
Eigenanalysis for Galerkin Reformulations of
Uncertain ODE Systems

Analysis and Reduction of Complex Networks Under Uncertainty

Robert Berry Habib Najm Bert Debusschere

Sandia National Laboratories, Livermore, CA

18 October 2011



Acknowledgements

I Youssef Marzouk, MIT
I Roger Ghanem, USC
I Omar Knio, Johns Hopkins

I Supported by the US Department of Energy (DOE), Office of Advanced
Scientific Computing Research (ASCR), Applied Mathematics program,
the 2009 American Recovery and Reinvestment Act.

I Sandia National Laboratories is a multi-program laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy National Nuclear
Security Administration under contract DE-AC04-94AL85000.



Spectral Stochastic Representations

Let ξ : Ω→ Rm be an L2 RV on the probability space (Ω, σ, ρ).

Let {ϕα(ξ) : α = 0, 1, 2, . . .} be an orthonormal basis of L2(Ξ).

Let X : Ξ→ R be L2(Ξ). It can be represented in the basis ϕ of L2(Ξ)

X (ξ) =
∑
α

Xα(a)ϕα(ξ(ω))

where
Xα(a) =

∫
Ω

X (a, ω)ϕα(ξ(ω)) dρ(ω) = 〈ϕα,X 〉.



Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

ẋ = f (ξ, x) x(ξ, 0) = x0(ξ)

with x(ξ, t) ∈ Rn. Represent x as

x(ξ, t) =
∑
α

xα(t)ϕα(ξ)

where
xα(t) = 〈ϕα(ξ), x(ξ, t)〉

and so these coefficients are governed by

ẋα =

〈
ϕα(ξ),

d
dt

x(ξ, t)
〉

= 〈ϕα(ξ), f (ξ, x)〉
ẋα = g(xβ)

where α, β = 0, . . . ,P.
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Example: Galerkin Reformulation of Uncertain ODEs

Consider the ODE
ẋ = x(9− x2)

with random initial condition

x(ξ, 0) = a + bξ.

The coefficients of the second-order truncation of the polynomial
representation of x(ξ, t) is governed by the IVP

ẋ0 = 9x0 − x3
0 − 3x0x2

2 − 2
√

2x3
2 − 3x0x2

1 − 3
√

2x2
1 x2,

ẋ1 = 9x1 − 3x3
1 − 3x2

0 x1 − 6
√

2x0x1x2 − 15x1x2
2 ,

ẋ2 = 9x2 − 15x3
2 − 3x2

0 x2 − 6
√

2x0x2
2 − 3

√
2x0x2

1 − 15x2x2
1

x0(0) = a, x1(0) = b, x2(0) = 0



Jacobian of Uncertain System

The dynamical system can be locally characterized by the eigenstructrure of
the Jacobian matrix. The enteries of the Jacobian matrix J of the sampled
system is given by

Jij (ξ, t) =
∂f i

∂x j (ξ, x(ξ, t))

At each fixed time t , J(ξ, t) is a random matrix.



Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of as a block
matrix with blocks

Jαβ(t) = Dxβ

∫
Ξ

f (ξ, x(ξ, t))ϕα(ξ) dµ(ξ)

=

∫
Ξ

ϕα(ξ) J(ξ, t)ϕβ(ξ) dµ(ξ)

Truncate the representation so that α, β = 0, . . . ,P.
J is then a n(P + 1)× n(P + 1) matrix.



Spectrum of sampled system

For each value of ξ, the Jacobian J(ξ) has a spectrum S(ξ) with n
eigenvalues.

A stochastic eigenvalue is a random variable λ(ξ) which satisfies

det(J(ξ)− Iλ(ξ)) ≡ 0.
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Jacobian

For n = 1 the dynamics of the Chaos coefficients are governed by
ẋk = 〈f (x)ϕk 〉. At a fixed point in time, the Jacobian

Jαβ = 〈ϕα, fx ϕβ〉

is symmetric and (real) diagonalizable.



The numerical range of a matrix M is

W (M) = {v∗Mv : v ∈ Cm, v∗v = ‖v‖2 = 1}.

Note that
spect(M) ⊂ W (M).

Furthermore, let
W̃ (J) =

⋃
a.e. ξ

W (J(ξ)).

Theorem. (Sonday et. al.)

spect
(
J P
)
⊂ W

(
J P
)
⊂ conv

(
W̃ (J)

)



n = 1, ξ ∼ U([−1, 1]), ẋ = J(ξ) x

J(ξ) =

{
ξ + 1 for ξ ≥ 0,
ξ − 1 for ξ < 0.



Comparison of Spectra, part 1

Consider the ODE ẋ = 1
2 x2, x(ξ, 0) = ξ. At t = 0 the Galerkin Jacobian is

Jαβ = 〈ξ ϕα(ξ)ϕβ(ξ)〉

and so the spectrum is the locus of the Gauss points.

Asymptotic distribution of Gauss points:
1
π

1√
1− x2
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Comparison of Spectra, part 2

Consider the ODE ẋ = ex , x(ξ, 0) = ξ. At t = 0 the Galerkin Jacobian is

Jαβ = 〈eξ ϕα(ξ)ϕβ(ξ)〉



Comparison of Spectra, part 2

Consider the ODE ẋ = ex , x(ξ, 0) = ξ. At t = 0 the Galerkin Jacobian is

Jαβ = 〈eξ ϕα(ξ)ϕβ(ξ)〉



Weak Convergence of Spectra: n = 1 case

Theorem (Nevai). Assymptotic Eigenvalue Distribution (n = 1)
Let {pα(ξ)}∞α=0 be a polynomial basis orthogonal under µ[−1,1]. Let J be an
L∞(Ω) function such that the moments of J dµ are all finite. Let F be a
continuous function in an interval containing the essential range of h. Then
the eigenvalues {λα}P

α=0 of the truncated matrix J P satisfy

lim
P→∞

1
P + 1

P∑
α=0

F (λα) =

∫ 1

−1

1
π

F (J(x))√
1− x2

dx .

Corollary. Eigenvalue Reconstruction for n = 1.
Interpolating Galerkin system eigenvalues approximates random
eigenvalues.
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Weak convergence of eigenvalues

Recall that the Jacobian matrix of the coefficient system can be thought of as
a block matrix with blocks

Jαβ(t) = 〈ϕα, J ϕβ〉.

Let {Λiα} be the n(P + 1) eigenvalues of J P .

Theorem (Berry et al). Assymptotic Eigenvalue Distribution (n > 1)
Let µ[−1,1] be a (real valued) measure such that µ′(x) > 0 almost everywhere
in [−1, 1]. Assume the matrix J is generated by an L∞ matrix-valued
function J. Let G be a holomorphic function in a compact, simply connected
Ω ⊂ C containing the essential range of J. Then

lim
P→∞

1
n (P + 1)

∑
i,α

G[Λiα] =
1
n

∑
i

∫ 1

−1

G[λi (θ)] dθ
π
√

1− θ2
.



Example: Stiff ODE

Consider the 3-dimensional stiff system (due to Valorani and Goussis)

ẋ =
5(y2 − x)

ε
+

z − x y
ε

− x + y z

ẏ = −10(y2 − x)

ε
+

z − x y
ε

+ x − y z

ż = −z − x y
ε

+ x − y z

with initial values (0.75, 0.75, 0.75) and ε = 10−(ξ+3)/2, so ε ∈ [0.01, 0.1].



(Example: Stiff ODE, cont.)



Example: ODE with Hopf Bifurcation

The oxidation of CO on a surface can be modeled as
(Makeev et al., JCP, 2002)

u̇ = az − cu − 4duv v̇ = 2bz2 − 4duv

ẇ = ez − fw z = 1− u − v − w

a = 1.6, b = 20.75 + .45ξ, c = 0.04, d = 1.0, e = 0.36, f = 0.016

u(0) = 0.1, v(0) = 0.2,w(0) = 0.7
exhibits Hopf bifurcations for b ∈ [20.3, 21.2]



(Example: ODE with Hopf Bifurcation, continued)

Analyzing the stochastic Jacobian at t = 300.



(Example: ODE with Hopf Bifurcation, continued)

PC order 10. Slow eigenvalues.



High-dimensional Example

50 coupled damped linear oscilators. Damping coefficient log-normal.



Eigenvectors

Let λiα, viα be an eigenvalue/vector pair of J P :

J viα = λiαviα.

Alternatively,

〈ϕβ(ξ), (J(ξ)− λiα) νiα(ξ)〉 = 0 for β = 0 . . .P

where νiα(ξ) in an n-vector with components

νk
iα(ξ) =

P∑
γ=0

v kγ
iα ϕγ(ξ).



Eigenpolynomials

Let λα, vα be an eigenvalue/vector pair of J P :

J vα = λαvα.

Alternatively,

〈ϕβ(ξ), (J(ξ)− λα) να(ξ)〉 = 0 for β = 0 . . .P

where

να(ξ) =
P∑
γ=0

vγα ϕγ(ξ).



Local character of PCE Eigenvectors

Polynomial from PCE Eigenvectors “local” to solution of λ(ξ)− Λ = 0.
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Local character of PCE Eigenvectors

Eigenpolynomials and Eigenvalues can be used to construct the PCE of λ.



Stiff ODE:
Eigenvector polynomials have local character



Example: Large uncertainties in eigenvectors



Summary

I Comparison of sampled Jacobian and Galerkin Jacobian
I Ambiguities in defining “stochastic eigenvalues”
I When there is a “stochastic eigenvalue” it can be approximated by

interpolating the Galerkin system eigenvalues
I Weak convergence of spectra of the two Jacobians
I ξ-local nature of eigenvector polynomials
I When there is a “stochastic eigenvector” it can be approximated by

interpolating the expectation of eigenvector polynomials
I The eigenstructure of the Galerkin Jacobian is approximately the union

of the eigenstructures of the uncertain system sampled at the Gauss
points
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