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Multiple Time Scales: Magnetohydrodynamics 

Timescales for Magnetohydrodynamics 

t=0.0 t=12.0 

 Magnetic island formation/coalescence 
 Can be  modeled by Extended MHD 



Multiple Time Scales 
MHD times scales difficult for explicit, operator-split, and semi-implicit 
integration 
•  Fast modes prohibit explicit simulation 

×  Stability restrictions imply small time steps 
×  For long time integration accuracy becomes problematic 

•  Interacting time scales make semi-implicit and operator split methods challenging 

Stable long time scale integration can be enabled by implicit time stepping 
•  Must solve linear system: Newton’s Method (one iteration) 

Solve Jpk = −F (xk) where J = ∂F/∂x

xk+1 = xk + pk

Our approach is to solve using preconditioned Newton-Krylov methods 
•  Effective preconditioning is key to parallel scalability 



What must a preconditioner do? 

•  Preconditioner is key to computational efficiency and parallel scalability 
•  What must a preconditioner do? 

1.  Handle ill conditioning of system due to:  
Fast waves, advection, elliptic operators, … 

Multiphysics systems strongly couple mechanisms, producing multiple time- 
and length-scales 

2.  Must optimally scale with increasing: 
•  problem size 
•  processor count 

•  For incompressible MHD specifically 
1.  Pressure-Velocity coupling: incompressibility constraint 
2.  Alfven Wave: Velocity-Magnetics coupling 
3.  Material advection (flow velocity) 
4.  Dissipative operators (momentum, magnetics) 



Preconditioning 
Three flavors of preconditioning 
1. Domain Decomposition 

2. Multilevel methods: ML Library (Tuminaro, Sala, Hu, Siefert, Gee) 

3. Block Preconditioners 

•  ILU Factorization on each processor (with overlap) 

•  Smoothed Aggregation 
•  Aggressive Coarsening (AggC): 

•  3-Level method 
•  Multiple unknowns per node 
•  Aggregation rate chosen to fix 
coarse grid size 
•  ILU solvers to fix aggressive 
aggregation 

Aggregation based Multigrid: 
Vanek, Mandel, Brezina, 1996; Vanek, Brezina, Mandel, 2001; Sala, Formaggia, 2001 

 



Block preconditioning: CFD example 
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Consider discretized Navier-Stokes equations 

Properties of block factorization 
1.  Important coupling in Schur-complement 
2.  Better targets for AMG → leveraging scalability 

Properties of approximate Schur-complement 
1.  “Nearly” replicates physical coupling 
2.  Invertible operators → good for AMG 

Fully Coupled Jacobian 

A =
[
F BT

B C

]
Preconditioner 

A−1≈M−1 =
[
F̂ BT

Ŝ

]−1

Required operators: 
•                        → Multigrid 
•                        → PCD, LSC,  
                                SIMPLEC 

F−1≈ F̂−1

S−1≈ Ŝ−1

Block Factorization 

• Coupling in Schur-complement 

A=
[

I
BF−1 I

][
F BT

S

]

S =C−BF−1BT



Fully coupled Algebraic 
AggC: Aggressive Coarsening Multigrid 
DD: Additive Schwarz Domain Decomposition 

Block Preconditioners 
PCD & LSC: Commuting Schur complement 
SIMPLEC: “Physics-based” Schur complement 

CFD Weak Scaling: Steady Backward Facing Step 

* Paper accepted: E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes 
Equations, Accepted by J. Comp. Phys., 2011.   

Take home: Block preconditioners competitive with fully 
coupled multigrid for CFD 



Incompressible MHD: 2D Vector Potential 
Formulation 

Magnetohydrodynamics (MHD) equations couple fluid flow to 
Maxwell’s equations 

∂u
∂t

+ u ·∇u− ν∇2u +∇p +∇ ·
(
− 1

µ0
B⊗B +

1
2µ0

‖B‖2I
)

= f

∇ · u = 0
∂Az

∂t
+ u ·∇Az −

η

µ0
∇2Az = −E0

z

where B = ∇×A, A = (0, 0, Az)

Discretized using a stabilized finite element formulation 



Incompressible MHD: Discrete Formulation 

Momentum Fm,i =
∫

Ω
ΦRm,idΩ +
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τ̂m(v · ∇Φ)Rm,idΩ
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Z-Vector
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Structure of discretized Incompressible MHD system is 

Matrices F and D are transient convection operators, C is stabilization matrix 
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Stabilized finite element method in residual form 



Nested Schur Complements 


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where

S = C −BF−1BT

P = D − Y F−1(I + BT S−1BF−1)Z

Block LU factorization gives  

•  3x3 system leads to nested Schur complements 
•  Nesting is independent of ordering (C -1 doesn’t exist!)  
•  How is P approximated? 
•  Chacon & Knoll explored compressible flow and 
incompressible flow using stream function vorticity 



SIMPLE Motivated Preconditioner 

M =




F BT Z

SNeu −BF−1Z
PNeu





FNeu = AbsRowSum(F )
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NeuBT

PNeu = D − Y F−1
Neu AbsRowSum(I

+ BT AbsRowSum(SNeu)−1BF−1
Neu)Z

where 

Issues 
•  SIMPLEC Approximation has issues with large CFL 
•  Not scalable for fixed timesteps 



Two Split Preconditioners for MHD 

1.  Avoids nested Schur complement 
2.  Split Magnetics-Velocity (MV) from Navier-Stokes (NS) 
3.  Corresponds to a “split-factorization” 

x̂ = SplitPrec-NS(J , b):
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x̂ = SplitPrec-MV(J , b):
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Splitting for MHD 

Algorithm corresponds to an Approximate Block Factorization 
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
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•  Need to compute 

•  Requires two 2x2 solves 
•  Navier-Stokes operator well studied 
•  How to invert Magnetics-Velocity operator 

Question: Do we think it will work? 

M−1



Splitting for MHD 

Does splitting make good preconditioner? 

1. Structurally small perturbation  

2. Favorable spectrum 
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Challenges of splitting: Requires action of two 2x2 inverses 
1.  Navier-Stokes system – Block preconditioners PCD, LSC, SIMPLEC 
2.  Magnetics-Velocity system 



Approximating Velocity/Magnetics Coupling 

D − Y F−1Z ≈
QaD−1

(
DQ−1

a D − Y Q−1
u Z

)

Strong form commuting condition 

motivates discrete commuting 
Y Q−1

u F ≈ DQ−1
a Y

which gives an approximate Schur complement 

∇Az ·
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where P = D − Y F−1Z

Requires approximate inverse! 



Results: Island Coalescence 

Results details 
•  Lundquist number: 104 

•  Starting time right before reconnection: 5.75s 
•  Results averaged over 45 uniform timesteps 
•  Run on 1, 4, 16, 64, 256, and 1024 processors 

(130000 unks/core) 

Simulation on half domain 
•  Symmetry BC 
•  Perturbed Harris-Sheet 



MHD Weak Scaling: Transient Island Coalescence 

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations  

Fully coupled Algebraic 
AggC: Aggressive Coarsening Multigrid 
DD: Additive Schwarz Domain Decomposition 

Block Preconditioners 
Split: New Operator split preconditioner 
SIMPLEC: Extreme diagonal approximations 

 



Conclusions 

Demonstrated block factorization preconditioners MHD 
•  Performance not optimized, however results are encouraging 
•  3x3 block system has nested Schur complements 
•  Uses operator splitting approach 

•  Separates fluid and magnetics couplings 
•  Preconditioner is (structurally) small perturbation of original operator 
•  Requires approximating inverse action of two 2x2 operators 
•  Weak scaling for fixed timestep indicates scalability with respect to mesh size 
•  Possibly good approach for mixed discretizations 

•  Explored usage of SIMPLEC preconditioner 
•  Strong dependence on CFL number 
•  Extreme approximations using diagonal approximations 


