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1. A Model MHD (incompressible resistive equations) 2. Some difficulties and solutions

MHD models dynamics of electrically conducting fluids (plasmas, liquid metals, electrolytes) and combines fluid dynamics Difficulties:
(Navier-Stokes equations) and electromagnetism (Maxwell’s equations).
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Here 1) is the resistivity in the system: the Ideal MHD (1 = 0) and Resistive MHD () > 0).

e Nonlinear convection terms and large coupled systems

Proposed approaches:

e Describe the convection from geometrical prospective
and use Eulerian-Lagrangian Method

e Fast scalable algorithms for the discrete systems

3. Convection in MHD System 6. Scalable Solver for MHD

For Navier-Stokes equations, nonlinear convection terms come from the derivatives of velocity u (vector) and magnetic flux | | ELM for MHD leads to the system (almost linear):
density B (2-differential forms) taken along the trajectory of a given particle in a moving medium.
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equality makes use of V-u = 0and V - B = 0. dt J Jsy () It

Scalability (GMRES+block triangular preconditioner):

. . DOF Core #Iter CPU (second)
4. Eulerian-Lagrangian Method 7AK [T 24 13.4
5620K 8 24 17.7
ELM uses an implicit discretization of the material derivative 44.6M || 64 24 34.9
355.M 512 24 50.6

One key point is to properly calculate the integrations (of

Scalability of one edge solve (final cycle) for large At

e results in an unconditionally stable scheme e ,
product of two finite element functions from two non- 2. Maxwell’s equation. HX precon-
o leads to a symmetric positive definite system matching grids) on the right-hand side. ditioner [2, 3, 5] can be used to solve
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After applying finite elements for spatial variables and ELM convection terms: Find (up, pr, Br) € Vi X Qn X E}, s.t. scalable for unstructured grids). s - |
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. Applications to benchmark problems (e.g. magnetic re-
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connection).
: : : . Combination of grid-adaptation and geometric-
5. Effects of Numerical Integration in ELM | 5 P 5
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1. Numerical accuracy. With a standard interpolation, ELM 2. Accurate (exact) integration. Standard numerical integra- . Implementations on both CPU (MPI) and GPU.
for uy + bu, — euy, = 0leads to the modified equation: tion does not give much accuracy for the.discont.inu()l.ls edge . Incompressibility for By, (also for up).
elements. Accurate evaluation for these integrations in ELM
up + bug — (£ + h)uge + O(h?) = 0. (with opt.1ma1 complexity) is Posgble [8]: find the intersection
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