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Abstract

Gaussian processes are widely used throughout the statistical and machine learning communities
for modeling natural processes with broad applications to fields such as nuclear engineering and
climate science. Such models typically have some vector of unknown parameters that must be
estimated to carry out further data analysis tasks such as regression, classification and interpolation.
A standard statistical approach to estimating these parameters is to choose the parameter values
that maximum the likelihood function (the joint density of the observations). Simple in principle,
the technique is difficult to apply in practice in the case of very large data sets due to the need to
work with the covariance matrices of the observations. In some cases, the covariance matrices (or
their inverse) may have some exploitable property (sparseness, Toeplitz) to reduce computations
and/or storage, but in many applications, the covariance matrices are dense and unstructured.
The likelihood function for Gaussian processes involves a quadratic form in the inverse covariance
matrix and the log determinant of the covariance matrix. Existing algorithms for maximizing the
likelihood heavily rely on the Cholesky factorization, the computation of which is prohibitively
costly for many problems of practical interest. We propose a sample average formulation of the
optimization framework, which narrows down the several linear algebra challenges to solving a
linear system with the covariance matrix for multiple right-hand sides. We further investigate
two of the most important ingredients in the conjugate gradient solver: the conditioning of the
covariance matrix and the multiplication of a vector to a covariance matrix. These two aspects
require different designs of the preconditioner and the matrix-vector multiplication in different
grid configurations. We demonstrate the successful scalable resolution of the maximum likelihood
problem for data sizes as large as a million points on a grid on a single desktop machine, whereas the
Cholesky factorization approach would have needed a moderate-size supercomputer. In addition,
we have proved that in some circumstances optimal preconditioning is achievable by means of a
filtering approach. Parallel programs are under development to solve the problem for much larger
data sets and in higher dimensions. This is joint work with Mihai Anitescu and Jie Chen.


