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1. A Model MHD (incompressible resistive equations)
MHD models dynamics of electrically conducting fluids (plasmas, liquid metals, electrolytes) and combines fluid dynamics
(Navier-Stokes equations) and electromagnetism (Maxwell’s equations).

ut + (u · ∇)u− µ∆u+∇p− (∇×B)×B = 0,

∇ · u = 0,

∂Bt −∇× (u×B) + η∇× (∇×B) = 0,

∇ ·B = 0. 3D MHD model problem ITER
Here η is the resistivity in the system: the Ideal MHD (η = 0) and Resistive MHD (η > 0).

2. Some difficulties and solutions
Difficulties:

• Nonlinear convection terms and large coupled systems

Proposed approaches:

• Describe the convection from geometrical prospective
and use Eulerian-Lagrangian Method

• Fast scalable algorithms for the discrete systems

3. Convection in MHD System
For Navier-Stokes equations, nonlinear convection terms come from the derivatives of velocity u (vector) and magnetic flux
density B (2-differential forms) taken along the trajectory of a given particle in a moving medium.

Du

Dt
= lim

k→0

u(x, t)− u(y(x, t− k, t), t− k)

k
=
∂u

∂t
+ u · ∇u

δB

δt
= lim

k→0

B(x, t)− F−1B(y(x, t− k, t), t− k)

k
=
∂B

∂t
−∇×(u×B)

Here y(x, t, s) is the flow mapping introduced by velocity
field u. F is the Jacobi matrix of the flow map. The last
equality makes use of∇ · u = 0 and ∇ ·B = 0.

B(s, t)

Ωs
Ωt

y = y(x, s, t)

dS(t, t)

F−1(s, t)B(s, t)

dS(s, t)

1Integration on a surface moving with velocity u

d

dt

∫∫
Σ(t)

B · dS =

∫∫
Σ(t)

[
∂

∂t
B + (∇ · u)B −∇× (u×B)] · dS

4. Eulerian-Lagrangian Method
ELM uses an implicit discretization of the material derivative

• results in an unconditionally stable scheme

• leads to a symmetric positive definite system

One key point is to properly calculate the integrations (of
product of two finite element functions from two non-
matching grids) on the right-hand side.

After applying finite elements for spatial variables and ELM convection terms: Find (uh, ph, Bh) ∈ Vh ×Qh × Eh s.t.

k−1(un+1
h , vh) + µ(∇un+1

h ,∇vh) + ((∇×Bn+1
h )×Bn+1

h , vh) = k−1(unh ◦ y(x, tn, tn+1), vh), ∀vh ∈ Vh
(∇ · un+1

h , qh) = 0, ∀qh ∈ Qh

k−1(Bn+1
h , eh) + η(∇×Bn+1

h ,∇× eh) = k−1(F−1
n,n+1B

n
h ◦ y(x, tn, tn+1), eh), ∀eh ∈ Eh

5. Effects of Numerical Integration in ELM
1. Numerical accuracy. With a standard interpolation, ELM
for ut + bux − εuxx = 0 leads to the modified equation:

ut + bux − (ε+ h)uxx +O(h2) = 0.

But an exact integration leads to the modified equation [6]

ut + bux − εuxx +M1uxxxx +M2uxxxxx +O(h5) = 0.

Moving cone with different
quadratures
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2. Accurate (exact) integration. Standard numerical integra-
tion does not give much accuracy for the discontinuous edge
elements. Accurate evaluation for these integrations in ELM
(with optimal complexity) is possible [8]: find the intersection
of the grid and deformed grid introduced by the flow map-
ping and calculate the integration on each intersection exactly.

1Approach deformed grid. 10
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C version implemented by us
O(n)

One key point: computing the intersection of two elements
also gives the information on whether one element’s neigh-
bors intersect the other one.

6. Scalable Solver for MHD
ELM for MHD leads to the system (almost linear):(

A1 N
0 A2

)(
(u, p)T

B

)
=

(
(f, 0)T

g

)

1. Stokes-like system. A1 =

(
−µ∆ + k−1 (−div)∗

−div 0

)
can

be optimally solved for unstructured grids.
Comparisons of different methods (# iterations/CPU):

DOF GMRES+T MINRES+D SIMPLE
16K 21/22 43/45 38/74
66K 23/119 48/212 49/449
262K 24/504 53/1061 63/2817

Scalability (GMRES+block triangular preconditioner):
DOF Core # Iter CPU (second)
714K 1 24 13.4

5620K 8 24 17.7
44.6M 64 24 34.9
355.M 512 24 50.6

2. Maxwell’s equation. HX precon-
ditioner [2, 3, 5] can be used to solve
A2 = η ∇×∇×+k−1I (optimal and
scalable for unstructured grids).

7. Ongoing works
1. Applications to benchmark problems (e.g. magnetic re-

connection).
2. Combination of grid-adaptation and geometric-

algebraic MG
3. Implementations on both CPU (MPI) and GPU.
4. Incompressibility for Bh (also for uh).
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