

Eigenanalysis for Galerkin Reformulations of Uncertain ODE Systems

Analysis and Reduction of Complex Networks Under Uncertainty

Robert Berry Habib Najm Bert Debusschere

Sandia National Laboratories, Livermore, CA

18 October 2011

Acknowledgements

- Youssef Marzouk, MIT
- Roger Ghanem, USC
- Omar Knio, Johns Hopkins
- Supported by the US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics program, the 2009 American Recovery and Reinvestment Act.
- Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.

Spectral Stochastic Representations

Let $\xi : \Omega \to \mathbb{R}^m$ be an L^2 RV on the probability space (Ω, σ, ρ) . Let $\{\varphi_\alpha(\xi) : \alpha = 0, 1, 2, ...\}$ be an orthonormal basis of $L^2(\Xi)$. Let $X : \Xi \to \mathbb{R}$ be $L^2(\Xi)$. It can be represented in the basis φ of $L^2(\Xi)$

$$X(\xi) = \sum_{\alpha} X_{\alpha}(a) \varphi_{\alpha}(\xi(\omega))$$

where

$$X_{lpha}(a) = \int_{\Omega} X(a,\omega) \, arphi_{lpha}(\xi(\omega)) \, d
ho(\omega) = \langle arphi_{lpha}, X
angle.$$

Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

$$\dot{x} = f(\xi, x)$$
 $x(\xi, 0) = x_0(\xi)$

with $x(\xi, t) \in \mathbb{R}^n$. Represent x as

$$x(\xi,t) = \sum_{lpha} x_{lpha}(t) \, arphi_{lpha}(\xi)$$

where

$$X_{\alpha}(t) = \langle \varphi_{\alpha}(\xi), \, X(\xi, t) \rangle$$

and so these coefficients are governed by

$$\begin{aligned} \dot{x}_{\alpha} &= \left\langle \varphi_{\alpha}(\xi), \, \frac{d}{dt} x(\xi, t) \right\rangle \\ &= \left\langle \varphi_{\alpha}(\xi), \, f(\xi, x) \right\rangle \\ \dot{x}_{\alpha} &= g(x_{\beta}) \end{aligned}$$

where $\alpha, \beta = 0, \ldots, P$.

Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

$$\dot{x} = f(\xi, x)$$
 $x(\xi, 0) = x_0(\xi)$

with $x(\xi, t) \in \mathbb{R}^n$. Represent x as

$$\mathbf{x}(\xi,t) = \sum_{lpha} \mathbf{x}_{lpha}(t) \, arphi_{lpha}(\xi)$$

where

$$\mathbf{x}_{\alpha}(t) = \langle \varphi_{\alpha}(\xi), \, \mathbf{x}(\xi, t) \rangle$$

and so these coefficients are governed by

$$\begin{split} \dot{x}_{\alpha} &= \left\langle \varphi_{\alpha}(\xi), \, \frac{d}{dt} x(\xi, t) \right\rangle \\ &= \left\langle \varphi_{\alpha}(\xi), \, f(\xi, x) \right\rangle \\ \dot{x}_{\alpha} &= g(x_{\beta}) \end{split}$$

where $\alpha, \beta = 0, \ldots, P$.

Galerkin Reformulation of Uncertain ODEs

Consider a parameterized ODE

$$\dot{x} = f(\xi, x)$$
 $x(\xi, 0) = x_0(\xi)$

with $x(\xi, t) \in \mathbb{R}^n$. Represent x as

$$\mathbf{x}(\xi,t) = \sum_{lpha} \mathbf{x}_{lpha}(t) \, arphi_{lpha}(\xi)$$

where

$$\mathbf{x}_{\alpha}(t) = \langle \varphi_{\alpha}(\xi), \, \mathbf{x}(\xi, t) \rangle$$

and so these coefficients are governed by

$$\dot{x}_{lpha} = \left\langle \varphi_{lpha}(\xi), \, \frac{d}{dt}x(\xi,t) \right
angle$$

= $\langle \varphi_{lpha}(\xi), \, f(\xi,x)
angle$
 $\dot{x}_{lpha} = g(x_{eta})$

where $\alpha, \beta = 0, \ldots, P$.

CRF Example: Galerkin Reformulation of Uncertain ODEs

Consider the ODE

$$\dot{x} = x(9-x^2)$$

with random initial condition

$$x(\xi,0)=a+b\xi.$$

The coefficients of the second-order truncation of the polynomial representation of $x(\xi, t)$ is governed by the IVP

$$\begin{split} \dot{x}_0 &= 9x_0 - x_0^3 - 3x_0x_2^2 - 2\sqrt{2}x_2^3 - 3x_0x_1^2 - 3\sqrt{2}x_1^2x_2, \\ \dot{x}_1 &= 9x_1 - 3x_1^3 - 3x_0^2x_1 - 6\sqrt{2}x_0x_1x_2 - 15x_1x_2^2, \\ \dot{x}_2 &= 9x_2 - 15x_2^3 - 3x_0^2x_2 - 6\sqrt{2}x_0x_2^2 - 3\sqrt{2}x_0x_1^2 - 15x_2x_1^2 \\ x_0(0) &= a, \qquad x_1(0) = b, \qquad x_2(0) = 0 \end{split}$$

Jacobian of Uncertain System

The dynamical system can be locally characterized by the eigenstructrure of the Jacobian matrix. The enteries of the Jacobian matrix J of the sampled system is given by

$$J_{ij}(\xi,t) = \frac{\partial f^i}{\partial x^j}(\xi,x(\xi,t))$$

At each fixed time *t*, $J(\xi, t)$ is a random matrix.

Jacobian Matrix of Reformulated System

The Jacobian matrix of the coefficient system can be thought of as a block matrix with blocks

$$\begin{aligned} \mathcal{J}_{\alpha\beta}(t) &= \mathsf{D}_{\mathsf{x}_{\beta}} \int_{\Xi} f(\xi, \mathsf{x}(\xi, t)) \,\varphi_{\alpha}(\xi) \, \mathsf{d}\mu(\xi) \\ &= \int_{\Xi} \varphi_{\alpha}(\xi) \, \mathsf{J}(\xi, t) \,\varphi_{\beta}(\xi) \, \mathsf{d}\mu(\xi) \end{aligned}$$

Truncate the representation so that $\alpha, \beta = 0, \dots, P$. \mathcal{J} is then a $n(P+1) \times n(P+1)$ matrix.

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

Spectrum of sampled system

For each value of ξ , the Jacobian $J(\xi)$ has a spectrum $S(\xi)$ with *n* eigenvalues.

A stochastic eigenvalue is a random variable $\lambda(\xi)$ which satisfies

Jacobian

For n = 1 the dynamics of the Chaos coefficients are governed by $\dot{x}_k = \langle f(x) \varphi_k \rangle$. At a fixed point in time, the Jacobian

$$\mathcal{J}_{\alpha\beta} = \langle \varphi_{\alpha}, f_{\mathbf{X}} \varphi_{\beta} \rangle$$

is symmetric and (real) diagonalizable.

The numerical range of a matrix M is

$$W(M) = \{v^* M v : v \in C^m, v^* v = \|v\|^2 = 1\}.$$

Note that

 $\operatorname{spect}(M) \subset W(M).$

Furthermore, let

$$ilde{W}(J) = igcup_{ ext{a.e. } \xi} W(J(\xi)).$$

Theorem. (Sonday et. al.)

$$\operatorname{spect}\left(\mathcal{J}^{\mathcal{P}}\right)\subset \mathit{W}\left(\mathcal{J}^{\mathcal{P}}\right)\subset\operatorname{conv}\!\left(\tilde{\mathit{W}}(\mathit{J})\right)$$

$$n = 1, \xi \sim U([-1, 1]), \dot{x} = J(\xi) x$$

$$J(\xi) = \left\{ egin{array}{cc} \xi+1 & ext{for} & \xi \geq 0, \ \xi-1 & ext{for} & \xi < 0. \end{array}
ight.$$

COMBUSTION RESEARCH FACILITY

Consider the ODE $\dot{x} = \frac{1}{2}x^2$, $x(\xi, 0) = \xi$. At t = 0 the Galerkin Jacobian is

$$\mathcal{J}_{lphaeta} = \langle \xi \, \varphi_{lpha}(\xi) \, \varphi_{eta}(\xi)
angle$$

and so the spectrum is the locus of the Gauss points.

Consider the ODE $\dot{x} = \frac{1}{2}x^2$, $x(\xi, 0) = \xi$. At t = 0 the Galerkin Jacobian is

$$\mathcal{J}_{lphaeta} = \langle \xi \, \varphi_{lpha}(\xi) \, \varphi_{eta}(\xi)
angle$$

and so the spectrum is the locus of the Gauss points.

Consider the ODE $\dot{x} = e^x$, $x(\xi, 0) = \xi$. At t = 0 the Galerkin Jacobian is

 $\mathcal{J}_{\alpha\beta} = \langle \boldsymbol{e}^{\xi} \, \varphi_{\alpha}(\xi) \, \varphi_{\beta}(\xi) \rangle$

Consider the ODE $\dot{x} = e^x$, $x(\xi, 0) = \xi$. At t = 0 the Galerkin Jacobian is

$$\mathcal{J}_{\alpha\beta} = \langle \boldsymbol{e}^{\xi} \varphi_{\alpha}(\xi) \varphi_{\beta}(\xi) \rangle$$

Sandia National Laboratories

Weak Convergence of Spectra: n = 1 case

Theorem (Nevai). Assymptotic Eigenvalue Distribution (n = 1)Let $\{p_{\alpha}(\xi)\}_{\alpha=0}^{\infty}$ be a polynomial basis orthogonal under $\mu_{[-1,1]}$. Let *J* be an $L^{\infty}(\Omega)$ function such that the moments of $J d\mu$ are all finite. Let *F* be a continuous function in an interval containing the essential range of *h*. Then the eigenvalues $\{\lambda_{\alpha}\}_{\alpha=0}^{P}$ of the truncated matrix \mathcal{J}^{P} satisfy

$$\lim_{P \to \infty} \frac{1}{P+1} \sum_{\alpha=0}^{P} F(\lambda_{\alpha}) = \int_{-1}^{1} \frac{1}{\pi} \frac{F(J(x))}{\sqrt{1-x^{2}}} \, dx.$$

Corollary. Eigenvalue Reconstruction for n = 1.

Interpolating Galerkin system eigenvalues approximates random eigenvalues.

Weak Convergence of Spectra: n = 1 case

Theorem (Nevai). Assymptotic Eigenvalue Distribution (n = 1)Let $\{p_{\alpha}(\xi)\}_{\alpha=0}^{\infty}$ be a polynomial basis orthogonal under $\mu_{[-1,1]}$. Let *J* be an $L^{\infty}(\Omega)$ function such that the moments of $J d\mu$ are all finite. Let *F* be a continuous function in an interval containing the essential range of *h*. Then the eigenvalues $\{\lambda_{\alpha}\}_{\alpha=0}^{P}$ of the truncated matrix \mathcal{J}^{P} satisfy

$$\lim_{P\to\infty}\frac{1}{P+1}\sum_{\alpha=0}^{P}F(\lambda_{\alpha})=\int_{-1}^{1}\frac{1}{\pi}\frac{F(J(x))}{\sqrt{1-x^{2}}}\,dx.$$

Corollary. Eigenvalue Reconstruction for n = 1.

Interpolating Galerkin system eigenvalues approximates random eigenvalues.

Weak convergence of eigenvalues

Recall that the Jacobian matrix of the coefficient system can be thought of as a block matrix with blocks

$$\mathcal{J}_{\alpha\beta}(t) = \langle \varphi_{\alpha}, \boldsymbol{J} \varphi_{\beta} \rangle.$$

Let $\{\Lambda_{i\alpha}\}$ be the n(P+1) eigenvalues of \mathcal{J}^{P} .

Theorem (Berry et al). Assymptotic Eigenvalue Distribution (n > 1)Let $\mu_{[-1,1]}$ be a (real valued) measure such that $\mu'(x) > 0$ almost everywhere in [-1, 1]. Assume the matrix \mathcal{J} is generated by an L^{∞} matrix-valued function J. Let G be a holomorphic function in a compact, simply connected $\Omega \subset C$ containing the essential range of J. Then

$$\lim_{P\to\infty}\frac{1}{n(P+1)}\sum_{i,\alpha}G[\Lambda_{i\alpha}]=\frac{1}{n}\sum_{i}\int_{-1}^{1}\frac{G[\lambda_{i}(\theta)]\,d\theta}{\pi\sqrt{1-\theta^{2}}}.$$

Example: Stiff ODE

Consider the 3-dimensional stiff system (due to Valorani and Goussis)

$$\dot{x} = \frac{5(y^2 - x)}{\varepsilon} + \frac{z - xy}{\varepsilon} - x + yz$$
$$\dot{y} = -\frac{10(y^2 - x)}{\varepsilon} + \frac{z - xy}{\varepsilon} + x - yz$$
$$\dot{z} = -\frac{z - xy}{\varepsilon} + x - yz$$

with initial values (0.75, 0.75, 0.75) and $\varepsilon = 10^{-(\xi+3)/2}$, so $\varepsilon \in [0.01, 0.1]$.

(Example: Stiff ODE, cont.)

Example: ODE with Hopf Bifurcation

The oxidation of CO on a surface can be modeled as (Makeev et al., JCP, 2002)

 $\dot{u} = az - cu - 4duv \qquad \dot{v} = 2bz^2 - 4duv$ $\dot{w} = ez - fw \qquad z = 1 - u - v - w$ $a = 1.6, b = 20.75 + .45\xi, c = 0.04, \qquad d = 1.0, e = 0.36, f = 0.016$ u(0) = 0.1, v(0) = 0.2, w(0) = 0.7

exhibits Hopf bifurcations for $b \in [20.3, 21.2]$

(Example: ODE with Hopf Bifurcation, continued)

Analyzing the stochastic Jacobian at t = 300.

CRE

(Example: ODE with Hopf Bifurcation, continued)

PC order 10. Slow eigenvalues.

CRE

High-dimensional Example

50 coupled damped linear oscilators. Damping coefficient log-normal.

Eigenvectors

Let $\lambda_{i\alpha}$, $v_{i\alpha}$ be an eigenvalue/vector pair of \mathcal{J}^{P} :

$$\mathcal{J} \mathbf{V}_{i\alpha} = \lambda_{i\alpha} \mathbf{V}_{i\alpha}.$$

Alternatively,

$$\langle \varphi_{\beta}(\xi), (J(\xi) - \lambda_{i\alpha}) \nu_{i\alpha}(\xi) \rangle = 0$$
 for $\beta = 0 \dots P$

where $\nu_{i\alpha}(\xi)$ in an *n*-vector with components

$$u_{i\alpha}^{k}(\xi) = \sum_{\gamma=0}^{P} v_{i\alpha}^{k\gamma} \varphi_{\gamma}(\xi).$$

Eigenpolynomials

Let λ_{α} , v_{α} be an eigenvalue/vector pair of \mathcal{J}^{P} :

$$\mathcal{J} \mathbf{V}_{\alpha} = \lambda_{\alpha} \mathbf{V}_{\alpha}.$$

Alternatively,

$$\langle \varphi_{\beta}(\xi), (J(\xi) - \lambda_{\alpha}) \nu_{\alpha}(\xi) \rangle = 0 \quad \text{for } \beta = 0 \dots P$$

where

$$u_{lpha}(\xi) = \sum_{\gamma=0}^{P} \mathsf{v}^{\gamma}_{lpha} \, arphi_{\gamma}(\xi).$$

Polynomial from PCE Eigenvectors "local" to solution of $\lambda(\xi) - \Lambda = 0$.

Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

Eigenpolynomials and Eigenvalues can be used to construct the PCE of λ .

Stiff ODE:

Eigenvector polynomials have local character

COMBUSTION RESEARCH FACILITY

Example: Large uncertainties in eigenvectors

Sandia National Laboratories

COMBUSTION RESEARCH FACILITY

Summary

- Comparison of sampled Jacobian and Galerkin Jacobian
- Ambiguities in defining "stochastic eigenvalues"
- When there is a "stochastic eigenvalue" it can be approximated by interpolating the Galerkin system eigenvalues
- Weak convergence of spectra of the two Jacobians
- ξ -local nature of eigenvector polynomials
- When there is a "stochastic eigenvector" it can be approximated by interpolating the expectation of eigenvector polynomials
- The eigenstructure of the Galerkin Jacobian is approximately the union of the eigenstructures of the uncertain system sampled at the Gauss points

