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Multiple Time Scales: Magnetohydrodynamics

t=0.0

Magnetic 1sland formation/coalescence
= Can be modeled by Extended MHD

Timescales for Magnetohydrodynamics
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MHD times scales difficult for explicit, operator-split, and semi-implicit
integration

Multiple Time Scales

* Fast modes prohibit explicit simulation
X Stability restrictions imply small time steps

X For long time integration accuracy becomes problematic

* Interacting time scales make semi-implicit and operator split methods challenging

Stable long time scale integration can be enabled by implicit time stepping

* Must solve linear system: Newton’s Method (one iteration)

Solve Jpp = —F(x)) where J = 0F/0x

Tkl = Tk + Pk

Our approach is to solve using preconditioned Newton-Krylov methods

* Effective preconditioning is key to parallel scalability
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What must a preconditioner do?

* Preconditioner is key to computational efficiency and parallel scalability
* What must a preconditioner do?

1. Handle ill conditioning of system due to:
Fast waves, advection, elliptic operators, ...
Multiphysics systems strongly couple mechanisms, producing multiple time-
and length-scales
2. Must optimally scale with increasing:
*  problem size
*  processor count

*  For incompressible MHD specifically
1. Pressure-Velocity coupling: incompressibility constraint
2. Alfven Wave: Velocity-Magnetics coupling
3.  Material advection (flow velocity)
4

Dissipative operators (momentum, magnetics)



Preconditioning

Three flavors of preconditioning

1. Domain Decomposition

* ILU Factorization on each processor (with overlap)

2. Multilevel methods: ML Library (Tuminaro, Sala, Hu, Siefert, Gee)

* Smoothed Aggregation

» Aggressive Coarsening (AggC):
* 3-Level method
* Multiple unknowns per node
» Aggregation rate chosen to fix
coarse grid size
* [LU solvers to fix aggressive
aggregation

3. Block Preconditioners

Aggregation based Multigrid:

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes

m'l

Visualization of effect of partition of matrix graph
on mesh

Vanek, Mandel, Brezina, 1996; Vanek, Brezina, Mandel, 2001; Sala, Formaggia, 2001
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Block preconditioning: CFD example

Consider discretized Navier-Stokes equations

0
—u+u-Vu—VV2u+Vp:f F  BT| [u f
ot < 15 C =10
V-u=0 b
Fully Coupled Jacobian / Block Factorization \ / Preconditioner \
. =
B I F BT e e
.A = — A ~ M = A
[B C] | A [BF_l ]” g } A g
v S—C_BF-1BT V Required operators:
e F~'~ P~ Multigrid
* Coupling in Schur-complement e 1~ S~ —PCD,LSC,
= VAR SIMPLEC
Properties of block factorization Properties of approximate Schur-complement
1. Important coupling in Schur-complement 1. “Nearly” replicates physical coupling
2. Better targets for AMG — leveraging scalability | [ 2. Invertible operators — good for AMG
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Linear Iters.

CFD Weak Scaling: Steady Backward Facing Step

Linear Iterations: Re=200 with SUPG-PSPG
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Fully coupled Algebraic

AggC: Aggressive Coarsening Multigrid
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DD: Additive Schwarz Domain Decomposition

100Time/NonIin‘ear step: Re=200 with SUPG-PSPG
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Block Preconditioners
PCD & LSC: Commuting Schur complement
SIMPLEC: “Physics-based” Schur complement

Take home: Block preconditioners competitive with fully
coupled multigrid for CFD

* Paper accepted: E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes
Equations, Accepted by J. Comp. Phys., 2011.



# Incompressible MHD: 2D vector Potential

Formulation

Magnetohydrodynamics (MHD) equations couple fluid flow to
Maxwell’s equations

0 1 1
—u—l—u-Vu—szu—l-Vp—l—V- (——B®B+—HBHQI) = f
ot [o 210

V-u=0
A,
J +u-VA, — Lv24, = —E°
ot 140
where B=V x A, A =(0,0,A4.)

Discretized using a stabilized finite element formulation



Incompressible MHD: Discrete Formulation

Stabilized finite element method in residual form

Momentum Foni :/Q(I)Rmaidﬂ +Z/Q Tm(v - V@R, ;dS)
Total Mass Fp :/Q(I)RPdQ +Z/Q Tm V® - R, d)
Z-Vector Fa. :/ DR 4_dS) +Z/ 7a.(v-V®)R4_ dQ
Potential Q —Ja,

Structure of discretized Incompressible MHD system is

'F BT 71 [u f ]
IJx=|B C 0 p|l =10
_Y 0 D_ _A_ e

Matrices /' and D are transient convection operators, C is stabilization matrix
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Nested Schur Complements

Block LU factorization gives

F BT 7 I F BT A

B C 0| =|BF1! I S —BF 17

Y 0 D Y1 —_YF1BTS-1 T P
where

S=C—-BFr'B?
P=D-YF '(I+B'S'BF1z

* 3x3 system leads to nested Schur complements

* Nesting is independent of ordering (C-! doesn’t exist!)
* How is P approximated?

* Chacon & Knoll explored compressible flow and
incompressible flow using stream function vorticity



SIMPLE Motivated Preconditioner

' BT A
M = SNeu _BF_lz
PNeu

where
Fnew = AbsRowSum(F)
SNew = C — BFy! BT
Pnew =D — YFy! AbsRowSum/(/
+ BT AbsRowSum(Sye.) 'BFy.,)Z

Issues
* SIMPLEC Approximation has issues with large CFL
* Not scalable for fixed timesteps



Two Split Preconditioners for MHD

& = SplitPrec-NS(7, b):
~1

F Z
x* = I b,

Y D
r*=b—Jx*,

F BT 717!
e=|B C r*

I

r=x"+e

¢ = SplitPrec-MV (7, ):
~1

F BT
= |B (C b,
I
r*=b—Jx*,
F Z171
e = I r*,
Y D
r=x"+e

1. Avoids nested Schur complement
2. Split Magnetics-Velocity (MV) from Navier-Stokes (NS)
3. Corresponds to a “split-factorization”



Splitting for MHD

Algorithm corresponds to an Approximate Block Factorization

i 71 [F1 ' BT
J =~ M= 1 I B C
Y D I 1

Need to compute M~

* Requires two 2x2 solves

Navier-Stokes operator well studied
 How to invert Magnetics-Velocity operator

Question: Do we think 1t will work?
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Splitting for MHD

Does splitting make good preconditioner?
F 71 [F~1 F BT
M = I I B C

Y D I I
1. Structurally small perturbation
F BT A
M= |B C

Y |YF'BT| D

2. Favorable spectrum

IJM™t =

I 0 0
0 I 0
K, K, (I-YF'BTS-'BF-lzp-1)

Challenges of splitting: Requires action of two 2x2 inverses
1. Navier-Stokes system — Block preconditioners PCD, LSC, SIMPLEC
2. Magnetics-Velocity system
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Approximating Velocity/Magnetics Coupling

F z| [ I F Z
Y D|  |YF1 T P
where P=D -YF'Z

Strong form commuting condition

0 0
VA, - (a +w-V— VFV2> ~ (a +w-V— VMV2) VA.-

motivates discrete commuting
YQ 'F~DQ 'Y
which gives an approximate Schur complement
D-YF 'Z=~
QD™ (DQ;'D - YQ,'Z)

N\

Requires approximate inverse!
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Results: Island Coalescence

(0.1 1.1

Simulation on half domain
e Symmetry BC
——————— ¢ Perturbed Harris-Sheet

@ A%z, y,0) =4 In :cosh (g) + € cos (g)]

\\7(/-

O, .-D

Results details

e Lundquist number: 10*

 Starting time right before reconnection: 5.75s

* Results averaged over 45 uniform timesteps

* Runonl, 4,16, 64, 256, and 1024 processors
(130000 unks/core)



MHD Weak Scaling: Transient Island Coalescence

Linear Iterations: At=0.0125 Time/Nonlinear Step: At=0.0125
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Number of Unknowns Number of Unknowns
Fully coupled Algebraic Block Preconditioners
AggC: Aggressive Coarsening Multigrid Split: New Operator split preconditioner
DD: Additive Schwarz Domain Decomposition SIMPLEC: Extreme diagonal approximations

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations



Conclusions

Demonstrated block factorization preconditioners ME

* Performance not optimized, however results are encouraging
* 3x3 block system has nested Schur complements

* Uses operator splitting approach
* Separates fluid and magnetics couplings
* Preconditioner is (structurally) small perturbation of original operator
* Requires approximating inverse action of two 2x2 operators
» Weak scaling for fixed timestep indicates scalability with respect to mesh size
* Possibly good approach for mixed discretizations
* Explored usage of SIMPLEC preconditioner
* Strong dependence on CFL number

* Extreme approximations using diagonal approximations



