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Fast and Robust Computation of Stochastic Transcendentals

Kevin Long and Kaleb McKale (Texas Tech University)

Transcendental functions of polynomial chaos expansions (PCE) BGC Computation of PCE Arctangent

m Problem: compute PCE representation of f(x(&)), where = Convergence in 4 BGC iterations
x(&) is a PCE
u Existing methods: line integration, sparse quadrature e

New method: modified arithmetic-geometric mean
iteration applied to PCE

Requires only arithmetic and square root operations

Converges in a few iterations

Y r"W’ ang

Borchardt-Gauss iteration with Carlson acceleration BGC Computation of PCE Logarithm

1 m Convergence in 3 BGC iterations
ant1 = ; (an + &n) 8 !

&n+1 = \/3n+18n

B(ag, g0) = , lim _ an

Any inverse transcendental (e.g. log, arctan) can be
computed via BG iteration

For example: log(x) = (x — 1)/B(XT+1 , X)

BG iteration with Carlson acceleration: very fast
convergence (contraction by ~ 103 per iteration)



Poster #49 — Fred J. Hickernell, II'T
Efficient Construction of Surrogates for Computer
Experiments with Gradient Information

» Realistic nuclear reactor simulations take a lot of time.
> Need a cheap approximation for f : R? — R from computer experiment data.

> Adjoint methods provide V f(x;) (d more data) in addition to f(x;) for
~ 100% more cost.

10°

> Use a polynomial basis for regression that is
orthogonal with respect to w E

11 /0f og
(f:9)g = (f,9)c, +ZZ::)\¢ <3w 55Eé>

to reduce the condition number of the in-
formation matrix. ° O s %

Singular Values

» Choose sample points that are evenly spread (low discrepancy) to control the
condition number of the information matrix regardless of model.

Fred J. Hickernell and Yiou Li Construction of Surrogates Tuesday, October 18, 2011 1/1



#50 — Orianna DeMasi

Dimension Reduction Using the

Rule Ensemble Machine Learning Method

Orianna DeMasi, Juan Meza, David Bailey

Comparision of Overall Error with Fewer Attributes and FPC

Model is a linear sum of rules
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Consider how to construct rules and weights

Overall Error Rate
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The weight indicates a rule’s importance

o Importance of rules used to prune attributes
Application on supernova data

culls 39 attributes to 21 while
decreasing the overall error rate



Poster 51: Sandra May and Marsha Berger
Courant Institute, NYU

Slope Limiters for Finite Volume Schemes on
Non-coordinate-aligned Meshes

Goal: Approach:
Construct gradient on cutcell Limit gradient estimate (D,,D,) by scalars
respecting monotonicity conditions (¢,,¢,) which solve a Linear Program
€.9. max ¢ |D, +c/)y|Dy|
S.t.
. 0<¢,,p,=<1,
Ga,y) | e - for j=1,neighbors (assumeuy, <u;):
(X3,y3)
(XM’YM) ( . ) X3,Y3 uM+ d)x . DX<XJ_XM) < uj.
X2, Yo b, Dy<yj_yM)
Result: Family of LP limiters
+ Ensures monotonicity + Good for Cartesian embedded boundary grids

+ Adaptable for specific needs + Limits x- and y-slope independently (not scalar)




Coarse-graining computation of collective swimming in

biosuspensions. L. Berlyand, Penn State

PSU Students: B.Haines, S.Ryan, DOE Collaborators: I.Aranson, D.Karpeev (ANL)
Phys. Rev. E 80, 041922 (2009); Comm. Pure Appl. Anal., (2012), Phys. Rev E 83, 050904(R) (2011), ARMA (2010)
Objective: Develop computational models that reveal mechanisms
behind collective swimming. Explain striking experimental results.

Challenge: Computationally prohibitive fine scales.

» Dilute suspensions - no interactions. Obtained additional
term in Einstein’s formula for effective viscosity — due to
self-propulsion; homogenization, multi-scale analysis.

» Semidilute: Add mean field interactions and develop a
computational model. Include soft collisions and dipolar interactions

- accounts for full range of exp. concentration.
» Current Work: Beyond mean field. Capture critical concentration

for onset of collective motion, correlations, fluctuations.

» PDEs with many non-separated scales Irregular coefficients:
classical FEM and homogenization do not work. Designed shape
functions that capture scales. Extend to moving fine-grained
boundaries, evolving shape functions to track swimming bacteria.




Poster 53: Per-Olof Persson, UC Berkeley, LBNL
Sparse Line-Based Discontinuous Galerkin Discretizations
and Efficient Time-Integration

Map system of conservation laws to

a reference element: N
Ou y
% ) =0 Jo L
Ou ~ i
JE—FTXF(H):O ° Vo °
_8j X
. . . qu—J- ° e e
Apply 1-D Discontinuous Galerkin &y —
. . U N
schemes along each coordinate line: Ny
3 o
du‘;},’;\- (n)
ik —, =0
K dt * — i °
° I ‘ °

# connectivities / node (3-D hexahedrals)

Polynomial order p 1 2 3 4 5 6 7 8 9

Line-DG connectivities 10 13 16 19 22 25 28 3] 34

Nodal-DG connectivities | 32 81 160 275 432 637 896 1215 1600 2057

Magnitudes sparser Jacobians
Simple scheme: Only 1-D integrals
LDG-type second order terms




Poster 54: Milo Dorr

High-Order, Mapped-Multiblock, Finite-Volume Discretization of

Gyrokinetic Systems Near the X Point of a Diverted Tokamak Geometry
Collaborators: John Compton, Jeffrey Hittinger (LLNL), Phil Colella, Peter McCorquodale (LBNL)

Field-aligned coordinates help accommodate strong anisotropy in solving
PDEs on edge plasma domains defined by magnetic flux surfaces:

=

Mapping

w Lawrence Livermore National Laboratory

i

Flux surface
coordinate

X point:

 Poloidal field component
vanishes (no need to stay
field aligned)

* Field line projections become
progressively kinked, leading
to large derivatives in
coordinate mappings

Field line
following
coordinate

This poster describes
how we address this
issue in the
development of fourth-
order, mapped-
multiblock, finite-volume
discretizations of
advection operators in
this unique geometry.



55. Bert Debusschere
Bayesian Quantification of Uncertainty

in Systems with Intrinsic Noise

Khachik Sargsyan, Cosmin Safta, Bert Debusschere, Habib Najm
Sandia National Laboratories, Livermore, CA
{ksargsy, csafta, bjdebus, hnnajm}@sandia.gov
 Goal:

— Uncertainty quantification in high-
dimensional stochastic systems

« Challenges:
— Large number of parameters, i.e.
the curse of dimensionality

— Intrinsic noise makes sparse
quadrature methods infeasible

— Nonlinear output observables

Probability of competence
o
o al

o
o
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K 0.0002 ' K,

« Approach: *

. . Mixture PC response surface of competence probability
- P0|yn0mla| Chaos (PC) representat|0n in Bacillus subtilis with respect to two influential rate

constants.

— Bayesian inference of PC modes

. . Sargsyan et al., J. Comp. Theor. Nanosci., 6(10), 2009
_ Nearest-nelghbor based mixture PC Sargsyan et al., SIAM J. Sci. Comp., 31(6), 2010
— Outcome: uncertain response surface Sargsyan et al., in preparation for Biophys. J, 2011



Large-Scale Uncertainty and Error Analysis for Time-dependent
Fluid/Structure Interactions in Wind Turbine Applications

Research Team

Uncertainty Quantification Methodology

Juan J. Alonso, Michael Eldred, Dongbin Xiu

The use of gradient evaluations as a enhancement to classic stochastic Gianluca laccarino, Matthew Barone PURDUE
collocation techniques is one of the main drivers of the algorithmic development Karthik Du.ralsamy, Stefan Domino
Jeroen Witteveen, .
Giovanni Petrone, Sandia
Gart Tang National
Laboratories

Gradient Enhanced Convergence

Uncertainty Quantification for Wind Turbine

Evaluation of energy extraction and noise under uncertainty in wind condition
(speed) and surface perturbations (dust, bugs)

« Input Uncertainty: Speed velocity as a discrete histogram distribution and geometry perturbations as
“assumed” continuous distributions (3 input variables).

N onsmOOth « Output Metric: Energy extraction (aerodynamic loading) and noise
y + UQ Methods: LHS and SSC (adaptive with 24/48 realizations added at each iteration)
+ Response function evaluations: 1k LHS samples for moments evaluation; up to 600 for SSC/PCE
(in Fig. below SSC1 and SSC2 use 200 realizations and SSC3 uses 600)

Input Uncertainty Response CDF Convergence

[ Jspecium svmges
05 [ cenn ot s,

As a more flexible alternative to hypercube-based discretization of the
parameter space we are considering the Simplex Stochastic Collocation method H”HH ‘
J mh.nh..w

Gradient Enhanced
Convergence Evaluation of fatigue under uncertainty in wind condition (shear)
+ Input Uncertainty: Speed shear exponent as continuous histogram distribution.

:’-;A"*f T s + Output Metric: Blade root out-of-plane bending moment amplitude during steady limit cycle.
- mm— + UQ Methods: LHS and PCE with Askey/Gauss-Patterson or numerically generated/Gauss using p-
refinement (isotropic/anisotropic/generalized essentially equivalent for 1-D).
+ Response function evaluations: 100k LHS samples for PDF/CDF eval (truth or approx); up to
255 for Askey PCE (level w=7); up to 21 for NumGen PCE (level w=10).

Convergence

Input Uncertainty Response CDF

JUBUOIXG T09YS 7]

Unstable

Probabilty of Occurrence,

<« Stable

0 02 04 06 08 1
10m to 116m laver Speed Shear Exponent




Positivity-preserving high order well-balanced
method for the shallow water equations

ASCR- Applied Mathematics Highlight

Objectives Impact

= Develop accurate and efficient numerical
methods for the shallow water equations,
which can

= Enable stable and efficient simulations to the
shallow-water equations and their applications in
dam break problem and tsunamis wave prediction

= take care of the dry area automatically; = Similar technique can be extended to the MHD
model in plasma, gas dynamics model in
astrophysics and other hyperbolic system with
source terms

= capture the steady state exactly.

Time history of a small perturbation to the equilibrium state Accomplishments

Surface level at time t=0. Surface level at time t=0.12

* Provide positivity-preserving limiters for the shallow-water equations

* Y. Xing, X. Zhang and C.-W. Shu, Positivity-preserving high order well-
balanced discontinuous Galerkin methods for the shallow water
equations, Advances in Water Resources, v33 (2010), pp.1476-1493

* Y. Xing, C.-W. Shu and S. Noelle, On the advantage of well-balanced
schemes for moving-water equilibrium of the shallow water equations,
Journal of Scientific Computing, v48 (2011), pp.339-349

* Y. Xing and C.-W. Shu, High-order finite volume WENO schemes for the
shallow water equations with dry states, Advances in Water Resources,
v34 (2011), pp.1026-1038

4 EﬁPAERTMREEFY gifiigsczf Yulong Xing, Oak Ridge National Laboratory



#58 An Adaptive Embedded Boundary Method ’\l ‘.’h

for Pore Scale Reactive TransEort _

“World’s largest pore scale reactive transport simulation”

David Trebotich, Sergi Molins, Carl Steefel, Chaopeng Shen and Greg Miller

Ca Concentration (mol/cm3)
00 25¢08 50e-08 7.5-08 1.0e-07

: e
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE ‘l’u;ﬁj

\\:i\-{én UNEP

Produced oil or gas
Injected CO,
Stored CO,

Overview of Geological Storage Options
1 Depleted oil and gas reservoirs

2 Use of CO, in enhanced oil and gas recovery

3 Deep saline formations — (a) offshare (b) onshore

4 Use of CO, in enhanced coal bed methane recovery

5 Deep unmineable coal seams
6 Other suggested options (basalts, cil shales, cavities)

Calcite dissolution in packed cylinder TEe L/
« 1 cm cylinder, 1200 spheres, 250 micron radii "
* 5 components, 9 complexation reactions, influent pH=5
* 33.5 million grid points, < 20 micron grid resolution
» 1024 cores, 0.6 GB per core, scalable to 65K cores

Direct Numerical

Simulation From Evoer | g
xperiment to mage data to pore
Image Data XMT imagery scale RT simulation

(pressure data in a
J. Ajo-Franklin, LBL section)

L. Yang, LBL



Poster 60 — Garud lyengar

We propose a new methodology for incorporating speed
and energy costs into scheduling problems

* Qur algorithms compute a O(1)-approximation for weighted
completion time and weighted tardiness for very general energy

cost functions.

= Experimental results show that the algorithms perform very

close to optimal:
SAIAS Algorithm

15

Total Instances: 26,098
Average Ratio: 1.0328
Worst Ratio: 1.5133
Optimal Instances: 1.34%

0 - L L L
1 1.1 1.2 1.3 1.4 1.5

Approximarion Ratio

SAIAS-H Algorithm

Total Instances: 26,098
Average Ratio: 1.0128

U Worst Ratio: 1.3025
Optimal Instances: 40.06%

o
g
T
=
e .
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1 1.1 1.2 1.3 1.4 1.5
Approximation Rari

= Extensions: online and multiple parallel machines.

= Algorithms can also be used with other speed-related costs:

maintenance, wear & tear, etc.

IEOR Department

~ Columbia University

DE-FG02-08ER25856: Algorithms for Mathematical Programming with emphasis on bi-level models

Rodrigo A. Carrasco, Garud lyengar, Cliff Stein

AVONHAT "D “ONITNATHOS DIVAY ADIANH — 09 YLLSOJ



Poster # 61
Susan Kurien (LANL)
Leslie Smith (U. Wisconsin, Madison)

Characterize layer formation in small aspect-ratio rotating and
stratified flows

2048 x 2048 x 512, aspect ratio 0.25
time 5.00

Ro = Fr = 0.002

zonal velocity u, wave

- 2048 x 2048 x 512 gridpoints
~ * Rossby = Froude = 0.002

w284 * time-resolved fastest waves
,4s * 15M core hours (BG/P, Argonne)

0.118
I] 24
-2.60

 How does layer thickness change as aspect-ratio decreases?

 What is the relative fraction of energy in fast wave-modes?

—
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R —— FM
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Poster #62: Michael Parks

Enabling Tools for Extreme Scale
Computation of Nanoscale Fluids

O Fluid density functional theories enable modeling
and simulation of a wide range of applications

O Minimize free energy functional with Newton-Krylov

0 Use Sandia’s Tramonto package for complex fluid
systems, built upon Trilinos software components

U Increased performance by reducing memory
bandwidth and size usage

O Stop by my poster to see:

(1) Mixed-precision, precision-neutral, and high
precision solvers leveraging the
Tpetra solver stack (templated C++)

(2) Robust mixed-precision solvers via least-squares
methods that shield user from details of computation

(3) Block Krylov recycling solver with superior
convergence properties due to block formulation and
information reuse from previous linear solves

-
- — 2yt
UL OS
e - — e
SAND2011-7515P
p—— 3% Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @ Sandia

National

AN .
National Nuciear Security Adminis: labﬂl'atorles

for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.



Poster 63, llya Safro (Argonne National Laboratory) Argemnee

Multiscale approach for network
compression-friendly ordering

Problem
Find a compressed representation of a network.

Many modern networks/graphs/matrices
@ are huge and noisy
@ are structurally different at different resolutions
@ describe data collected in parallel
With the growth of the networks we need
@ to store the network efficiently

@ to have an extremely fast access to network
elements (nodes, links, non-zero entries, etc)

We find better ordering — better compression — faster performance.

I. Safro (ANL) and B. Temkin (WIS) Multiscale approach for network compression DOE APPMATH 2011 1/1



Poster 64: Out-of-core algorithms for dense

matrix factorization on GPGPU
Ed D'Azevedo

« General Purpose Graphics Processing Unit (GPGPU)

achieves high performance on dense matrix B 108avm aobee.. e
operations

| 3 GEFORCE .

. GPU accelerator on supercomputer to consumer GTX%?DTI

game video card (< $200)

. Largest problem size may be limited to the amount of
device memory on GPGPU

. Idea: adapt out-of-core algorithm to factor 10 GB
matrix on CPU host using only 1 GB device memory

« Cholesky factorization (DPOTRF) using only 1 GB
(out of 5 GB) on Tesla M2050

MAGMA 1.0 | Out-of-core algorithm
N=25,000 | 266 Gflops/s 246 Gflops/s
N=35,000 | Out of memory 263 Gflops/s

«n> U.S. DEPARTMENT OF

ENERGY

Office of Science

OAK
RIDGE

National Laboratory

\\ ENT O S .
e e
o fesA )
e Vi
NI
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65: Chandrika Kamath (LLNL)

Real-time Analysis of Streaming Data from Sensors

'—_“

¥ & 88 B B B B B
E & B B B E & B

8
g
2

= Can we adaptively reduce noise in the sensor data?
= Which data streams are important?
= How do we incorporate the spatial distribution of sensors into the predictive models?



Allen M. Tesdall, Poster 66

High resolution solutions for shock formation

Shock waves form generically in solutions of transonic flow problems.
An example: transonic flow over an airfoil

Where does the shock form?

@ Whether a shock forms on the sonic line or inside the supersonic

region is an open question.

o We numerically solve this problem and others, and find that the
shock forms inside the supersonic region, and very close to, but
not at, the sonic line.



Poster 67: Tamara G. Kolda m
Tensors Factorizations for Sparse Data

We propose that sparse count data is better modeled as a Poisson
distribution than Gaussian:

C1 C2 CR
[/\1 by Ao bs AR b\

~ Poisson + + 4

\_"a as ap J

Pata Model: M(4, 7, k Z)\ a, (i c-(k)

Such an assumption yields the following objectlve function (negative of
the log likelihood) for fitting observed data:

mwicﬂ Z Mk — Xijr log M,
ijk
Joint work with Eric C. Chi, Rice Univ. & UCLA

Sandia
National
Laboratories




Poster 68: MusTAFA KILING, JEFF LINDEROTH, JIM LUEDTKE UW-Madison

Effective Disjunctive Cuts for Convex MINLPs

X
@ Disjunctive cutting planes are a tremendously effective ‘

tool for solving mixed integer linear programs R‘f ,(:‘

‘\ i)

@ Used in all state-of-the-art software packages
Xi=0 Xi:]

é\go T4 ¢

Our Team’s Quest

Develop computationally effective methodology for disjunctive
cutting planes in (convex) mixed integer nonlinear programs

%

It’s only half bull

Does it Work?

@ First use of disjunctive cutting planes on
practically-sized convex MINLP instances

@ Cuts are very strong: Tremendous speedups on many
instances, including portfolio optimization

Kiling, L., Luedtke (UW-Madison) Disjunctive Inequalities for MINLP 2011 DOE Applied Math Mtg. 1/1



An adaptive high-order minimum action method

Xiaoliang Wan, LSU

Stochastic Model: A General Numerical Strategy:
"= min S, (u)

0 : u = _ r(u
—u(x,t)=Gu(x,t)+ \/E Wi(x,t) all possible
ot transition paths

W s space-time white noise. / L

. i hp FEM discretization in Adaptive time mesh
E is asmall positive number. ) . . .
both time and space consistent with dynamics

Problem Description: \/

Scalable parallel

> A transition from one state in the optimization algorithm
phase space to another one always
has a positive probability. How can
we quantify this probability? How -
does the transition occur? Large deviation theory for the

transition probability

> When & is small, the transition
probability will be also small, direct Applications:

sampling method will not be ) ) ) ) )
affordable, especially when we chemical reactions, bi-stable genetic toggle switch,

consider a large-scale problem, such nucleation events during phase transitions, regime
as Navier-Stokes equations. changes in climate, subcritical bifurcations, etc.



Peter Lindstrom

Lawrence Livermore National Laboratory

UL— Reducing Data Movement using Cache-Oblivious Layouts

Effective caching, streaming require good data locality
* Space-filling curve layouts are ideal for structured grids
e ...but don’t do well on unstructured & non-geometric data

We have developed a cache-oblivious locality measure
* Applicable to any data set modeled as an affinity graph
* Optimal unstructured grid layouts are qualitatively “space-filling” wo=| I le(i) — ()l
= Hamiltonian, hierarchical, unbiased, scale-free, ...

Linear ordering problem is NP-hard
* ... but good multilevel heuristics exist: see poster #63 for details

Applications abound
e Sparse matrix ordering
* “Instant” graph partitioning & load balancing

e Databases, GIS, image processing, clustering,
GPU rendering, graph drawing, ...

* Web graph compression

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.




Poster 71, Danny Perez, LANL
Generalizations of the Parallel Replica Dynamics

method for long-timescale atomistic simulations

Parallel Replica Dynamics is a method to parallelize molecular dynamics
simulation in the time domain. This enables atomistic simulations of nanoscale
systems over long timescales (>us), as long as they evolve through a
sequence of rare, activated events.

We discuss a recent mathematical analysis of the method where we quantify
the underlying approximation. We show that this approximation can be made
arbitrarily good.

Through the same analysis, we show that the method can be generalized to
handle arbitrary partitions of configuration space instead of the conventional
definition. When chosen properly, this can significantly improve the efficiency
of the method.

We show how this leads to a generalization of the method that can handle
both diffusive, as well as activated, rare events.




72. Hadi Meidani

Random transitions and eigenvalues
for modeling demand and stability for the Smart Grid oL or

Hadi Meidani, Roger Ghanem

USC

VITERBI

ENGINEERING

Random eigenvalue analysis

V(@)

vi(®)

Markov chains with random transitions

0.92

e sing dlsterministic TM
—— using realizations from RTM

Time step [six months]

Synchronization in random networks




Scenario Generation

STATUS QUO Award: DE-FG02-10ER26037; SC0005102 e ~
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U tainty ai fed usi » Developed an optimization based approach
Mrg)%?;—%gr?loa;.ﬁdgeQTJ?:i-?\ACUSIng ie generate WO matChing cubature Number of scénarios ina 6-
Methods formulae by solving semi-infinite linear Hinlensionaliaiochasiciorobieny
rograms. . :
prog Sparse Grid Methods give
two to three orders of magnitude
Scenario (time) reduction when
two-stage convex optimization problem Interlor DecompOSltlon Algorlthms: comp.ared with Monte-Carlo, )
K Quasi-Monte Carlo and Full Grid
win ot ) if(2) st ednl - Developed a primal-interior decomposition Methods for smooth problems

k=1

algorithm for two-stage convex programs
_ admitting self-concordant barriers that

Gand GF k=1,..., K are compact convex sets

L s Az — b}, snd decomposes the second stage problem.

and LF(z) == {yF | QFyF = ¢* + TFz) » Analysis shows that the order of the number
of inner iterations of this algorithm is same
as that for primal-interior algorithm applied to
\ the extensive formulation.

Current Algorithms Require
Extensive Formulation of the Two-

Stage Problem

Improved Scenario Generation in Stochastic Optimization; Polynomial Convergence of
Interior Decomposition Algorithms

7*(x) = min (d)7y* sty € GFnLF(a), Semi-infinite linear

programming approach
allows generation of cubature
formulae with non-negative
weights for any distribution
function.

Interior decomposition
algorithm allows adaptive
scenario addition and

\distributed computations. J

Optimization Algorithms

Polynomial Convergence in
decomposition Framework




Poster 74 - Stefan Wild

Optimal Derivatives of Noisy Simulations

How should difference parameter h be chosen in

10t B o Realized error
° 0% Y¢ Optimal step
2 o &%
© 0 O_ 0,
S10°|  £%%o
b5 o0 8
o *® o
£107 o &%
— o o
= %%o o
w -2 R0
0107 0 ? oo‘%
= o °6,
< 0750 9 °
D 103 ' )
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Noise dominates
-4

—_—>
Bias dominates|

L L
-10 -8 -6

1 1
Forward Difference Parameter

10™

Argon

fE+R)—f(B)
> /

Choose h = hopt based on
the noise in f

¢ Provably optimal:
E(hopt) < v min £(h)

< Inexpensive:
Noise estimate and 2-4
f evaluations

Caution

High noise levels



Data Assimilation in Multiscale Systems
Humberto C. Godinez, Balu Nadiga, J. David Moulton
Los Alamos National Laboratory

Part I: Ensemble Data Assimila- Part Il: An Efficient Matrix-Free
tion for Strongly Coupled Sys- EnKF Algorithm

tems Matrix-free  implementation of
EnKF using a Sherman-Morrison
linear solver to efficiently assimi-
late large data sets.

slow variables with h=1.0 slow variables with h=4.0
NN 2 N ) e

3 e 2120
gos| §100
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number of obsérvations (1e+4) number of observations (1e+4)

H.C. Godinez, B. Nadiga, J.D. Moulton Data Assimilation in Multiscale Systems
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77. Pablo Seleson

Peridynamics
as a Multiscale Material Model

pu :/ K(u —u,x' —x)dVys + b

x

Nonlocal
Continuum
Length scale
Fracture
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Poster #78 — Peer-Timo Bremer LL%

Analysis and Exploration of High Dimensional Functions for UQ

= Topological analysis of high-dimensional functions provides new
insights into parameter dependencies within simulation ensembles

-

Average Clear Sky Flux in a 21-dimensional CAM ensemble

minimum

l Lawrence Livermore National Laboratory Dok Applied Mathematics Meeting Oct 2011




Poster 79 — Robert Carr (Sandia National Laboratories)

Approximating a 2-edge-connected subgraph problem

= New algorithm for computing a
minimum-cost 2-connected subgraph;
cost reduction for multi-edges.

A 2-connected graph

= Special case of buy-at-bulk network
design with protection, used actively for
designing optical communication
networks. Network must function if an
edge fails.

= Provable 5/3-approximation (best
preViOUS bound —_ 2) If any edge is broken, all nodes remain connected

Figure from: http://people.sc.fsu.edu/~jburkardt/latex/asa_2011_graphs_homework/

= First tree-based formulation and new
analysis techniques involving multiple
convex decompositions

U.S. DEPARTMENT OF Office of Sandia
EN ERGY Science Applied Mathematics Program Meeting, October 18, 2011 m"g‘m
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Poster 80: Tim Wildey

A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Approximations
Mathematical and Computational Tools for Predictive Simulation of Complex Coupled Systems Under Uncertainty

Paul Constantine, Eric Phipps and Tim Wildey: Sandia National Laboratories, Albuquerque, NM 87123
Troy Butler and Clint Dawson: The University of Texas at Austin, Austin, TX 78723

Model:

y: - | Mo o

Do we trust surrogate models to compute statistical properties given (virtually)
unlimited samples?

The goal is to estimate the error in samples of a quantity of interest computed
from a polynomial chaos (PC) approximation.

Accurate Error Estimates Improved Linear Functionals
[ [ Std Err Est u(x,¢) | PC Err Est u(xTF, 1) [ Ratio | , (2 s v
0.50 0.22660 0.22667 1.00032 |
0.75 0.19693 0.19694 1.00006
1.00 0.17823 0.17823 1.00000
1.25 0.16520 0.16519 0.99996
1.50 0.15550 0.15548 0.99983
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~ . @ Models for Generating
Large Realistic Graphs

* @Goal: Create models that can describe
and generate realistic networks at the
large scale. f(X) -

* Challenge: We have to design both the
descriptors and the methods to generate
graphs from these descriptors.
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as input to theoretically sound analysis. L5,
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83 — Jeff Schneider
Machine Learning to Recognize

Phenomena in Large Scale Simulations

Given a petabyte of simulation data
« what interesting happened?
* how often did it happen? when? where?

APPROACH

* Treat nearby grid points as a group

* Propose Support Distribution Machine
for groups (distributions) of data points

« Use SDM to find anomalies, classify
phenomena, cluster results

Sample result:

|dentified a “sheet”
of vortices

Carnegie Mellon

B JHU Turbulence Dataset
10244 grid




Extending The Realm Of Optimization For Complex Systems: DOE-DE-SC0003879
Uncertainty, Competition, and Dynamics Basar, Mehta, Meyn and Shanbhag (lllinois)

ON STOCHASTIC GRADIENT AND SUBGRADIENT METHODS WITH ADAPTIVE STEPLENGTH SEQUENCES
@ Consider the convex stochastic optimization problem given by

min  E[f(x;&(w))].

xeK

@ A stochastic approximation scheme: xx11 := Ik (xx — % VFf(x;6k)), k>1.

o |f Z }/,3 < o0 and Z Ve = oo, the xx — x* almost surely.

k=0 k=0
Challenge
R
Standard choices of 7 = 1/k can be VERY L e
poor; are there adaptive rules? [ —
y 5
@ Two adaptive steplength rules with a.s. A N
~.'\::“":::"-3'\’«’:‘::m-....,‘....’...
convergence guarantees ]
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Joint work with A. Nedié and F. Yousefian

2/2



e Explicit

85 - Mikhail J. Shashkov
ReALE - Reconnection-Based Multimaterial Arbitrary
Lagrangian-Eulerian Method

Mikhail J. Shashkov

X-Computational Physics Division, Methods & Algorithms Group, Los Alamos National Laboratory

Conventional ALE Methods

Lagrangian (solving
Lagrangian equations) phase —
grid is moving with fluid

Rezone phase — changing the
mesh (improving geometrical
quality, smoothing, adaptation)
— mesh movement

Remap phase (conservative
interpolation) — remapping flow
parameters from Lagrangian grid
to rezoned mesh

Limitation of ALE

Fixed Connectivity

ReALE - Reconnection-based ALE

e Lagrangian phase
General polygonal meshes

e Rezone phase
Allows mesh reconnection

e Remap phase
Remapping from one
polygonal mesh to another

The Devil is in the Details



Poster 86: Chi-Wang Shu, Brown University

Positivity-preserving High-Order Runge-Kutta
Discontinuous Galerkin Schemes

e A general framework with a simple local limiter to enforce maximum
principle or positivity retaining uniform high order accuracy (with
rigorous proof).

e \Works in multi-dimensions on arbitrary triangulations.

e Maximum principle: scalar nonlinear conservation laws,
iIncompressible flows in two-dimensional vorticity-streamfunction

formulation, and passive convection in incompressible fields.

e Positivity-preserving: Euler equations of compressible flow (density
and pressure), shallow water equations (water height).



Poster #87 Peng Wang

PDF Methods for Uncertainty Quantification
in Hyperbolic Conservation Laws

* While standard techniques for uncertainty quantification
typically yield only system state’s mean and variance, the
proposed approach leads to its full probabilistic description.

* The shape of the probabilistic density function (PDF) changes
with time, varying between the known initial and steady-state
distributions. This makes reliance on assumed PDFs
problematic.

* PDF methods provide a computationally efficient means for
uncertainty quantification.

o
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High Performance Embedded Hybrid Methodology for
Uncertainty Quantification in Multi-physics Problems

Pacific Northwest 3 Charles Tong - LLNL

NATIONAL LABORATORY
Lawrence Livermore Barry Lee - PNNL

Napopal Laborsen Akshay Mittal, Gianluca laccarino ~Stanford

We use the following test problem to illustrate a forward uncertainty propagation method.
u 92u = Operator splitting scheme: (n = time step)
oD —Ku; O0=x=1;0=t=T  diffusion module: PCE (polynomial chaos)

x> * reaction module: sampling
u(0,t) =u(l,)=0,t=0 ou a°
( i ) ~( ' ) —[) 5 0 u n+1/2
ux,0)=1f(x).0=x =1 ot ox "~ D
. . (’) u u n+l

= D and K are second order random variables [.C. —+ K R
= D =[0.0001, 0.001] with uniform distribution ot
* K=[0.1, 0.5] with uniform distribution = Global uncertainty representation: PCE
= time-step = 0.01 = Global uncertainty managed by software framework
= Track root-mean-squared errors at T=2

PCE Wrapper Sampling Wrapper

local uncertainty
processing

Reaction >

R (deterministic)

Global uncertainty information

&

Discussions:
PCE | Pure PCE | Pure PCE Hvbrid Hvbrid * The hybrid method attains smaller errors than
Order | rms error | Time (s) rms error | Time ) the pure PCE method when p is sufficiently large.
This may be due to the use of analytic solution.
4.9¢-4 8.0 7.8¢-3 10.5 = The higher accuracy can be attained for pure

5.7e-4 10.5 4.8e-5 14.5 PCE with smaller time step.
5.7e-4 13.5 4.0e-5 23.5 * Hybrid methods take longer, but

i * Pure PCE may need smaller time step
5.7e-4 16.5 8.9¢-5 29.5 + Multi-species problem will need special ODE
5.7e-4 20.5 8.6e-5 40.0 solvers (the reason for operator splitting)
5.7e-4 25.5 8.7e-5 46.0 + Some more code optimization may be

possible (in the non-intrusive module)




.POSTER 89: Construction and Properties of Coarse Discretization Spaces by AMGe C_ 10
Panayot S. Vassilevski, CASC, LLNL c

Abstract: Several approaches to construct AMG coarse finite element discretization spaces are presented based on
element agglomeration AMG (or AMGe) as well as smoothed aggregation AMG (or SA AMG). The spaces can be used
both for building multilevel iterative methods as well as upscaling (discretization) tool. This 1s 1llustrated on diffusion
equation with large jumps 1n coetficient in primal and mixed formulation.

Convergent Multigrid 1mplies “approximation property” of coarse spaces.

Hence, “

J)

We use specialized, “element-based” AMG (or AMGe) techniques applied to :

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.



Poster #90 — Tom Asaki
Geometric Signatures for Fast Shape Processing

Keith Clawson, Sharif Ibrahim, Heather Van Dyke, Tom Asaki, Kevin Vixie

Flat Norm Surrogate Signatures
Scale Sensitive

. disk convolution, heat kernel, erosion
Signatures

spoon

INNL L=

Flat Norm Decomposition

Streaming Vid
F(\) = M(T — 85) + \M(S) reaming Video
— . " = parallelization
/\ o GPU implementation
s T~ o algorithms

novel surrogates



INTERPOLATING PARAMETERIZED

SIMULATION RESULTS

Paul G. Constantine

Stanford University/Sandia National Labs

With:
David Gleich (Purdue), Qigi Wang (MIT)

Exascale computing needs exascale data management!

Keywords: model reduction, uncertainty quantification, MapReduce



Barbara Lee Keyfitz, Poster 92
Shock Formation at the Sonic Line

Sonic Line

Barbara Lee Can |t Happen?
Keyfitz
Ohio State

Alexander Kuz'min: No John Hunter - Allen Tesdall: Yes

T Reflected shock

y

Incident shock

X ]
Objective =
) 7 ~ Shock
Give general proof that S

shocks cannot form at sonic
line

Barbara Lee Keyfitz Ohio State Sonic Line



Poster # 95 Presenter: Graham Alldredge

A Computational Studay of the Optimization Problem
in High-Order Entropy-Based Moment Closures for Linear Transport

Graham Alldredge, Cory Hauck, Dianne O’'Leary, and André L. Tits
[DOE Grant DESC0001862. Pls: Cory Hauck, D.P. O’Leary, and A.L. Tits]

@ Entropy-based Moment Closures: Reduced,
parallelizable model with attractive theoretical
properites.

@ Optimization challenges:

o Solution needed at each point on a
space-time mesh.

o Hessian of objective function becomes
singular near the realizable boundary

@ Our solutions:
o A kinetic solver which preserves realizability
o Adaptive quadrature
o lterative change of polynomial basis
o Regularization method for hardest problems

35
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T
Figure: Optimization iterations needed
for a sixteen-moment problem.



A Scalable Numerical Approach to MHD Systems

Jinchao Xu, Penn State, xu@math.psu.edu, http://www.math.psu.edu/xu/

ur+ (u-Vyu(= Du/Dt) — pAu+Vp—(VxB)yxB = 0, divu=0,
Bi—Vx(uxB)(=0B/dt)+nV x (VxB) = 0, divB=0.

Observation: Both convective terms are derivatives along flow trajectories:

6B . B(x,t)— F'B(y(x,t—k,t),t—k) 0B
L K =g¢ ~VxWxB)
A N T f,0)"
Eulerian-Lagrangian Method (ELM) = < 01 A2 ) ( ((U’g) ) ):( (( 73) ) ) (1)

_ —1 v )
A = < BE I o) ) , Ap = curl curl + k=", N(B) = (V x B) x B.
@ Scalable AMG and HX methods for (1) on unstructured grids;
@ Appropriate numerical (exact) quadratures for ELM;
@ Preliminary numerical examples;



Classifying Distributed Computation

® Hypothesis: distributed scientific
computations exhibit well-
structured communications

® J[ask Infer the algorithm underlying
observed communication patterns

® |mpacts: security, performance
analysis, algorithm replacement

® [opics: graph theory, network
theory, machine learning

AVAYAYAYA
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Random Forests

0.95 |

True Positive Rate

03, 0.05 0.1

False Positive Rate



