Eigenanalysis for Galerkin Reformulations of Uncertain ODE Systems
Analysis and Reduction of Complex Networks Under Uncertainty

Robert Berry Habib Najm Bert Debusschere

Sandia National Laboratories, Livermore, CA

18 October 2011
Acknowledgements

- Youssef Marzouk, MIT
- Roger Ghanem, USC
- Omar Knio, Johns Hopkins

- Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.
Spectral Stochastic Representations

Let $\xi : \Omega \to \mathbb{R}^m$ be an L^2 RV on the probability space (Ω, σ, ρ).

Let $\{\varphi_\alpha(\xi) : \alpha = 0, 1, 2, \ldots\}$ be an orthonormal basis of $L^2(\Xi)$.

Let $X : \Xi \to \mathbb{R}$ be $L^2(\Xi)$. It can be represented in the basis φ of $L^2(\Xi)$

$$X(\xi) = \sum_{\alpha} X_\alpha(a) \varphi_\alpha(\xi(\omega))$$

where

$$X_\alpha(a) = \int_{\Omega} X(a, \omega) \varphi_\alpha(\xi(\omega)) \, d\rho(\omega) = \langle \varphi_\alpha, X \rangle.$$
Consider a parameterized ODE

\[\dot{x} = f(\xi, x) \quad x(\xi, 0) = x_0(\xi) \]

with \(x(\xi, t) \in \mathbb{R}^n \). Represent \(x \) as

\[x(\xi, t) = \sum_{\alpha} x_\alpha(t) \varphi_\alpha(\xi) \]

where

\[x_\alpha(t) = \langle \varphi_\alpha(\xi), x(\xi, t) \rangle \]

and so these coefficients are governed by

\[\dot{x}_\alpha = \langle \varphi_\alpha(\xi), \frac{d}{dt} x(\xi, t) \rangle \]

\[= \langle \varphi_\alpha(\xi), f(\xi, x) \rangle \]

\[\dot{x}_\alpha = g(x_\beta) \]

where \(\alpha, \beta = 0, \ldots, P \).
Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

\[
\dot{x} = f(\xi, x) \quad x(\xi, 0) = x_0(\xi)
\]

with \(x(\xi, t) \in \mathbb{R}^n \). Represent \(x \) as

\[
x(\xi, t) = \sum_{\alpha} x_\alpha(t) \varphi_\alpha(\xi)
\]

where

\[
x_\alpha(t) = \langle \varphi_\alpha(\xi), x(\xi, t) \rangle
\]

and so these coefficients are governed by

\[
\dot{x}_\alpha = \left\langle \varphi_\alpha(\xi), \frac{d}{dt} x(\xi, t) \right\rangle
\]

\[
= \left\langle \varphi_\alpha(\xi), f(\xi, x) \right\rangle
\]

\[
\dot{x}_\alpha = g(x_\beta)
\]

where \(\alpha, \beta = 0, \ldots, P \).
Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

\[\dot{x} = f(\xi, x) \quad x(\xi, 0) = x_0(\xi) \]

with \(x(\xi, t) \in \mathbb{R}^n \). Represent \(x \) as

\[x(\xi, t) = \sum_\alpha x_\alpha(t) \varphi_\alpha(\xi) \]

where

\[x_\alpha(t) = \langle \varphi_\alpha(\xi), x(\xi, t) \rangle \]

and so these coefficients are governed by

\[\dot{x}_\alpha = \left\langle \varphi_\alpha(\xi), \frac{d}{dt} x(\xi, t) \right\rangle \]

\[= \langle \varphi_\alpha(\xi), f(\xi, x) \rangle \]

\[\dot{x}_\alpha = g(x_\beta) \]

where \(\alpha, \beta = 0, \ldots, P \).
Consider the ODE

\[\dot{x} = x(9 - x^2) \]

with random initial condition

\[x(\xi, 0) = a + b\xi. \]

The coefficients of the second-order truncation of the polynomial representation of \(x(\xi, t) \) is governed by the IVP

\[\begin{align*}
\dot{x}_0 &= 9x_0 - x_0^3 - 3x_0x_2^2 - 2\sqrt{2}x_2^3 - 3x_0x_1^2 - 3\sqrt{2}x_1^2x_2, \\
\dot{x}_1 &= 9x_1 - 3x_1^3 - 3x_0^2x_1 - 6\sqrt{2}x_0x_1x_2 - 15x_1x_2^2, \\
\dot{x}_2 &= 9x_2 - 15x_2^3 - 3x_0^2x_2 - 6\sqrt{2}x_0x_2^2 - 3\sqrt{2}x_0x_1^2 - 15x_2x_1^2 \\
x_0(0) &= a, \quad x_1(0) = b, \quad x_2(0) = 0
\end{align*} \]
The dynamical system can be locally characterized by the eigenstructure of the Jacobian matrix. The entries of the Jacobian matrix \(J \) of the sampled system is given by

\[
J_{ij}(\xi, t) = \frac{\partial f^i}{\partial x^j}(\xi, x(\xi, t))
\]

At each fixed time \(t \), \(J(\xi, t) \) is a random matrix.
Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of as a block matrix with blocks

\[J_{\alpha \beta}(t) = D_{x_\beta} \int_\Xi f(\xi, x(\xi, t)) \varphi_\alpha(\xi) \, d\mu(\xi) \]

\[= \int_\Xi \varphi_\alpha(\xi) J(\xi, t) \varphi_\beta(\xi) \, d\mu(\xi) \]

Truncate the representation so that \(\alpha, \beta = 0, \ldots, P \). \(J \) is then a \(n(P + 1) \times n(P + 1) \) matrix.
Spectrum of sampled system

For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues.
Spectrum of sampled system

For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues. A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

$$\det(J(\xi) - I\lambda(\xi)) \equiv 0.$$
For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues.
A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies
\[\det(J(\xi) - I\lambda(\xi)) \equiv 0. \]
For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues. A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

$$\det(J(\xi) - I\lambda(\xi)) \equiv 0.$$
For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues. A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

$$\det(J(\xi) - I\lambda(\xi)) \equiv 0.$$
For each value of ξ, the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with n eigenvalues.
A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies
\[
\det(J(\xi) - I\lambda(\xi)) = 0.
\]
For $n = 1$ the dynamics of the Chaos coefficients are governed by
\[\dot{x}_k = \langle f(x) \varphi_k \rangle. \]
At a fixed point in time, the Jacobian
\[J_{\alpha\beta} = \langle \varphi_{\alpha}, f_x \varphi_{\beta} \rangle \]
is symmetric and (real) diagonalizable.
The numerical range of a matrix M is

$$W(M) = \{ v^* M v : v \in \mathbb{C}^m, v^* v = \| v \|^2 = 1 \}.$$

Note that

$$\text{spect}(M) \subset W(M).$$

Furthermore, let

$$\tilde{W}(J) = \bigcup_{(J(\xi))} W(J(\xi)).$$

Theorem. (Sunday et. al.)

$$\text{spect}(\mathcal{J}^p) \subset W(\mathcal{J}^p) \subset \text{conv}(\tilde{W}(J))$$
$n = 1, \xi \sim U([-1, 1]), \dot{x} = J(\xi) x$

$$J(\xi) = \begin{cases}
\xi + 1 & \text{for } \xi \geq 0, \\
\xi - 1 & \text{for } \xi < 0.
\end{cases}$$
Consider the ODE $\dot{x} = \frac{1}{2}x^2$, $x(\xi, 0) = \xi$. At $t = 0$ the Galerkin Jacobian is

$$J_{\alpha\beta} = \langle \xi \varphi_{\alpha}(\xi) \varphi_{\beta}(\xi) \rangle$$

and so the spectrum is the locus of the Gauss points.
Consider the ODE \(\dot{x} = \frac{1}{2} x^2 \), \(x(\xi, 0) = \xi \). At \(t = 0 \) the Galerkin Jacobian is
\[
J_{\alpha\beta} = \langle \xi \varphi_\alpha(\xi) \varphi_\beta(\xi) \rangle
\]
and so the spectrum is the locus of the Gauss points.

Asymptotic distribution of Gauss points:
\[
\frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}}
\]
Consider the ODE \(\dot{x} = e^x \), \(x(\xi, 0) = \xi \). At \(t = 0 \) the Galerkin Jacobian is

\[
J_{\alpha\beta} = \langle e^\xi \varphi_\alpha(\xi) \varphi_\beta(\xi) \rangle
\]
Consider the ODE $\dot{x} = e^x$, $x(\xi, 0) = \xi$. At $t = 0$ the Galerkin Jacobian is

$$J_{\alpha\beta} = \langle e^\xi \varphi_\alpha(\xi) \varphi_\beta(\xi) \rangle$$
Weak Convergence of Spectra: \(n = 1 \) case

Theorem (Nevai). Assymptotic Eigenvalue Distribution (\(n = 1 \))

Let \(\{p_\alpha(\xi)\}_{\alpha=0}^\infty \) be a polynomial basis orthogonal under \(\mu_{[-1,1]} \). Let \(J \) be an \(L^\infty(\Omega) \) function such that the moments of \(J \, d\mu \) are all finite. Let \(F \) be a continuous function in an interval containing the essential range of \(h \). Then the eigenvalues \(\{\lambda_\alpha\}_{\alpha=0}^P \) of the truncated matrix \(J^P \) satisfy

\[
\lim_{P \to \infty} \frac{1}{P+1} \sum_{\alpha=0}^P F(\lambda_\alpha) = \int_{-1}^1 \frac{1}{\pi} \frac{F(J(x))}{\sqrt{1-x^2}} \, dx.
\]

Corollary. Eigenvalue Reconstruction for \(n = 1 \).

Interpolating Galerkin system eigenvalues approximates random eigenvalues.
Theorem (Nevai). Assymptotic Eigenvalue Distribution \((n = 1)\)

Let \(\{p_\alpha(\xi)\}_{\alpha=0}^{\infty}\) be a polynomial basis orthogonal under \(\mu_{[-1,1]}\). Let \(J\) be an \(L^\infty(\Omega)\) function such that the moments of \(J\,d\mu\) are all finite. Let \(F\) be a continuous function in an interval containing the essential range of \(h\). Then the eigenvalues \(\{\lambda_\alpha\}_{\alpha=0}^{P}\) of the truncated matrix \(J^P\) satisfy

\[
\lim_{P \to \infty} \frac{1}{P + 1} \sum_{\alpha=0}^{P} F(\lambda_\alpha) = \int_{-1}^{1} \frac{1}{\pi} \frac{F(J(x))}{\sqrt{1 - x^2}} \, dx.
\]

Corollary. Eigenvalue Reconstruction for \(n = 1\).

Interpolating Galerkin system eigenvalues approximates random eigenvalues.
Recall that the Jacobian matrix of the coefficient system can be thought of as a block matrix with blocks

\[J_{\alpha \beta}(t) = \langle \varphi_{\alpha}, J \varphi_{\beta} \rangle. \]

Let \(\{\Lambda_{i\alpha}\} \) be the \(n(P + 1) \) eigenvalues of \(J^P \).

Theorem (Berry et al). Assymptotic Eigenvalue Distribution \((n > 1)\)

Let \(\mu_{[-1,1]} \) be a (real valued) measure such that \(\mu'(x) > 0 \) almost everywhere in \([-1, 1]\). Assume the matrix \(J \) is generated by an \(L^\infty \) matrix-valued function \(J \). Let \(G \) be a holomorphic function in a compact, simply connected \(\Omega \subset \mathbb{C} \) containing the essential range of \(J \). Then

\[\lim_{P \to \infty} \frac{1}{n(P+1)} \sum_{i, \alpha} G[\Lambda_{i\alpha}] = \frac{1}{n} \sum_{i} \int_{-1}^{1} \frac{G[\lambda_i(\theta)]}{\pi \sqrt{1 - \theta^2}} d\theta. \]
Consider the 3-dimensional stiff system (due to Valorani and Goussis)

\[
\begin{align*}
\dot{x} &= \frac{5(y^2 - x)}{\varepsilon} + \frac{z - xy}{\varepsilon} - x + yz \\
\dot{y} &= -\frac{10(y^2 - x)}{\varepsilon} + \frac{z - xy}{\varepsilon} + x - yz \\
\dot{z} &= -\frac{z - xy}{\varepsilon} + x - yz
\end{align*}
\]

with initial values \((0.75, 0.75, 0.75)\) and \(\varepsilon = 10^{-\frac{(\xi+3)}{2}}\), so \(\varepsilon \in [0.01, 0.1]\).
The oxidation of CO on a surface can be modeled as (Makeev et al., JCP, 2002)

\[\dot{u} = az - cu - 4duv \]
\[\dot{v} = 2bz^2 - 4duv \]
\[\dot{w} = ez - fw \]
\[z = 1 - u - v - w \]

\[a = 1.6, \ b = 20.75 + .45\xi, \ c = 0.04, \ d = 1.0, \ e = 0.36, \ f = 0.016 \]

\[u(0) = 0.1, \ v(0) = 0.2, \ w(0) = 0.7 \]

exhibits Hopf bifurcations for \(b \in [20.3, 21.2] \)
Analyzing the stochastic Jacobian at $t = 300$.
PC order 10. Slow eigenvalues.
High-dimensional Example

50 coupled damped linear oscillators. Damping coefficient log-normal.
Eigenvectors

Let $\lambda_{i\alpha}, \nu_{i\alpha}$ be an eigenvalue/vector pair of \mathcal{J}^P:

$$\mathcal{J} \nu_{i\alpha} = \lambda_{i\alpha} \nu_{i\alpha}.\$$

Alternatively,

$$\langle \varphi_\beta(\xi), (J(\xi) - \lambda_{i\alpha}) \nu_{i\alpha}(\xi) \rangle = 0 \quad \text{for } \beta = 0 \ldots P$$

where $\nu_{i\alpha}(\xi)$ is an n-vector with components

$$\nu^k_{i\alpha}(\xi) = \sum_{\gamma=0}^{P} \nu^{k\gamma}_{i\alpha} \varphi_{\gamma}(\xi).$$
Eigenpolynomials

Let $\lambda_\alpha, \nu_\alpha$ be an eigenvalue/vector pair of J^P:

$$J \nu_\alpha = \lambda_\alpha \nu_\alpha.$$

Alternatively,

$$\langle \varphi_\beta(\xi), (J(\xi) - \lambda_\alpha) \nu_\alpha(\xi) \rangle = 0 \quad \text{for } \beta = 0 \ldots P$$

where

$$\nu_\alpha(\xi) = \sum_{\gamma=0}^{P} V^\gamma_\alpha \varphi_\gamma(\xi).$$
Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of $\lambda(\xi) - \Lambda = 0$.

![Graph showing the relation between $\lambda(\xi)$ and Λ.]
Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of $\lambda(\xi) - \Lambda = 0$.

![Graph showing the polynomial and the equation $\lambda(\xi) - \Lambda = 0$.]
Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of $\lambda(\xi) - \Lambda = 0$.
Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of $\lambda(\xi) - \Lambda = 0$.

![Graph showing polynomial behavior in the context of PCE Eigenvectors.]
Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of $\lambda(\xi) - \Lambda = 0$.
Local character of PCE Eigenvectors

Eigenpolynomials and Eigenvalues can be used to construct the PCE of λ.
Stiff ODE:
Eigenvector polynomials have local character
Example: Large uncertainties in eigenvectors
Summary

- Comparison of sampled Jacobian and Galerkin Jacobian
- Ambiguities in defining “stochastic eigenvalues”
- When there is a “stochastic eigenvalue” it can be approximated by interpolating the Galerkin system eigenvalues
- Weak convergence of spectra of the two Jacobians
- ξ-local nature of eigenvector polynomials
- When there is a “stochastic eigenvector” it can be approximated by interpolating the expectation of eigenvector polynomials
- The eigenstructure of the Galerkin Jacobian is approximately the union of the eigenstructures of the uncertain system sampled at the Gauss points