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Abstract

Immense computational powers are required to simulate wave propagation due to seismic events.
For example, to calculate motions relevant for designing buildings and structures, frequencies be-
tween 0-10 Hz need to be captured up to 100 km away from the epicenter. Such computations are
still far from what can be accomplished, even with today’s most powerful supercomputers. There
is, therefore, a considerable interest in further increasing the resolution of seismic computations.
There are two ways to increase the resolution: a) buying a bigger computer to increase the num-
ber of grid points or b) finding a more efficient numerical method. Optimally, a) and b) should
be used together. In this presentation we will address b) by developing a fourth order accurate,
energy conserving, finite difference method for the elastic wave equation. This research builds on
our previous work in seismic wave simulations, which has been based on a second order accurate,
also energy conserving, method.

We develop the new fourth order accurate method for the elastic wave equation in second order
formulation. Fourth order accuracy holds in both space and time. Discrete energy norm estimates
are developed to prove that the method is stable. The stability holds for arbitrary heterogeneous
material properties, on multi-dimensional spatial domains with Dirichlet or traction (free surface)
boundary conditions.

The key ingredient of the method is a boundary modified fourth order accurate discretization
of the second derivative with a variable coefficient, (µ(x)ux)x. This discretization satisfies a sum-
mation by parts identity that guarantees stability of the scheme. The boundary conditions are
enforced through ghost points, thereby avoiding projections or penalty terms, which often are used
with previous summation by parts operators. The temporal discretization is obtained by an explicit
modified equation technique.

Numerical examples with free surface boundary conditions show that the scheme is stable for
CFL-numbers up to 1.3, and demonstrate a significant improvement in efficiency over the second
order accurate method. A particularly difficult test problem is to propagate Rayleigh surface waves
in an elastic half-space where the ratio between the compressional and shear wave speeds is large,
i.e., an almost incompressible material. We demonstrate superior performance of the new scheme
for this type of waves.

The new discretization of (µ(x)ux)x has general applicability, and will enable stable fourth order
accurate approximations of other partial differential equations, as well as the elastic wave equation.
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