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Fast and Robust Computation of Stochastic Transcendentals

Kevin Long and Kaleb McKale (Texas Tech University)

Transcendental functions of polynomial chaos expansions (PCE)

Problem: compute PCE representation of f (x(ξ)), where
x(ξ) is a PCE

Existing methods: line integration, sparse quadrature

New method: modified arithmetic-geometric mean
iteration applied to PCE

Requires only arithmetic and square root operations

Converges in a few iterations

BGC Computation of PCE Arctangent

Convergence in 4 BGC iterations

Borchardt-Gauss iteration with Carlson acceleration

an+1 =
1

2
(an + gn)

gn+1 =
√

an+1gn

B(a0, g0) = lim
n→∞ an

Any inverse transcendental (e.g. log, arctan) can be
computed via BG iteration

For example: log(x) = (x − 1)/B( x+1
2
, x)

BG iteration with Carlson acceleration: very fast

convergence (contraction by ∼ 10−3 per iteration)

BGC Computation of PCE Logarithm

Convergence in 3 BGC iterations



Poster #49 — Fred J. Hickernell, IIT

Efficient Construction of Surrogates for Computer

Experiments with Gradient Information

◮ Realistic nuclear reactor simulations take a lot of time.

◮ Need a cheap approximation for f : Rd → R from computer experiment data.

◮ Adjoint methods provide ∇f(xi) (d more data) in addition to f(xi) for
≈ 100% more cost.

◮ Use a polynomial basis for regression that is
orthogonal with respect to

〈f, g〉
G
= 〈f, g〉
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Orthogonal Basis
Hermite Polynomials

◮ Choose sample points that are evenly spread (low discrepancy) to control the
condition number of the information matrix regardless of model.

Fred J. Hickernell and Yiou Li Construction of Surrogates Tuesday, October 18, 2011 1 / 1



#50	
  –	
  Orianna	
  DeMasi	
  

•  Model	
  is	
  a	
  linear	
  sum	
  of	
  rules	
  

•  Consider	
  how	
  to	
  construct	
  rules	
  and	
  weights	
  

•  The	
  weight	
  indicates	
  a	
  rule’s	
  importance	
  	
  

•  Importance	
  of	
  rules	
  used	
  to	
  prune	
  a?ributes	
  
	
  

Dimension Reduction Using the 	


Rule Ensemble Machine Learning Method	



Orianna DeMasi, Juan Meza, David Bailey	



ApplicaBon	
  on	
  supernova	
  data	
  
culls	
  39	
  a?ributes	
  to	
  21	
  while	
  
decreasing	
  the	
  overall	
  error	
  rate	
  



  

Poster 51: Sandra May and Marsha Berger
Courant Institute, NYU

 

Slope Limiters for Finite Volume Schemes on 
Non-coordinate-aligned Meshes

Result:                               Family of LP limiters

+ Ensures monotonicity                      + Good for Cartesian embedded boundary grids

+ Adaptable for specific needs           + Limits x- and y-slope independently (not scalar)

Goal:

Construct gradient on cutcell 
respecting monotonicity conditions   
 

Approach:

Limit gradient estimate (Dx,Dy) by scalars
            which solve a Linear Program

e.g.  

 

max x∣Dx∣ y∣D y∣
s. t.

0≤ x , y≤1,
for j=1,neighbors assumeuM≤u j :

uM[x

 y
]⋅[ Dx x j−xM 

D y  y j− yM ] ≤ u j.

x ,y



Coarse-graining computation of collective swimming in
biosuspensions. L. Berlyand, Penn State

PSU Students: B.Haines, S.Ryan, DOE Collaborators: I.Aranson, D.Karpeev (ANL)
Phys. Rev. E 80, 041922 (2009); Comm. Pure Appl. Anal., (2012), Phys. Rev E 83, 050904(R) (2011), ARMA (2010)

Objective: Develop computational models that reveal mechanisms
behind collective swimming. Explain striking experimental results.
Challenge: Computationally prohibitive fine scales.

I Dilute suspensions - no interactions. Obtained additional
term in Einstein’s formula for effective viscosity – due to
self-propulsion; homogenization, multi-scale analysis.

I Semidilute: Add mean field interactions and develop a
computational model. Include soft collisions and dipolar interactions
- accounts for full range of exp. concentration.

I Current Work: Beyond mean field. Capture critical concentration
for onset of collective motion, correlations, fluctuations.

I PDEs with many non-separated scales Irregular coefficients:
classical FEM and homogenization do not work. Designed shape
functions that capture scales. Extend to moving fine-grained
boundaries, evolving shape functions to track swimming bacteria.



• Magnitudes sparser Jacobians 

• Simple scheme: Only 1-D integrals 

• LDG-type second order terms 

 

Poster 53: Per-Olof Persson, UC Berkeley, LBNL  

Sparse Line-Based Discontinuous Galerkin Discretizations 
and Efficient Time-Integration 
Map system of conservation laws to 
a reference element: 

Apply 1-D Discontinuous Galerkin 
schemes along each coordinate line: 



Lawrence Livermore National Laboratory 

Mapping 

Flux surface 
coordinate 

Field line 
following 
coordinate 

X point: 
• Poloidal field component 

vanishes (no need to stay  
field aligned) 

• Field line projections become 
progressively kinked, leading 
to large derivatives in 
coordinate mappings 

This poster describes 
how we address this 
issue in the 
development of fourth-
order, mapped-
multiblock, finite-volume 
discretizations of 
advection operators in 
this unique geometry. 

Field-aligned coordinates help accommodate strong anisotropy in solving 
PDEs on edge plasma domains defined by magnetic flux surfaces: 



Bayesian Quantification of Uncertainty  
in Systems with Intrinsic Noise 

•! Goal:  
–! Uncertainty quantification in high-

dimensional stochastic systems 
•! Challenges: 

–! Large number of parameters, i.e.  
     the curse of dimensionality 
–! Intrinsic noise makes sparse 

quadrature methods infeasible 
–! Nonlinear output observables 

•! Approach: 
–! Polynomial Chaos (PC) representation 
–! Bayesian inference of PC modes 
–! Nearest-neighbor based mixture PC 
–! Outcome: uncertain response surface 

55. Bert Debusschere 

Khachik Sargsyan, Cosmin Safta, Bert Debusschere, Habib Najm 
Sandia National Laboratories, Livermore, CA 

{ksargsy, csafta, bjdebus, hnnajm}@sandia.gov  

Mixture PC response surface of competence probability 
in Bacillus subtilis with respect to two influential rate 
constants. 

Sargsyan et al., J. Comp. Theor. Nanosci., 6(10), 2009 
Sargsyan et al., SIAM J. Sci. Comp., 31(6), 2010 
Sargsyan et al., in preparation for Biophys. J, 2011 
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Large-­‐Scale	
  Uncertainty	
  and	
  Error	
  Analysis	
  for	
  Time-­‐dependent	
  
Fluid/Structure	
  Interac=ons	
  in	
  Wind	
  Turbine	
  Applica=ons	
  



Posi%vity‐preserving high order well‐balanced  
method for the shallow water equa%ons 

Impact  Objec,ves  
  Develop accurate and efficient numerical 

methods for the shallow water equations, 
which can  

  take care of the dry area automatically; 

  capture the steady state exactly. 

  Enable stable and efficient simulations to the 
shallow-water equations and their applications in 
dam break problem and tsunamis wave prediction 

  Similar technique can be extended to the MHD 
model in plasma, gas dynamics model in 
astrophysics and other hyperbolic system with 
source terms 

Time history of a small perturba2on to the equilibrium state 

•   Provide posi2vity‐preserving limiters for the shallow‐water equa2ons    

•   Y. Xing, X. Zhang and C.‐W. Shu, Posi,vity‐preserving high order well‐
balanced discon,nuous Galerkin methods for the shallow water 
equa,ons, Advances in Water Resources, v33 (2010), pp.1476‐1493 
  
•   Y. Xing, C.‐W. Shu and S. Noelle, On the advantage of well‐balanced 
schemes for moving‐water equilibrium of the shallow water equa,ons, 
Journal of Scien%fic Compu%ng, v48 (2011), pp.339‐349 
  
•  Y. Xing and C.‐W. Shu, High‐order finite volume WENO schemes for the 
shallow water equa,ons with dry states, Advances in Water Resources, 
v34 (2011), pp.1026‐1038 

Accomplishments 

ASCR- Applied Mathematics Highlight 

Cap2on (op2onal) 

Yulong Xing, Oak Ridge Na%onal Laboratory 



#58 An Adaptive Embedded Boundary Method  
    for Pore Scale Reactive Transport 

Acetate 
solution 

Pore scale 

100 µm 

Pore scale 

Field scale 

“World’s largest pore scale reactive transport simulation” 
David Trebotich, Sergi Molins, Carl Steefel, Chaopeng Shen and Greg Miller 

Calcite dissolution in packed cylinder 
• 1 cm cylinder, 1200 spheres, 250 micron radii 
• 5 components, 9 complexation reactions, influent pH=5 
• 33.5 million grid points, < 20 micron grid resolution 
• 1024 cores, 0.6 GB per core, scalable to 65K cores 

500 µm 
Image data to pore 
scale RT simulation 
(pressure data in a 
section) 

Direct Numerical 
Simulation From 
Image Data Experiment to 

XMT imagery 

L. Yang, LBL J. Ajo-Franklin, LBL 
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and energy costs into scheduling problems
 Our algorithms compute a O(1)-approximation for weighted E
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completion time and weighted tardiness for very general energy 
cost functions.

 Experimental results show that the algorithms perform very Y
A

W
AR

E

 Experimental results show that the algorithms perform very 
close to optimal:

SAIAS Algorithm SAIAS-H Algorithm E
SC

H
ED

Total Instances: 26,098
Average Ratio: 1.0328
Worst Ratio: 1.5133
Optimal Instances: 1.34%

Total Instances: 26,098
Average Ratio: 1.0128
Worst Ratio: 1.3025
Optimal Instances: 40.06% D

U
LIN

G,, G
. IYEN

 Extensions: online and multiple parallel machines.
 Algorithms can also be used with other speed-related costs: 

i &
IEOR Department
Columbia University

DE-FG02-08ER25856: Algorithms for Mathematical Programming with emphasis on bi-level models
Rodrigo A. Carrasco, Garud Iyengar, Cliff Stein

N
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maintenance, wear & tear, etc.



  

Poster # 61
Susan Kurien (LANL)

 Leslie Smith (U. Wisconsin, Madison)

Characterize layer formation in small aspect-ratio rotating and 
stratified flows

● 2048 x 2048 x 512 gridpoints
● Rossby = Froude = 0.002
● time-resolved fastest waves
● 15M core hours (BG/P, Argonne)

● How does layer thickness change as aspect-ratio decreases?

● What is the relative fraction of energy in fast wave-modes? 



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security Administration 

 under contract DE-AC04-94AL85000. 

Enabling Tools for Extreme Scale  
Computation of Nanoscale Fluids 

SAND2011-7515P 

Poster #62: Michael Parks 

 Fluid density functional theories enable modeling                      
   and simulation of a wide range of applications 
 Minimize free energy functional with Newton-Krylov 
 Use Sandia’s Tramonto package for complex fluid  
  systems, built upon Trilinos software components  
 Increased performance by reducing memory  
   bandwidth and size usage 
 Stop by my poster to see: 
(1) Mixed-precision, precision-neutral, and high  
 precision solvers leveraging the 
  Tpetra solver stack (templated C++)  
(2) Robust mixed-precision solvers via least-squares     
     methods that shield user from details of computation 
(3) Block Krylov recycling solver with superior   
    convergence properties due to block formulation and    
     information reuse from previous linear solves 



Poster 63, Ilya Safro (Argonne National Laboratory)

Multiscale approach for network
compression-friendly ordering

Problem
Find a compressed representation of a network.

Many modern networks/graphs/matrices

are huge and noisy

are structurally different at different resolutions

describe data collected in parallel

With the growth of the networks we need

to store the network efficiently

to have an extremely fast access to network
elements (nodes, links, non-zero entries, etc)

Results
We find better ordering → better compression → faster performance.

I. Safro (ANL) and B. Temkin (WIS) Multiscale approach for network compression DOE APPMATH 2011 1 / 1



  

 Poster 64: Out-of-core algorithms for dense 
matrix factorization on GPGPU 

Ed D'Azevedo 
● General Purpose Graphics Processing Unit (GPGPU) 

achieves high performance  on dense matrix 
operations

● GPU accelerator on supercomputer to  consumer 
game video card (< $200)

● Largest problem size may be limited to the amount of 
device memory on GPGPU

● Idea: adapt out-of-core algorithm to factor 10 GB 
matrix on CPU host using only 1 GB device memory

● Cholesky factorization (DPOTRF) using only 1 GB 
(out of 5 GB) on Tesla M2050



65: Chandrika Kamath (LLNL)
Real-time Analysis of Streaming Data from SensorsReal time Analysis of Streaming Data from Sensors

 Can we adaptively reduce noise in the sensor data?
 Which data streams are important? Which data streams are important?
 How do we incorporate the spatial distribution of sensors into the predictive models?



Allen M. Tesdall, Poster 66
High resolution solutions for shock formation

Shock waves form generically in solutions of transonic flow problems.
An example: transonic flow over an airfoil

Where does the shock form?

Whether a shock forms on the sonic line or inside the supersonic
region is an open question.

We numerically solve this problem and others, and find that the
shock forms inside the supersonic region, and very close to, but
not at, the sonic line.



Poster 67: Tamara G. Kolda 

Tensors Factorizations for Sparse Data 
We propose that sparse count data is better modeled as a Poisson 
distribution than Gaussian: 

Such an assumption yields the following objective function (negative of 
the log likelihood) for fitting observed data: 

Data 
Model: 

Joint work with Eric C. Chi, Rice Univ. & UCLA 



Poster 68: Mustafa Kılınç, Jeff Linderoth, Jim Luedtke UW-Madison

Effective Disjunctive Cuts for Convex MINLPs

Disjunctive cutting planes are a tremendously effective
tool for solving mixed integer linear programs

Used in all state-of-the-art software packages

x̄

xi=0 xi=1

Rk+
i

Rk−
i

Our Team’s Quest

Develop computationally effective methodology for disjunctive
cutting planes in (convex) mixed integer nonlinear programs

Does it Work?

First use of disjunctive cutting planes on
practically-sized convex MINLP instances

Cuts are very strong: Tremendous speedups on many
instances, including portfolio optimization

Kılınç, L., Luedtke (UW-Madison) Disjunctive Inequalities for MINLP 2011 DOE Applied Math Mtg. 1 / 1



An	
  adap've	
  high-­‐order	
  minimum	
  ac'on	
  method	
  

∂
∂t
u(x, t) =Gu(x, t)+ εW

•

(x, t)

ε
W
•

is	
  space-­‐'me	
  white	
  noise.	
  	
  

is	
  a	
  small	
  posi've	
  number.	
  	
  

  A	
  transi)on	
  from	
  one	
  state	
  in	
  the	
  
phase	
  space	
  to	
  another	
  one	
  always	
  
has	
  a	
  posi)ve	
  probability.	
  How	
  can	
  
we	
  quan)fy	
  this	
  probability?	
  How	
  
does	
  the	
  transi)on	
  occur?	
  

	
  
  When	
  	
  	
  	
  	
  	
  is	
  small,	
  the	
  transi)on	
  

probability	
  will	
  be	
  also	
  small,	
  direct	
  
sampling	
  method	
  will	
  not	
  be	
  
affordable,	
  especially	
  when	
  we	
  
consider	
  a	
  large-­‐scale	
  problem,	
  such	
  
as	
  Navier-­‐Stokes	
  equa)ons.	
  

ε

u* = min
all possible
transition paths

ST (u)

Xiaoliang	
  Wan,	
  LSU	
  

hp	
  FEM	
  discre'za'on	
  in	
  
both	
  'me	
  and	
  space	
  

Adap've	
  'me	
  mesh	
  	
  
consistent	
  with	
  dynamics	
  	
  

Scalable	
  parallel	
  
op'miza'on	
  algorithm	
  

Large	
  devia'on	
  theory	
  for	
  the	
  
transi'on	
  probability	
  

chemical	
  reac'ons,	
  bi-­‐stable	
  gene'c	
  toggle	
  switch,	
  
nuclea'on	
  events	
  during	
  phase	
  transi'ons,	
  regime	
  
changes	
  in	
  climate,	
  subcri'cal	
  bifurca'ons,	
  etc.	
  



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

Effective caching, streaming require good data locality 
• Space-filling curve layouts are ideal for structured grids  

• ... but don’t do well on unstructured & non-geometric data 

We have developed a cache-oblivious locality measure 
• Applicable to any data set modeled as an affinity graph 

• Optimal unstructured grid layouts are qualitatively “space-filling” 
 Hamiltonian, hierarchical, unbiased, scale-free, ... 

 

Linear ordering problem is NP-hard 
• ... but good multilevel heuristics exist: see poster #63 for details 

Applications abound 
• Sparse matrix ordering 

• “Instant” graph partitioning & load balancing 

• Databases, GIS, image processing, clustering, 
GPU rendering, graph drawing, ... 

• Web graph compression 



Generalizations of the Parallel Replica Dynamics 
method for long‐timescale atomistic simulations 

  Parallel Replica Dynamics is a method to parallelize molecular dynamics 
simulation in the time domain. This enables atomistic simulations of nanoscale 
systems over long timescales (>µs), as long as they evolve through a 
sequence of rare, activated events.  

  We discuss a recent mathematical analysis of the method where we quantify 
the underlying approximation. We show that this approximation can be made 
arbitrarily good. 

  Through the same analysis, we show that the method can be generalized to 
handle arbitrary partitions of configuration space instead of the conventional 
definition. When chosen properly, this can significantly improve the efficiency 
of the method. 

  We show how this leads to a generalization of the method that can handle 
both diffusive, as well as activated, rare events.   

Poster 71, Danny Perez, LANL 



72. Hadi Meidani 

Random transitions and eigenvalues 
 for modeling demand and stability for the Smart Grid 

Hadi Meidani, Roger Ghanem 

Random eigenvalue analysis Markov chains with random transitions Synchronization in random networks 
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Sparse Grid Methods give 
two to three orders of magnitude 
Scenario (time) reduction when 
compared with Monte-Carlo, 
Quasi-Monte Carlo and Full Grid 
Methods for smooth problems 

 
Semi-infinite linear 
programming approach 
allows generation of cubature 
formulae with non-negative 
weights for any distribution 
function. 

 

Interior decomposition 
algorithm allows adaptive 
scenario addition and  
distributed computations. 

Improved Scenario Generation in Stochastic Optimization; Polynomial Convergence of 
Interior Decomposition Algorithms 

ACHIEVEMENTS: 

Scenario Generation Methods: 

• Convergence Analysis of Sparse Grid 
Scenario Generation Methods in 
Optimization framework showing similar 
convergence properties as those for the 
integration problems. 

• Developed an optimization based approach 
to generate moment matching cubature 
formulae by solving semi-infinite linear 
programs. 

 

Interior Decomposition Algorithms:  

• Developed a primal-interior decomposition 
algorithm for two-stage convex programs 
admitting self-concordant barriers that 
decomposes the second stage problem. 

• Analysis shows that the order of the number 
of inner iterations of this algorithm is same 
as that for primal-interior algorithm applied to 
the extensive formulation. 

Scenarios Representing 
Uncertainty are generated using 
Monte-Carlo and Quasi-MC 
Methods 
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Sparse Grid Scenario Generation and Interior Algorithms for 

Stochastic Optimization in a Parallel Computing Environment: 

Sanjay Mehrotra, Northwestern University 
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Current Algorithms Require 
Extensive Formulation of the Two-
Stage Problem 

Number of scenarios in a 6- 

dimensional stochastic problem. 



Poster 74 - Stefan Wild

Optimal Derivatives of Noisy Simulations

How should difference parameter h be chosen in
f(t+h)−f(t)

h
?
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Realized error
Optimal step

Choose h = hopt based on

the noise in f

⋄ Provably optimal:

E(hopt) ≤ γ min
h≤hU

E(h)

⋄ Inexpensive:

Noise estimate and 2-4

f evaluations



Data Assimilation in Multiscale Systems
Humberto C. Godinez, Balu Nadiga, J. David Moulton

Los Alamos National Laboratory

Part I: Ensemble Data Assimila-
tion for Strongly Coupled Sys-
tems
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Part II: An Efficient Matrix-Free
EnKF Algorithm
Matrix-free implementation of
EnKF using a Sherman-Morrison
linear solver to efficiently assimi-
late large data sets.
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H.C. Godinez, B. Nadiga, J.D. Moulton Data Assimilation in Multiscale Systems
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77. Pablo Seleson

Peridynamics
as a Multiscale Material Model
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§  Topological	
  analysis	
  of	
  high-­‐dimensional	
  functions	
  provides	
  new	
  
insights	
  into	
  parameter	
  dependencies	
  within	
  simulation	
  ensembles	
  

Average	
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  ensemble	
  

maxima	
  

minimum	
  



Applied Mathematics Program Meeting, October 18, 2011  

Poster 79 – Robert Carr (Sandia National Laboratories) 

§  New algorithm for computing a 
minimum-cost 2-connected subgraph; 
cost reduction for multi-edges. 
§  Special case of buy-at-bulk network 

design with protection, used actively for 
designing optical communication 
networks. Network must function if an 
edge fails. 

§  Provable 5/3-approximation (best 
previous bound = 2) 

§  First tree-based formulation and new 
analysis techniques involving multiple 
convex decompositions 

A	
  2-­‐connected	
  graph	
  

If	
  any	
  edge	
  is	
  broken,	
  all	
  nodes	
  remain	
  connected	
  
Figure	
  from:	
  h=p://people.sc.fsu.edu/~jburkardt/latex/asa_2011_graphs_homework/	
  

ApproximaGng	
  a	
  2-­‐edge-­‐connected	
  subgraph	
  problem	
  



Poster 80: Tim Wildey 
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Approximations 

Mathematical and Computational Tools for Predictive Simulation of Complex Coupled Systems Under Uncertainty 
 

Paul Constantine, Eric Phipps and Tim Wildey: Sandia National Laboratories, Albuquerque, NM 87123  
Troy Butler and Clint Dawson: The University of Texas at Austin, Austin, TX 78723 
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Numerical Results Case II: Random model parameters

Validating Accuracy of Estimates

λ Std Err Est u(x{5}, t) PC Err Est u(x{5}, t) Ratio

0.50 0.22660 0.22667 1.00032
0.75 0.19693 0.19694 1.00006
1.00 0.17823 0.17823 1.00000
1.25 0.16520 0.16519 0.99996
1.50 0.15550 0.15548 0.99983

Table: Comparison of standard error estimates (second column) for quantity of interest
u(x{5}, t) at time t = 0.05 computed for fixed values of λ in (22) (first column) to the
new error estimates (third column) computed by evaluating the polynomial chaos
expansion of the error in the quantity of interest at the given values of λ. The last
column shows the ratio of the new error estimates to the standard error estimates and
shows values close to the desired value of unity.

T. Butler (ICES) A Posteriori Error Estimates for PCEs of DEs 2011 February 28 52 / 56

	
  
	
  
	
  
	
  

Model:
u = M(λ)

Do we trust surrogate models to compute statistical properties given (virtually)
unlimited samples?

The goal is to estimate the error in samples of a quantity of interest computed
from a polynomial chaos (PC) approximation.

Accurate Error Estimates Improved Linear Functionals



Models for Generating 
Large Realistic Graphs 

•  Goal:	
  Create	
  models	
  that	
  can	
  describe	
  
and	
  generate	
  	
  realis2c	
  networks	
  at	
  the	
  
large	
  scale.	
  

•  Challenge:	
  We	
  have	
  to	
  design	
  both	
  the	
  
descriptors	
  and	
  the	
  methods	
  to	
  generate	
  
graphs	
  from	
  these	
  descriptors.	
  	
  

•  Approach:	
  	
  Use	
  observa2ons	
  on	
  real	
  data	
  
as	
  input	
  to	
  theore2cally	
  sound	
  analysis.	
  	
  	
  

•  Status:	
  
–  Analysis	
  and	
  improvements	
  on	
  the	
  

Graph500	
  benchmark	
  	
  
–  A	
  new	
  model,	
  BTER,	
  that	
  produces	
  	
  

accurate	
  approxima2ons	
  	
  for	
  large	
  class	
  
of	
  graphs	
  

17-­‐19	
  October,	
  2011	
   Ali	
  Pinar	
  -­‐	
  PI	
  Mee2ng	
  2011	
  

f(x)	
  =	
  

Contact:	
  	
  Ali	
  Pinar,	
  Sandia	
  Natl.	
  Labs	
  	
  
	
  



83 – Jeff Schneider

Machine Learning to Recognize 

Phenomena in Large Scale Simulations

Given a petabyte of simulation data

• what interesting happened?

• how often did it happen? when? where?

APPROACH

• Treat nearby grid points as a group

• Propose Support Distribution Machine 

for groups (distributions) of data points

• Use SDM to find anomalies, classify 

phenomena, cluster results 

JHU Turbulence Dataset

10244 grid

Identified a “sheet” 

of vortices

Sample result:



Extending The Realm Of Optimization For Complex Systems: DOE-DE-SC0003879
Uncertainty, Competition, and Dynamics Başar, Mehta, Meyn and Shanbhag (Illinois)

On stochastic gradient and subgradient methods with adaptive steplength sequences

Consider the convex stochastic optimization problem given by

min
x∈K

E[f (x ;ξ (ω))].

A stochastic approximation scheme: xk+1 := ΠK (xk − γk∇f (xk ;ξk)), k ≥ 1.

If
∞

∑
k=0

γ2
k < ∞ and

∞

∑
k=0

γk = ∞, the xk → x∗ almost surely.

Challenge

Standard choices of γk = 1/k can be VERY
poor; are there adaptive rules?

Two adaptive steplength rules with a.s.
convergence guarantees

Extensions to nonsmooth regimes
Joint work with A. Nedić and F. Yousefian

2 / 2



85 - Mikhail J. Shashkov
ReALE - Reconnection-Based Multimaterial Arbitrary

Lagrangian-Eulerian Method
Mikhail J. Shashkov

X-Computational Physics Division, Methods & Algorithms Group, Los Alamos National Laboratory

Conventional ALE Methods

• Explicit Lagrangian (solving
Lagrangian equations) phase —
grid is moving with fluid

• Rezone phase — changing the
mesh (improving geometrical
quality, smoothing, adaptation)
— mesh movement

• Remap phase (conservative
interpolation) — remapping flow
parameters from Lagrangian grid
to rezoned mesh

Limitation of ALE

Fixed Connectivity
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ReALE - Reconnection-based ALE

• Lagrangian phase
General polygonal meshes

• Rezone phase
Allows mesh reconnection

• Remap phase
Remapping from one
polygonal mesh to another

The Devil is in the Details



Poster 86: Chi-Wang Shu, Brown University

Positivity-preserving High-Order Runge-Kutta
Discontinuous Galerkin Schemes

• A general framework with a simple local limiter to enforce maximum

principle or positivity retaining uniform high order accuracy (with

rigorous proof).

• Works in multi-dimensions on arbitrary triangulations.

• Maximum principle: scalar nonlinear conservation laws,

incompressible flows in two-dimensional vorticity-streamfunction

formulation, and passive convection in incompressible fields.

• Positivity-preserving: Euler equations of compressible flow (density

and pressure), shallow water equations (water height).



•  While standard techniques for uncertainty quantification 
typically yield only system state’s mean and variance, the 
proposed approach leads to its full probabilistic description. 

•  The shape of the probabilistic density function (PDF) changes 
with time, varying between the known initial and steady-state 
distributions. This makes reliance on assumed PDFs 
problematic. 

•  PDF methods provide a computationally efficient means for 
uncertainty quantification. 

Poster #87 Peng Wang 
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  Embedded	
  Hybrid	
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Uncertainty	
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POSTER 89: Construction and Properties of Coarse Discretization Spaces by  AMGe  

Abstract:   Several approaches to construct AMG coarse finite element discretization spaces are presented based on 

element agglomeration AMG (or AMGe) as well as smoothed aggregation AMG (or SA AMG). The spaces can be used 

both for building multilevel iterative methods as well as upscaling (discretization) tool.  This is illustrated on diffusion 

equation with large jumps in coefficient in primal and mixed formulation. 

 

Panayot S. Vassilevski, CASC, LLNL 
 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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      Convergent Multigrid  implies “approximation property” of coarse spaces. 

Hence, “use coarsening techniques from AMG to construct coarse spaces with 

guaranteed approximation property”. 

 

We use specialized, “element-based” AMG (or AMGe) techniques applied to : 

 

 

 



Poster #90 – Tom Asaki
Geometric Signatures for Fast Shape Processing

Keith Clawson, Sharif Ibrahim, Heather Van Dyke, Tom Asaki, Kevin Vixie

Scale Sensitive
Signatures
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Flat Norm Decomposition

F(λ) = M(T − ∂S) + λM(S)

Flat Norm Surrogate Signatures

disk convolution, heat kernel, erosion

Streaming Video

parallelization
GPU implementation

algorithms
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INTERPOLATING PARAMETERIZED 
SIMULATION RESULTS	



Paul G. Constantine	



Stanford University/Sandia National Labs	



With: 	


David Gleich (Purdue), Qiqi Wang (MIT)	



Exascale computing needs exascale data management!	



Keywords: model reduction, uncertainty quantification, MapReduce	





Sonic Line

Barbara Lee
Keyfitz

Ohio State

 
 

 

Barbara Lee Keyfitz, Poster 92
Shock Formation at the Sonic Line

Can It Happen?

Alexander Kuz’min: No

Objective
Give general proof that

shocks cannot form at sonic
line

John Hunter - Allen Tesdall: Yes2 JOHN K. HUNTER AND ALLEN M. TESDALL

Incident shock

S

A

Screen

Reflected shock

Fig. 1. A weak shock at normal incidence to a screen. Solid lines are shocks; dotted lines are
expansion wavefronts.

In (1.2), the small positive parameter α measures the strength of the wave, and it
cannot be removed by a rescaling. The matching data (1.2) corresponds to a self-
similar radial sound wave that changes continuously from a compression in y > 0 to
an expansion in y < 0.

The spatial variables (x, y) in (1.1)–(1.2) are suitably defined “inner” spatial vari-
ables about S, rather the original spatial variables. The x-variable increases across
the wavefront, and the y-variable increases along the wavefront. The dependent vari-
ables (u, v) are proportional to the (x, y) velocity perturbations, and the pressure
perturbation is proportional to u. We summarize the derivation of the UTSDE and
the definitions of the variables in the Appendix.

In Section 8.1, we show numerical solutions of (1.1)–(1.2) for several different
small values of α. A shock wave forms by compression in y > 0 and diffracts into
the lower half space y < 0, where it dies out at some point and is continued by an
expansion wavefront. The shock appears to diffract by an angle that is of the order α
as α→ 0+; specifically, we find numerically that it dies out at a point with y/t ∼ −cα,
where c ≈ 5.75. This point appears from our numerical solutions to be on the sonic
line where the self-similar form of (1.1) changes type, and not inside the supersonic
region. The disappearance of a diffracting shock at a sonic point differs from the
formation of shocks in two-dimensional Riemann problems and transonic flows that
is caused by the focusing of characteristics reflected off a sonic line. Such shocks
typically form at supersonic points [14]. See [10] for an analysis of related problems.

The weakly nonlinear asymptotics for the solution near a point such as S is
subtle. A straightforward dominant balance argument based on transonic scaling and
matching with the global linearized solution is not sufficient to determine the size of
the region near S where nonlinearity becomes important. Related to this difficulty
is the fact that, as we show in Section 5, the UTSDE and the matching condition
(1.1)–(1.2) are self-similar in the similarity variables (x/t, y/t). Thus, remarkably,
this problem possesses a second self-similarity with respect to the original self-similar
variables. The second self-similarity appears to be broken, however, by the difference
between the conditions required at a shock and an expansion wavefront, so that the
full solution is not self-similar. We do not carry out a complete analysis of these issues
here, but we obtain numerical solutions of (1.1)–(1.2).

The phenomenon of a shock that propagates into a constant state and diffracts
self-similarly into an expansion wave is not specific to the screen problem and is likely
to occur in other two-dimensional Riemann problems for the compressible Euler equa-
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Poster # 95 Presenter: Graham Alldredge

A Computational Studay of the Optimization Problem
in High-Order Entropy-Based Moment Closures for Linear Transport

Graham Alldredge, Cory Hauck, Dianne O’Leary, and André L. Tits

[DOE Grant DESC0001862. PIs: Cory Hauck, D.P. O’Leary, and A.L. Tits]

Entropy-based Moment Closures: Reduced,
parallelizable model with attractive theoretical
properites.

Optimization challenges:
Solution needed at each point on a
space-time mesh.
Hessian of objective function becomes
singular near the realizable boundary

Our solutions:
A kinetic solver which preserves realizability
Adaptive quadrature
Iterative change of polynomial basis
Regularization method for hardest problems

x
t
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Figure: Optimization iterations needed
for a sixteen-moment problem.
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A Scalable Numerical Approach to MHD Systems
Jinchao Xu, Penn State, xu@math.psu.edu, http://www.math.psu.edu/xu/

ut + (u · ∇)u (= Du/Dt)− µ∆u +∇p − (∇× B)× B = 0, div u = 0,
Bt −∇× (u × B) (= δB/δt) + η∇× (∇× B) = 0, div B = 0.

Observation: Both convective terms are derivatives along flow trajectories:

δB
δt

= lim
k→0

B(x , t)− F−1B(y(x , t − k , t), t − k)

k
=
∂B
∂t
−∇× (u × B).

Eulerian-Lagrangian Method (ELM) ⇒

(
A1 N
0 A2

) ( (
(u,p)T

)
B

)
=

( (
(f ,0)T

)
g

)
. (1)

A1 =

(
−µ∆ + k−1I (div)∗

div 0

)
,A2 = η curl curl + k−1I,N(B) = (∇× B)× B.

Scalable AMG and HX methods for (1) on unstructured grids;

Appropriate numerical (exact) quadratures for ELM;

Preliminary numerical examples;

() October 14, 2011 1 / 1



Classifying Distributed Computation

• Hypothesis: distributed scientific 
computations exhibit well-
structured communications

• Task: Infer the algorithm underlying 
observed communication patterns

• Impacts: security, performance 
analysis, algorithm replacement

• Topics: graph theory, network 
theory, machine learning
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Figure 5: Commonly found motifs of size 3 with 1 color (all calls), 2 colors (broadcast/point-to-point
calls), or 3 colors (broadcast/send/receive calls).

A type of hypothesis test called a goodness-of-fit test can be used to determine the equality

of probability distributions. We use the two-sample Kolmogorov-Smirnov (KS) test [15], first

computing the D-statistic for two empirical cumulative distribution functions:

Dm,n = max
x

|Ŝm(x)� Ŝn(x)|

where m and n are the total event counts of their respective distributions. We then compute the

probability that di↵erences in the distributions are due to chance (the p-value) and reject H0 if this

value is less than our threshold ↵:

P (Dm,n � DO|H0) < ↵

for the observed statistic DO [14]. Though defined theoretically for continuous distributions, a

modified KS test can be used with discrete distributions [16] or an unmodified test can simply

provide conservative p-values.

We present two applications of the KS test for pattern classification in the following sections.

3.4 Network Motifs

One approach to characterizing communication topologies is to describe global communication

patterns in terms of their localized subgraphs. Those subgraphs that occur more often than would

be expected in randomized networks are called motifs. Network theorists have studied motifs in

a wide range of fields including biology [17], ecology [18], chemistry [19], and neuroscience [20].
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