadi, 11]	


Let         be any essentially bounded function of i.i.d. random variables                            	

uniformly distributed on                 .  Assume there exists:	


such that:	


Then using	


random realization of solution:	


with overwhelming probability.	


Spars-grid 	




Hydrogen Oxidation in Supercritical Water	

Effect of parametric uncertainties on species concentration	


•  System of stiff nonlinear ODEs	


•  Uncertain reaction rates:  8 independent lognormals	


•  Uncertain enthalpies of formation:  5 independent Gaussians	


•  Prior work: [Phenix et al. 98, Reagan et al. 02/04, Le Maitre et al. 04/07, Najm et al. 09, Alexanderian et al. 11]	


Index of chaos basis	
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    -minimization	

Reference	


Hermite expansion of OH concentration (                  ) 	




Time (sec)	


mean + standard deviation	
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Statistics of OH concentration	


     -minimization	


Sparse-grid collocation	


  Reference solution	




Outlook 	


•  A possibility: Bayesian formulation of compressive sampling ?	


•  Question: How to optimally choose             for a given    ?	


Design of sampling strategy:	


•  Gaussian truncation error	

•  Laplace prior	

•  MAP equivalent to     -minimization	

•  New samples to minimize posterior uncertainty	


Non-smooth solutions:	


•  Sharp gradients/discontinuities	

•  Sparse approximation in multi-wavelet basis	


•  Adaptive sampling strategies	


Multi-physics/Multi-scale applications:	


•  Lithium batteries as a test bed 	


[Tipping 01, Ji et al. 07, … ] 	
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