
Power Grids: Controlling Cascades and Assessing
Vulnerability

Dan Bienstock

Columbia

DOE PI, October 2011

Dan Bienstock (Columbia) Power Grids DOE PI, October 2011 1 / 35



Outline

Part I. The N-K problem in AC power flows

Part II. Cascades

Joint with Sean Harnett (Columbia), Taedong Kim and Steve Wright
(Wisconsin).

Supported by DOE DE-SC0002283.

Dan Bienstock (Columbia) Power Grids DOE PI, October 2011 2 / 35



AC Model for Power Grids

Power flows and voltages in a power grid are dictated by elementary
physical laws (Kirchoff), along with

physical attributes (e.g. impedances) of the lines connecting nodes;

(complex) power supplied at generator nodes

(complex) power consumed at demand nodes

Leads to a system of quadratic equations in complex variables, namely

complex voltages Vi = |Vi |e jθi at the nodes;

complex powers Pi + jQi at the nodes.

Half of the variables are given:

Pi , Qi at the demand nodes;

Pi , |Vi | at the generator nodes.

Eliminate Pi and Qi to obtain a nonlinear system F (V ) = 0
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Background: AC power transmission equaitons

→ Voltage at bus (node) k = Vk = |Vk| ejθk , where j =
√
−1

→ Current injected by k into line between k and m = Ikm =

Vk − Vm

Zkm

where Zkm = line impedance = Rkm + j Xkm

( Rkm = resistance, Xkm = inductance)

or, current injected by k = (Vk − Vm)Ykm, where

Ykm = line admittance = Z−1
km

( Π-model, simple version)
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General case

[
Ikm

Imk

]
= Ykm

[
Vk

Vm

]
m

km
I

mk

k

I

where Ykm = admittance matrix for line km

Finally, complex power injected by k into line km = VkI∗km

and, total power injected by k into the network =
∑

km VkI∗km

k

= UT Yk U, where UT = (Re(V1), . . . ,Re(Vn), Im(V1), . . . , Im(Vn))
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Summary:

where UT = (Re(V1), . . . ,Re(Vn), Im(V1), . . . , Im(Vn)),

power injected by k into network = UT Yk U

= Pk + j Qj

( Pk = active power, Qk = reactive power)

Power flow problem

Solve Pk + j Qk = UT Yk U, for all k,

Pk and |Vk| given for each generator k

Pk and Qk given for each non-generator k

Ideally, should meet additional conditions:

|Vk| approximately constant, and high; line phase angle differences small
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Summary:

We need to solve a system of quadratic equations

An algorithmicist says: I want a method that is guaranteed to work

The engineers say: to solve today’s problem, we will use yesterday’s
solution and apply Newton-Raphson

→ The iterative approach works extremely well

→ but only under normal conditions.
→ The rest of the time it’s a disaster
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Solving the AC Equations

Newton’s method for nonlinear equations F (V ) = 0 (or an expanded
formulation) is the “workhorse.” Codes available e.g. MATPOWER,
Powerworld.

Possible issues with Newton’s method:

The system may be infeasible! (Physically, the network is not viable.)

The system may have many solutions, and Newton may converge to
one that is not practicable.

Distant starting point may case Newton’s method to “get lost”

Enhancing Newton’s method can help a little (e.g. line search, damping).

Fancier algorithms (e.g. continuation / homotopy) are too expensive.

Lavaei-Low (2010): Semi-definite programming formulation can yield
reliable solution (under some assumptions).
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Measuring Viability of a Grid

Not all solutions of the AC equations are equally practicable.

There are often limits on the capacity of transmission lines. Can
enforce as constraints on the flows.

Desirable solutions have voltage magnitudes |Vi | close to 1 for all i
(in the range [.93, 1.07], say). after scaling

If system not viable, find the smallest total change to the loads that
restores feasibility — subject to line limits and voltage magnitudes staying
near 1.

Observation: solutions are “sparse”
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`1 Formulation

One possible formulation of the “feasibility restoration” problem:

min
V ,σ,ρ

∑
i∈PQ

|PD
i |σi

s.t. FP
i (V ) + |PG

i |ρi = 0, ∀i ∈ PV ,

FP
i (V ) + |PD

i |σi = 0, ∀i ∈ PQ,

FQ
i (V ) + |QD

i |σi = 0, ∀i ∈ PQ,

Vmin ≤ |Vi | ≤ Vmax, ∀i ∈ PV ∪ PQ,

0 ≤ σi ≤ 1, ∀i ∈ PQ.

ρi free, ∀i ∈ PV ,

where σi denote (relative) changes to the loads, ρi denotes changes to
generation capacity, etc.
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Vulnerability Analysis – “N-K” problem

Identify K (= 2, 3, ...) lines in the network whose removal has the most
dramatic effect on viability.

Line removal ⇒ binary variables (one for each line), very difficult.

→ Use continuous variables γi ≥ 0 to denote relative amount by which
impedance is increased on each line. (Bienstock and Verma, SIOPT 2010)

Problem: Maximize the degradation of the network G(γ) when
impedances are changed according to γ = (γ1, γ2, . . . , γn).

max G(γ) s.t. eTγ ≤ B,

where e = (1, 1, . . . , 1)T and B denotes the “impedance increase” budget.

“Maximize the damage for a given budget of impedance increases.”

Large γi = critical lines.
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Defining G

Possible definitions of degradation measure G(γ):

Objective of the `1 formulation: load that needs to be shed to regain
feasibility

Voltage collapse:
∑n

=1(1− |Vi |2)2. (Valid only when the network is
stil feasible despite the increase in impedances.)

In either case, get a two-level optimization problem:

Upper level: variables γ, objective G;

Lower level: solving AC power flow equations (or `1 extension) for
given γ.

Objective G usually non-concave, possibly nonsmooth.

Frank-Wolfe method with estimated gradient (smooth objectives);

Randomized search algorithm for nondifferentiable optimization
(described below).
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Possible Contours of G(γ)

Multiple local maxima; global max is at (0,0,1)

γ=(0,1,0)

γ=(0,0,1) γ=(1,0,0)

Possible countour map for G in case n=3.
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Randomized Search

Take latest successful search direction and calculate some random
new directions (10, say);

Evaluate function at step length α along each direction;

Take step with the best decrease.

If all steps increase f , shrink α and try again with a new set of
random directions.

directions generated.

successful direction

Successful direction retained
for next iteration; other random
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Run 10 times on the IEEE 118 Bus Case

10 random search directions at each step; budget B = 6; uses a
continuation heuristic (start with large B and decrease to 6).

Run
Number of Objective Lines with non-zero γi

Iterations G(γ) 71 72 74 82

1 77 1.3309e-01 3.7685 0 2.2315 0
2 109 1.3464e-01 3.1652 0 2.7205 0.1143
3 152 1.1230e-01 2.0779 0.6844 3.2257 0.0120
4 147 1.2033e-01 2.4403 0 3.5597 0
5 71 1.3309e-01 3.7637 0 2.2361 0
6 120 1.2197e-01 2.4565 0.2271 3.3163 0
7 88 1.3309e-01 3.7685 0 2.2315 0
8 109 1.2133e-01 2.3508 0.2450 3.4043 0
9 96 1.3309e-01 3.7683 0 2.2317 0

10 82 1.3309e-01 3.7683 0 2.2317 0

Final solutions similar, but not the same, because of randomness in search.
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γ vs iteration count on Run #10
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Part II. Cascades
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Cascade cartoon - Dobson et al

Generator

Load (demand)
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Cascade cartoon
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Cascade cartoon
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Cascade cartoon
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Cascade cartoon
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Cascade cartoon

= lost demand
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Controlled cascades + detailed cascade model

→ Initial outage event takes place.

Compute control.

For r = 1, 2, . . . ,R− 1

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3a. Take measurements and apply control to shed demand.

3b. Reconfigure generator outputs; get new power flows.

4. The next set of outages takes place.

At round R, reduce demands so as to remove any line overloads.
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get new power flows.

4. The next set of outages takes place.
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Robust control

Partial information

Noisy or incorrect information

Delays
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Adaptive affine controls

For each demand bus n v, and round r, control triple cr
v, br

v, sr
v

→ Parameterized by integers r > 0 and δ > 0.

At round r,

Let κδ = max overload of any line within radius δ of v

If κδ > cr
v, demand at v reduced (scaled) by a factor

min
{

1,
{

br
v + sr

v (cr
v − κδ)

}+
}

.

Example: (1, 1, s) control; scale = min
{

1, {1 + s (1− κ)}+
}

.

Problem: choose control so as to maximize demand at end of round R.
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Methodology

General approach: simulation-based optimization

Better fundamentals: stochastic gradient algorithm applied to
(randomly) smoothed version of the problem

Parallel implementation on 40 i7 cores using Unix sockets

Each gradient computation takes a few seconds (per core) on real
grids with tens of thousands of lines
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Sept 2011 San Diego blackout

Joint work with A. Bernstein, D. Hay, G. Zussman, M. Uzunoglu (EE
Dept. Columbia)

Act of god: human error + still unknown

We do not have complete or exact data

Nevertheless, in our simulations a cascade takes place, with similar
characteristics at the initial stages (rounds)

Data should be made available to all researchers
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Beginning
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More
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More
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More
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Max line overload during cascade with increasing resolution
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”Ideal” control

Stop cascade by shedding a minimum amount of load

→ Remove all line overloads
→ System limitations (e.g. generator ”ramp up/down” speeds)

(solve an optimization problem)

Round 1, yield = 71.74%,

Round 20, yield = 51.50%,

Round 30, yield = 98.44%,

Round 60, yield = 87.88%,

Round 110, yield = 66.59%,

But: very nonrobust and requires much coordination
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Near optimal scaling control

Simple, robust

Applies control around round 28, only

Yield = 95.10%, 8 outaged lines

Cascade stops around round 29

No-control approach:

yield = 61.47%,

> 300 rounds, > 800 outaged lines
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