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Data assimilation is a unidirectional communications 
system: data = transmitter  model = receiver. Synchronize 
the model and the data to achieve communication of 
information from data to model.

We present an exact formula for the probability of the 
performance of the communications channel. The exact 
formula is an integral along a path in the space of states and 
parameters of the receiver = model.

We analyze approximations to the path integral: variational 
and direct evaluations.

We present an example from a core climate model element: 
shallow water equations.



Common features in developing predictive models 
of observed nonlinear systems:

I Few of the many state variables are 
observable. 

II We must estimate the unobserved state 
variables and the fixed parameters to make 
predictions, using   x(tn+1) = f(x(tn),p). 

III      Using observations to guide the 
dynamics to the right sector of phase 
space can allow prediction in chaos
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Our general interest is in making models of observed 
physical systems: 
These models often have unknown parameters---conductivity, 
transport coefficients, reaction rates, coupling strengths, …. 

These models often have unobservable state variables---gating 
variables for ion channels, population inversion in lasers, …
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Our discussion starts with the model and the data, 
and an interest in determining the unknown parameters 
and unobserved state variables. 



Data Assimilation—transfer of information 
from observations to models: 

Noisy Data, Errors in the Model—low 
resolution, …., unknown initial states when 

data acquisition begins

Exact Formulation as a Path Integral
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Path Integral for     :

0
| ( 1))

   Total Conditional Mutual Information 
   between path  and observations ( )

m

n
Z n

X Y m




What is different about this path integral: nonlinear “propagators” 
dissipative dynamics, orbits on strange attractors.

Path
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Action for State and Parameter Estimation
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With the density of paths exp[- ( | ( ))],
we are able to evaluate any conditional expectation
value of a function 
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Path is through state variable+parameter space  
X={x(m),x(m-1),...x(0),p}
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We have explored Monte Carlo numerical evaluation of the 
integral representation of the data assimulation task. We 
produced the results here using single CPU machines. 

This is eminently parallelizable. Same problem on GPU
machines runs 60-300 times faster! Bigger problems utilize
more GPU threads.

This is the source of numerical optimism.
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Another approach is expansion about a saddle path
( ) | 0      1,2..., ( 1)

This is 4DVar.
This is a numerical optimization problem-
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ajectories are chaotic.
Path integral representation allows corrections to 4DVar:
do Gaussian integral about .
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Lorenz96 Model
Dynamical variables--longitudinal `activity'--no vertical levels
no latitude variations.
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   ( ) Forcinga t 

We explored D = 5. Chaotic at Forcing = 7.9; we used 
Forcing = 8.17
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Model does not synchronize with ‘data’ (x(t)) with only one 
coupling: two positive Conditional Lyapunov Exponents  two 
different couplings for data are required
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Calculate the synchronization error or cost function

C(k , ) ( ( ) ( ))

as a function of the couplings (u (t)=k , ( ) ).

Examine the dependence on an initial condition, here y (0)
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Dynamical State and Parameter Estimation (DSPE)
Minimize:
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Use variational answer, saddle path, from 
optimization

As a first approximation and use path 
integral to evaluate fluctuations about this 
optimal path. We use IPOPT to solve 
optimization problem via direct method.
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Shallow Water Equations

x, u(x,y,t)
y, v(x,y,t)

z, w(x,y,z,t)

0( , , ) ( , , )H x y t H h x y t 



Twin Experiment: Generate ‘data’ from NbyN 
shallow water equation. Present              
observed variables: u, v, h. How big must L be to 
allow estimation of other unobserved state 
variables?  How many measurements must one 
make to accurately estimate unobserved states?

For 8 by 8 example with 192 state variables, the 
number is 112 out of 192, about 60%.

2L N



In 8 by 8 shallow water equations, present 
all measurements of h(x,y,t) as well as 2, 3, 
4, .. Columns of data from wind velocities. 
Columns contain data on shears in the wind 
fields.













Effective Actions for Path  Integrals
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Performing an 
integral involves 
an optimization 
problem



Effective Actions for Path  Integrals
Generalize 4Dvar to another, exact 

variational principle
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0

( ) contains all the moment information. It is like
the Free Energy in statistical physics.

( ) 0  gives the `bare' orbit.

( ) 0  gives the complete expected state variable <X>

including all c
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orrections due to fluctuations in measurements

and model error.
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Using the integral representation of the Data 
Assimilation questions, one can ask how many degrees 
of freedom are actually required to capture the physics---
when do we stop improving the resolution ?

By a consideration of the continuum limit in space 
and time, one can integrate out the high frequency and 
high wavenumber components and provide a “universal” 
parametrization of the answer, then evaluate the 
remaining structure now containing all the Physics on 
the desired scales.



Summary

Data assimilation is a unidirectional communications 
system: data = transmitter, model = receiver. Synchronize the 
model and the data to achieve communication of information 
from data to model.

We gave an exact integral representation of the solution 
of the master equation for the conditional probability 
distribution in state space. It is an integral along a path in the 
space of states and parameters of the receiver = model.

Evaluation of high dimensional path integral using Monte 
Carlo methods. Works well in “low” dimensions. Eminently 
parallelizable, so numerical possibilities for LARGE models 
are available.






